Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Mol Cell ; 78(2): 359-370.e6, 2020 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-32246903

RESUMEN

Yeast cells must grow to a critical size before committing to division. It is unknown how size is measured. We find that as cells grow, mRNAs for some cell-cycle activators scale faster than size, increasing in concentration, while mRNAs for some inhibitors scale slower than size, decreasing in concentration. Size-scaled gene expression could cause an increasing ratio of activators to inhibitors with size, triggering cell-cycle entry. Consistent with this, expression of the CLN2 activator from the promoter of the WHI5 inhibitor, or vice versa, interfered with cell size homeostasis, yielding a broader distribution of cell sizes. We suggest that size homeostasis comes from differential scaling of gene expression with size. Differential regulation of gene expression as a function of cell size could affect many cellular processes.


Asunto(s)
División Celular/genética , Tamaño de la Célula , Ciclinas/genética , Proteínas de Saccharomyces cerevisiae/genética , Ciclo Celular/genética , Fase G1/genética , Regulación del Desarrollo de la Expresión Génica/genética , Regulación Fúngica de la Expresión Génica/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo
2.
Mol Cell ; 62(4): 546-57, 2016 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-27203179

RESUMEN

Cyclin-dependent kinases (CDKs) control cell division in eukaryotes by phosphorylating proteins involved in division. But successful proliferation requires co-ordination between division and cellular growth in mass. Previous proteomic studies suggested that metabolic proteins, as well as cell division proteins, could potentially be substrates of cyclin-dependent kinases. Here we focus on two metabolic enzymes of the yeast S. cerevisiae, neutral trehalase (Nth1) and glycogen phosphorylase (Gph1), and show that their activities are likely directly controlled by CDK activity, thus allowing co-ordinate regulation of carbohydrate metabolism with cell division processes. In this case, co-ordinate regulation may optimize the decision to undertake a final cell division as nutrients are being exhausted. Co-regulation of cell division processes and metabolic processes by CDK activity may be a general phenomenon important for co-ordinating the cell cycle with growth.


Asunto(s)
Proteína Quinasa CDC28 de Saccharomyces cerevisiae/metabolismo , Metabolismo de los Hidratos de Carbono , Ciclo Celular , Metabolismo Energético , Saccharomyces cerevisiae/enzimología , Proteína Quinasa CDC28 de Saccharomyces cerevisiae/genética , Genotipo , Glucógeno/metabolismo , Glucógeno Fosforilasa/genética , Glucógeno Fosforilasa/metabolismo , Mutación , Fenotipo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Transducción de Señal , Factores de Tiempo , Trehalasa/genética , Trehalasa/metabolismo , Trehalosa/metabolismo
3.
Curr Genet ; 67(1): 41-47, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33151380

RESUMEN

Cells divide with appropriate frequency by coupling division to growth-that is, cells divide only when they have grown sufficiently large. This process is poorly understood, but has been studied using cell size mutants. In principle, mutations affecting cell size could affect the mean size ("set-point" mutants), or they could affect the variability of sizes ("homeostasis" mutants). In practice, almost all known size mutants affect set-point, with little effect on size homeostasis. One model for size-dependent division depends on a size-dependent gene expression program: Activators of cell division are over-expressed at larger and larger sizes, while inhibitors are under-expressed. At sufficiently large size, activators overcome inhibitors, and the cell divides. Amounts of activators and inhibitors determine the set-point, but the gene expression program (the rate at which expression changes with cell size) determines the breadth of the size distribution (homeostasis). In this model, set-point mutants identify cell cycle activators and inhibitors, while homeostasis mutants identify regulators that couple expression of activators and inhibitors to size. We consider recent results suggesting that increased cell size causes senescence, and suggest that at very large sizes, an excess of DNA binding proteins leads to size induced senescence.


Asunto(s)
Ciclo Celular/genética , División Celular/ética , Tamaño de la Célula , Senescencia Celular/genética , Proteínas de Unión al ADN/genética , Regulación Fúngica de la Expresión Génica/genética , Saccharomyces cerevisiae/genética
4.
Genes Dev ; 27(19): 2147-63, 2013 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-24115771

RESUMEN

Production of haploid gametes from diploid progenitor cells is mediated by a specialized cell division, meiosis, where two divisions, meiosis I and II, follow a single S phase. Errors in progression from meiosis I to meiosis II lead to aneuploid and polyploid gametes, but the regulatory mechanisms controlling this transition are poorly understood. Here, we demonstrate that the conserved kinase Ime2 regulates the timing and order of the meiotic divisions by controlling translation. Ime2 coordinates translational activation of a cluster of genes at the meiosis I-meiosis II transition, including the critical determinant of the meiotic chromosome segregation pattern CLB3. We further show that Ime2 mediates translational control through the meiosis-specific RNA-binding protein Rim4. Rim4 inhibits translation of CLB3 during meiosis I by interacting with the 5' untranslated region (UTR) of CLB3. At the onset of meiosis II, Ime2 kinase activity rises and triggers a decrease in Rim4 protein levels, thereby alleviating translational repression. Our results elucidate a novel developmentally regulated translational control pathway that establishes the meiotic chromosome segregation pattern.


Asunto(s)
Segregación Cromosómica/genética , Regulación Fúngica de la Expresión Génica , Meiosis/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Regiones no Traducidas 5'/genética , Péptidos y Proteínas de Señalización Intracelular , Familia de Multigenes/genética , Unión Proteica , Proteínas Serina-Treonina Quinasas , ARN Mensajero/metabolismo , Saccharomyces cerevisiae/enzimología , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
5.
RNA ; 22(9): 1311-9, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27402898

RESUMEN

The RNA exosome is a conserved complex for RNA degradation with two ribonucleolytic subunits, Dis3 and Rrp6. Rrp6 is a 3'-5' exonuclease, but it also has a structural role in helping target RNAs to the Dis3 activity. The relative importance of the exonuclease activity and the targeting activity probably differs between different RNA substrates, but this is poorly understood. To understand the relative contributions of the exonuclease and the targeting activities to the degradation of individual RNA substrates in Schizosaccharomyces pombe, we compared RNA levels in an rrp6 null mutant to those in an rrp6 point mutant specifically defective in exonuclease activity. A wide range of effects was found, with some RNAs dependent mainly on the structural role of Rrp6 ("protein-dependent" targets), other RNAs dependent mainly on the catalytic role ("activity-dependent" targets), and some RNAs dependent on both. Some protein-dependent RNAs contained motifs targeted via the RNA-binding protein Mmi1, while others contained a motif possibly involved in response to iron. In these and other cases Rrp6 may act as a structural adapter to target specific RNAs to the exosome by interacting with sequence-specific RNA-binding proteins.


Asunto(s)
Complejo Multienzimático de Ribonucleasas del Exosoma/genética , Exosomas/metabolismo , Estabilidad del ARN , ARN Mensajero/genética , Ribonucleasas/genética , Proteínas de Schizosaccharomyces pombe/genética , Schizosaccharomyces/genética , Complejo Multienzimático de Ribonucleasas del Exosoma/metabolismo , Unión Proteica , Procesamiento Postranscripcional del ARN , ARN Mensajero/metabolismo , Ribonucleasas/metabolismo , Schizosaccharomyces/enzimología , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Factores de Escisión y Poliadenilación de ARNm/genética , Factores de Escisión y Poliadenilación de ARNm/metabolismo
7.
Proc Natl Acad Sci U S A ; 112(15): 4749-54, 2015 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-25825721

RESUMEN

The protein synthesis machineries of two distinct phyla of the Animal kingdom, insects of Arthropoda and mammals of Chordata, have different preferences for how to best encode proteins. Nevertheless, arboviruses (arthropod-borne viruses) are capable of infecting both mammals and insects just like arboviruses that use insect vectors to infect plants. These organisms have evolved carefully balanced genomes that can efficiently use the translational machineries of different phyla, even if the phyla belong to different kingdoms. Using dengue virus as an example, we have undone the genome encoding balance and specifically shifted the encoding preference away from mammals. These mammalian-attenuated viruses grow to high titers in insect cells but low titers in mammalian cells, have dramatically increased LD50s in newborn mice, and induce high levels of protective antibodies. Recoded arboviruses with a bias toward phylum-specific expression could form the basis of a new generation of live attenuated vaccine candidates.


Asunto(s)
Arbovirus/fisiología , Genoma Viral , Insectos Vectores/virología , Mamíferos/virología , Animales , Animales Recién Nacidos , Anticuerpos Antivirales/inmunología , Arbovirus/genética , Línea Celular , Línea Celular Tumoral , Chlorocebus aethiops , Codón , Virus del Dengue/genética , Virus del Dengue/inmunología , Virus del Dengue/fisiología , Regulación Viral de la Expresión Génica , Interacciones Huésped-Patógeno/genética , Humanos , Insectos Vectores/citología , Insectos Vectores/genética , Mamíferos/genética , Ratones Endogámicos ICR , Datos de Secuencia Molecular , ARN Helicasas/genética , ARN Helicasas/inmunología , ARN Helicasas/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Serina Endopeptidasas/genética , Serina Endopeptidasas/inmunología , Serina Endopeptidasas/metabolismo , Vacunas Atenuadas/inmunología , Células Vero , Proteínas no Estructurales Virales/genética , Proteínas no Estructurales Virales/inmunología , Proteínas no Estructurales Virales/metabolismo , Virosis/inmunología , Virosis/virología
8.
Mol Cell ; 33(2): 143-4, 2009 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-19187756

RESUMEN

In a recent issue of Molecular Cell, Kurat et al. (2009) find that when quiescent yeast re-enter the cell cycle, the cell-cycle cyclin-dependent kinase phosphorylates and activates the lipase TgI4, liquidating fat and providing fatty acids for cell-cycle entry.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Ciclo Celular/fisiología , Lipasa/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Quinasas Ciclina-Dependientes/metabolismo , Proteínas Fúngicas/metabolismo , Fosforilación
9.
Nucleic Acids Res ; 43(14): 6874-88, 2015 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-25908789

RESUMEN

Mitotic genes are one of the most strongly oscillating groups of genes in the eukaryotic cell cycle. Understanding the regulation of mitotic gene expression is a key issue in cell cycle control but is poorly understood in most organisms. Here, we find a new mitotic transcription factor, Sak1, in the fission yeast Schizosaccharomyces pombe. Sak1 belongs to the RFX family of transcription factors, which have not previously been connected to cell cycle control. Sak1 binds upstream of mitotic genes in close proximity to Fkh2, a forkhead transcription factor previously implicated in regulation of mitotic genes. We show that Sak1 is the major activator of mitotic gene expression and also confirm the role of Fkh2 as the opposing repressor. Sep1, another forkhead transcription factor, is an activator for a small subset of mitotic genes involved in septation. From yeasts to humans, forkhead transcription factors are involved in mitotic gene expression and it will be interesting to see whether RFX transcription factors may also be involved in other organisms.


Asunto(s)
Factores de Transcripción Forkhead/metabolismo , Regulación Fúngica de la Expresión Génica , Mitosis/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Factores de Transcripción/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Factores de Transcripción Forkhead/genética , Eliminación de Gen , Proteínas Represoras/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Transactivadores/metabolismo , Factores de Transcripción/genética
10.
Mol Cell ; 31(3): 307-8, 2008 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-18691962

RESUMEN

In a recent issue of Nature, Skotheim et al. (2008) show that a transcriptional positive feedback loop plays a key role in the commitment to enter the yeast cell cycle.


Asunto(s)
Ciclo Celular , Ciclinas/metabolismo , Retroalimentación Fisiológica , Ciclina G , Ciclina G1 , Humanos , Regiones Promotoras Genéticas/genética , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/genética , Factores de Transcripción/metabolismo , Transcripción Genética
11.
Proc Natl Acad Sci U S A ; 110(23): 9481-6, 2013 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-23690603

RESUMEN

A long-held dogma posits that strong presentation to the immune system of the dominant influenza virus glycoprotein antigens neuraminidase (NA) and hemagglutinin (HA) is paramount for inducing protective immunity against influenza virus infection. We have deliberately violated this dogma by constructing a recombinant influenza virus strain of A/PR8/34 (H1N1) in which expression of NA and HA genes was suppressed. We down-regulated NA and HA expression by recoding the respective genes with suboptimal codon pair bias, thereby introducing hundreds of nucleotide changes while preserving their codon use and protein sequence. The variants PR8-NA(Min), PR8-HA(Min), and PR8-(NA+HA)(Min) (Min, minimal expression) were used to assess the contribution of reduced glycoprotein expression to growth in tissue culture and pathogenesis in BALB/c mice. All three variants proliferated in Madin-Darby canine kidney cells to nearly the degree as WT PR8. In mice, however, they expressed explicit attenuation phenotypes, as revealed by their LD50 values: PR8, 32 plaque-forming units (PFU); HA(Min), 1.7 × 10(3) PFU; NA(Min), 2.4 × 10(5) PFU; (NA+HA)(Min), ≥3.16 × 10(6) PFU. Remarkably, (NA+HA)(Min) was attenuated >100,000-fold, with NA(Min) the major contributor to attenuation. In vaccinated mice (NA+HA)(Min) was highly effective in providing long-lasting protective immunity against lethal WT challenge at a median protective dose (PD50) of 2.4 PFU. Moreover, at a PD50 of only 147 or 237, (NA+HA)(Min) conferred protection against heterologous lethal challenges with two mouse-adapted H3N2 viruses. We conclude that the suppression of HA and NA is a unique strategy in live vaccine development.


Asunto(s)
Regulación hacia Abajo/genética , Glicoproteínas Hemaglutininas del Virus de la Influenza/metabolismo , Subtipo H1N1 del Virus de la Influenza A , Neuraminidasa/metabolismo , Infecciones por Orthomyxoviridae/prevención & control , Vacunas Virales/metabolismo , Animales , Northern Blotting , Western Blotting , Protección Cruzada , Perros , Dosificación Letal Mediana , Células de Riñón Canino Madin Darby , Masculino , Ratones , Ratones Endogámicos BALB C , Infecciones por Orthomyxoviridae/inmunología
12.
Proc Natl Acad Sci U S A ; 109(36): 14301-7, 2012 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-22886087

RESUMEN

Genomes of RNA viruses contain multiple functional RNA elements required for translation or RNA replication. We use unique approaches to identify functional RNA elements in the coding sequence of poliovirus (PV), a plus strand RNA virus. The general method is to recode large segments of the genome using synonymous codons, such that protein sequences, codon use, and codon pair bias are conserved but the nucleic acid sequence is changed. Such recoding does not affect the growth of PV unless it destroys the sequence/structure of a functional RNA element. Using genetic analyses and a method called "signal location search," we detected two unique functionally redundant RNA elements (α and ß), each about 75 nt long and separated by 150 nt, in the 3'-terminal coding sequence of RNA polymerase, 3D(pol). The presence of wild type (WT) α or ß was sufficient for the optimal growth of PV, but the alteration of both segments in the same virus yielded very low titers and tiny plaques. The nucleotide sequences and predicted RNA structures of α and ß have no apparent resemblance to each other. In α, we narrowed down the functional domain to a 48-nt-long, highly conserved segment. The primary determinant of function in ß is a stable and highly conserved hairpin. Reporter constructs showed that the α- and ß-segments are required for RNA replication. Recoding offers a unique and effective method to search for unknown functional RNA elements in coding sequences of RNA viruses, particularly if the signals are redundant in function.


Asunto(s)
Diseño Asistido por Computadora , ARN Polimerasas Dirigidas por ADN/genética , Ingeniería Genética/métodos , Poliovirus/genética , ARN Viral/genética , Replicación Viral/genética , Poliovirus/crecimiento & desarrollo , Estructura Terciaria de Proteína/genética
13.
Elife ; 122024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39008347

RESUMEN

Previously, Tuller et al. found that the first 30-50 codons of the genes of yeast and other eukaryotes are slightly enriched for rare codons. They argued that this slowed translation, and was adaptive because it queued ribosomes to prevent collisions. Today, the translational speeds of different codons are known, and indeed rare codons are translated slowly. We re-examined this 5' slow translation 'ramp.' We confirm that 5' regions are slightly enriched for rare codons; in addition, they are depleted for downstream Start codons (which are fast), with both effects contributing to slow 5' translation. However, we also find that the 5' (and 3') ends of yeast genes are poorly conserved in evolution, suggesting that they are unstable and turnover relatively rapidly. When a new 5' end forms de novo, it is likely to include codons that would otherwise be rare. Because evolution has had a relatively short time to select against these codons, 5' ends are typically slightly enriched for rare, slow codons. Opposite to the expectation of Tuller et al., we show by direct experiment that genes with slowly translated codons at the 5' end are expressed relatively poorly, and that substituting faster synonymous codons improves expression. Direct experiment shows that slow codons do not prevent downstream ribosome collisions. Further informatic studies suggest that for natural genes, slow 5' ends are correlated with poor gene expression, opposite to the expectation of Tuller et al. Thus, we conclude that slow 5' translation is a 'spandrel'--a non-adaptive consequence of something else, in this case, the turnover of 5' ends in evolution, and it does not improve translation.


Asunto(s)
Codón , Evolución Molecular , Biosíntesis de Proteínas , Saccharomyces cerevisiae , Biosíntesis de Proteínas/genética , Saccharomyces cerevisiae/genética , Codón/genética , Uso de Codones , Ribosomas/metabolismo , Ribosomas/genética , Regiones no Traducidas 5'/genética
15.
mBio ; 14(5): e0084123, 2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-37787543

RESUMEN

IMPORTANCE: Mycobacterium tuberculosis (Mtb) is the causative agent of tuberculosis, one of the deadliest infectious diseases worldwide. Previous studies have established that synonymous recoding to introduce rare codon pairings can attenuate viral pathogens. We hypothesized that non-optimal codon pairing could be an effective strategy for attenuating gene expression to create a live vaccine for Mtb. We instead discovered that these synonymous changes enabled the transcription of functional mRNA that initiated in the middle of the open reading frame and from which many smaller protein products were expressed. To our knowledge, this is one of the first reports that synonymous recoding of a gene in any organism can create or induce intragenic transcription start sites.


Asunto(s)
Mycobacterium , Mutación Silenciosa , Codón , ARN Mensajero , Mycobacterium/genética
16.
bioRxiv ; 2023 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-36993691

RESUMEN

Each genome encodes some codons more frequently than their synonyms (codon usage bias), but codons are also arranged more frequently into specific pairs (codon pair bias). Recoding viral genomes and yeast or bacterial genes with non-optimal codon pairs has been shown to decrease gene expression. Gene expression is thus importantly regulated not only by the use of particular codons but by their proper juxtaposition. We therefore hypothesized that non-optimal codon pairing could likewise attenuate Mtb genes. We explored the role of codon pair bias by recoding Mtb genes ( rpoB, mmpL3, ndh ) and assessing their expression in the closely related and tractable model organism M. smegmatis . To our surprise, recoding caused the expression of multiple smaller protein isoforms from all three genes. We confirmed that these smaller proteins were not due to protein degradation, but instead issued from new transcription initiation sites positioned within the open reading frame. New transcripts gave rise to intragenic translation initiation sites, which in turn led to the expression of smaller proteins. We next identified the nucleotide changes associated with these new sites of transcription and translation. Our results demonstrated that apparently benign, synonymous changes can drastically alter gene expression in mycobacteria. More generally, our work expands our understanding of the codon-level parameters that control translation and transcription initiation. IMPORTANCE: Mycobacterium tuberculosis ( Mtb ) is the causative agent of tuberculosis, one of the deadliest infectious diseases worldwide. Previous studies have established that synonymous recoding to introduce rare codon pairings can attenuate viral pathogens. We hypothesized that non-optimal codon pairing could be an effective strategy for attenuating gene expression to create a live vaccine for Mtb . We instead discovered that these synonymous changes enabled the transcription of functional mRNA that initiated in the middle of the open reading frame and from which many smaller protein products were expressed. To our knowledge, this is the first report that synonymous recoding of a gene in any organism can create or induce intragenic transcription start sites.

17.
PLoS Biol ; 7(9): e1000189, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19823669

RESUMEN

In yeast, the G1 cyclin Cln3 promotes cell cycle entry by activating the transcription factor SBF. In mammals, there is a parallel system for cell cycle entry in which cyclin dependent kinase (CDK) activates transcription factor E2F/Dp. Here we show that Cln3 regulates SBF by at least two different pathways, one involving the repressive protein Whi5, and the second involving Stb1. The Rpd3 histone deacetylase complex is also involved. Cln3 binds to SBF at the CLN2 promoter, and removes previously bound Whi5 and histone deacetylase. Adding extra copies of the SBF binding site to the cell delays Start, possibly by titrating Cln3. Since Rpd3 is the yeast ortholog of mammalian HDAC1, there is now a virtually complete analogy between the proteins regulating cell cycle entry in yeast (SBF, Cln3, Whi5 and Stb1, Rpd3) and mammals (E2F, Cyclin D, Rb, HDAC1). The cell may titrate Cln3 molecules against the number of SBF binding sites, and this could be the underlying basis of the size-control mechanism for Start.


Asunto(s)
Ciclinas/metabolismo , Fase G1/efectos de los fármacos , Histona Desacetilasas/metabolismo , Proteínas Represoras/fisiología , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiología , Saccharomyces cerevisiae/genética , Factores de Transcripción/fisiología
18.
PLoS Biol ; 7(10): e1000221, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19841732

RESUMEN

In budding yeast, asymmetric cell division yields a larger mother and a smaller daughter cell, which transcribe different genes due to the daughter-specific transcription factors Ace2 and Ash1. Cell size control at the Start checkpoint has long been considered to be a main regulator of the length of the G1 phase of the cell cycle, resulting in longer G1 in the smaller daughter cells. Our recent data confirmed this concept using quantitative time-lapse microscopy. However, it has been proposed that daughter-specific, Ace2-dependent repression of expression of the G1 cyclin CLN3 had a dominant role in delaying daughters in G1. We wanted to reconcile these two divergent perspectives on the origin of long daughter G1 times. We quantified size control using single-cell time-lapse imaging of fluorescently labeled budding yeast, in the presence or absence of the daughter-specific transcriptional regulators Ace2 and Ash1. Ace2 and Ash1 are not required for efficient size control, but they shift the domain of efficient size control to larger cell size, thus increasing cell size requirement for Start in daughters. Microarray and chromatin immunoprecipitation experiments show that Ace2 and Ash1 are direct transcriptional regulators of the G1 cyclin gene CLN3. Quantification of cell size control in cells expressing titrated levels of Cln3 from ectopic promoters, and from cells with mutated Ace2 and Ash1 sites in the CLN3 promoter, showed that regulation of CLN3 expression by Ace2 and Ash1 can account for the differential regulation of Start in response to cell size in mothers and daughters. We show how daughter-specific transcriptional programs can interact with intrinsic cell size control to differentially regulate Start in mother and daughter cells. This work demonstrates mechanistically how asymmetric localization of cell fate determinants results in cell-type-specific regulation of the cell cycle.


Asunto(s)
Ciclinas , Proteínas de Unión al ADN , Fase G1 , Regulación Fúngica de la Expresión Génica , Proteínas Represoras , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/citología , Factores de Transcripción , Ciclo Celular , División Celular , Ciclinas/genética , Ciclinas/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/farmacología , Fase G1/efectos de los fármacos , Regiones Promotoras Genéticas , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Proteínas Represoras/farmacología , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/fisiología , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/farmacología , Factores de Tiempo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/farmacología
19.
Curr Opin Cell Biol ; 14(6): 676-83, 2002 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-12473339

RESUMEN

A large amount of microarray gene expression data relevant to the yeast cell cycle has been collected, and several hundred genes have been placed into a model transcriptional control network. Genome-wide studies of the location of cell cycle transcription factors, and a variety of computational approaches, have allowed refinement of the model, and at the same time show how other genome-wide data sets may be organised into model networks.


Asunto(s)
Regulación Fúngica de la Expresión Génica , Transcripción Genética , Levaduras/genética , Secuencia de Bases , Sitios de Unión , Ciclo Celular , Biología Computacional , ADN de Hongos/análisis , Genoma Fúngico , Modelos Genéticos , Modelos Teóricos , Análisis de Secuencia por Matrices de Oligonucleótidos , Regiones Promotoras Genéticas , Factores de Transcripción/metabolismo , Levaduras/metabolismo
20.
Mol Biol Cell ; 18(4): 1324-36, 2007 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-17267692

RESUMEN

The Saccharomyces cerevisiae Cdc6 protein is crucial for DNA replication. In the absence of cyclin-dependent kinase (CDK) activity, Cdc6 binds to replication origins, and loads Mcm proteins. In the presence of CDK activity, Cdc6 does not bind to origins, and this helps prevent rereplication. CDK activity affects Cdc6 function by multiple mechanisms: CDK activity affects transcription of CDC6, degradation of Cdc6, nuclear import of Cdc6, and binding of Cdc6 to Clb2. Here we examine some of these mechanisms individually. We find that when Cdc6 is forced into the nucleus during late G1 or S, it will not substantially reload onto chromatin no matter whether its CDK sites are present or not. In contrast, at a G2/M nocodazole arrest, Cdc6 will reload onto chromatin if and only if its CDK sites have been removed. Trace amounts of nonphosphorylatable Cdc6 are dominant lethal in strains bearing nonphosphorylatable Orc2 and Orc6, apparently because of rereplication. This synthetic dominant lethality occurs even in strains with wild-type MCM genes. Nonphosphorylatable Cdc6, or Orc2 and Orc6, sensitize cells to rereplication caused by overexpression of various replication initiation proteins such as Dpb11 and Sld2.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Cromatina/metabolismo , Replicación del ADN , Proteínas de Saccharomyces cerevisiae/metabolismo , Secuencia de Bases , Proteínas de Ciclo Celular/genética , Núcleo Celular/genética , Núcleo Celular/metabolismo , Cromatina/genética , Quinasas Ciclina-Dependientes , Fase G2/fisiología , Regulación Fúngica de la Expresión Génica , Datos de Secuencia Molecular , Nocodazol/farmacología , Señales de Localización Nuclear , Análisis de Secuencia por Matrices de Oligonucleótidos , Complejo de Reconocimiento del Origen/genética , Fosforilación , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA