Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; : e202408537, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38973771

RESUMEN

Achieving high electrical conductivity (σ) and power factor (PF) simultaneously remains a significant challenge for n-type organic themoelectrics (OTEs). Herein, we demonstrate the state-of-the-art OTEs performance through blending a fused bithiophene imide dimer-based polymer f-BTI2g-SVSCN and its selenophene-substituted analogue f-BSeI2g-SVSCN with a julolidine-functionalized benzimidazoline n-dopant JLBI, vis-à-vis when blended with commercially available n-dopants TAM and N-DMBI. The advantages of introducing a more lipophilic julolidine group into the dopant structure of JLBI are evidenced by the enhanced OTEs performance that JLBI-doped films show when compared to those doped with N-DMBI or TAM. In fact, thanks to the enhanced intermolecular interactions and the lower-lying LUMO level enabled by the increase of selenophene content in polymer backbone, JLBI-doped films of f-BSeI2g-SVSCN exhibit a unprecedent σ of 206 S cm-1 and a PF of 114 µW m-1 K-2. Interestingly, σ can be further enhanced up to 326 S cm-1 by using TAM dopant as a consequence of its favorable diffusion behavior into densely packed crystalline domains. These values are the highest to date for solution-processed molecularly n-doped polymers, demonstrating the effectiveness of the polymer-dopant matching approach carried out in this work.

2.
Chemistry ; 29(72): e202302476, 2023 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-37788975

RESUMEN

The functionalisation of carbon nanotubes has been instrumental in broadening its application field, allowing especially its use in biological studies. Although numerous covalent and non-covalent functionalisation methods have been described, the characterisation of the final materials has always been an added challenge. Among the various techniques available, Raman spectroscopy is one of the most widely used to determine the covalent functionalisation of these species. However, Raman spectroscopy is not a quantitative technique, and no studies are reported comparing its performance when the same number of functional groups are added but using completely different reactions. In this work, we have experimentally and theoretically studied the functionalisation of carbon nanotubes using two of the most commonly used reactions: 1,3-dipolar cycloaddition of azomethylene ylides and diazonium-based radical addition. The number of groups introduced onto the tubes by these reactions has been determined by different characterisation techniques. The results of this study support the idea that data obtained by Raman spectra are only helpful for comparing functionalisations produced using the same type of reaction. However, they should be carefully analysed when comparing functionalisations produced using different reaction types.

3.
Chemistry ; 29(46): e202301639, 2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37265227

RESUMEN

A series of donor-π-acceptor-π-donor (D-π-A-π-D) compounds based on naphthalendiimide (NDI) and perylenediimide (PDI) central cores combined with triphenylamine and phenylcarbazole donor groups have been synthesized, characterized and tested in top-contact/bottom gate organic field-effect transistors (OFETs). The results showed high electron mobilities, up to 0.3 cm2 V-1 s-1 , in the case of NDI derivatives and moderate values of around 10-3  cm2 V-1 s-1 for PDI-based semiconductors. Quantum chemical calculations were performed in order to support the experimental data. The results suggest that adequate molecular characteristics and larger crystalline domains in NDI vs. PDI semiconducting films may be the reasons behind the enhanced electrical properties of NDI derivatives. Furthermore, when the lateral donor substituents are triphenylamine groups, the mobilities were slightly higher in comparison to phenylcarbazole donor groups due to an improved electron-donating character. Other characterization techniques, such as AFM, X-ray diffraction or spectroelectrochemistry, among others, have been performed to analyze supramolecular order, charge carriers' nature and stability, parameters closely related to charge transport characteristics.

4.
Molecules ; 27(3)2022 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-35164386

RESUMEN

Three crystalline N-trimethyltriindoles endowed with different functionalities at 3, 8 and 13 positions (either unsubstituted or with three methoxy or three acetyl groups attached) are investigated, and clear correlations between the electronic nature of the substituents and their solid-state organization, electronic properties and semiconductor behavior are established. The three compounds give rise to similar columnar hexagonal crystalline structures; however, the insertion of electron-donor methoxy groups results in slightly shorter stacking distances when compared with the unsubstituted derivative, whereas the insertion of electron-withdrawing acetyl groups lowers the crystallinity of the system. Functionalization significantly affects hole mobilities with the triacetyl derivative showing the lowest mobility within the series in agreement with the lower degree of order. However, attaching three methoxy groups also results in lower hole mobility values in the OFETs (0.022 vs. 0.0014 cm2 V-1 s-1) in spite of the shorter stacking distances. This counterintuitive behavior has been explained with the help of DFT calculations performed to rationalize the interplay between the intramolecular and intermolecular properties, which point to lower transfer integrals in the trimethoxy derivative due to the HOMO wave function extension over the peripheral methoxy groups. The results of this study provide useful insights into how peripheral substituents influence the fundamental charge transport parameters of chemically modified triindole platforms of fundamental importance to design new derivatives with improved semiconducting performance.

5.
J Am Chem Soc ; 142(40): 17147-17155, 2020 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-32911933

RESUMEN

Two new luminophore polymorphs of 4-bromo-7-(4-nonylphenyl)benzo[c][1,2,5]thiadiazole (1α and 1ß) exhibiting different color emissions, which switch into each other in response to shear force and solvent vapors, are presented and their X-ray structure is determined. Supramolecular organic framework topology (SOFT) studies on the two polymorphic structures led us to conclude that the mechanochromic phase transformation can be explained on the basis of modifications in their respective topological nets: mab and pcu for 1α and 1ß, respectively, as a result of the breaking and restoration of a number of weak supramolecular interactions. The color changes accompanying this transformation have been rationalized with the help of time-dependent density functional theory. We firmly believe that our findings will inspire future research on the design of novel stimuli-responsive organic materials with switchable properties based on their supramolecular interactions by establishing clear SOFT-property relationships.

6.
Phys Chem Chem Phys ; 22(4): 2283-2294, 2020 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-31922173

RESUMEN

We report the synthesis and characterization of a novel series of push-pull chromophores bearing 1D linear and ß-branched thiophenes as π-conjugated spacers between a 2,2,4,7-tetramethyl-1,2,3,4-tetrahydroquinoline electron donor unit and dicyano- and tricyanovinylene electron acceptor groups. The effect of the introduction of ß-thiophenes on the linear and nonlinear (NLO) optical properties as well as electrochemical and thermal data is studied in detail by performing a comparative study between the branched and 1D linear systems. In addition, a parallel DFT computational study is used to evaluate structure-property relationships. The non-linear optical behavior of the molecules both in solution and in solid state as electro-optic (EO) films using a guest-host approach shows very promising performance for electro-optic applications with high molecular first hyperpolarizabilities (µß) of 4840 × 10-48 esu and electro-optic coefficients r33 reaching 650 pm V-1. One highlight is that the electro-optic films of the ß-branched chromophores are superior in terms of thermal stability in device operation as measured by a transmissive modified reflective Teng-Man method. This work provides guidelines for the design of improved electro-optic materials including ß-branched chromophores which could be useful for practical EO applications, where both enhanced ß and r33 values together with chemical and thermal stability are necessary.

7.
Chemistry ; 23(55): 13776-13783, 2017 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-28749543

RESUMEN

This work reports on a quinodimethane-type molecule, 2,7-dicyanomethylene-9-(2-ethylhexyl)carbazole (1), one of the shortest π-conjugated biradicaloids reported to be stable in solution under ambient conditions. This carbazole-based quinoidal precursor is able to form a macrocyclic σ-bonded tetramer (2). The resolved single-crystal X-ray structure of tetramer 2 shows that four molecules of 1 are linked together through four long (CN)2 C-C(CN)2 bonds (1.631 Å) resulting from coupling of the unpaired electrons in biradicaloid 1. Dynamic interconversion between monomer 1 and cyclophane tetramer 2 is achieved by reversible cleavage and recovery of the four (CN)2 C-C(CN)2 bonds upon soft external stimuli (light absorption, temperature and pressure), which is accompanied by significant color changes. These novel photo-, thermo-, and mechanochromic properties expand the versatility of π-conjugated biradicaloid compounds as novel functional materials that, in combination with spin chemistry and dynamic covalent chemistry, can be relevant in molecular machines, sensors, and switches.

8.
ACS Appl Mater Interfaces ; 12(9): 10929-10937, 2020 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-32043874

RESUMEN

A new rod-shaped benzothiadiazole fluorophore, namely, 4,7-di-(4-nonylphenyl)benzo[c][1,2,5]thiadiazole, which strongly emits fluorescence both in solution and in solid state has been synthesized, and its photophysical properties were rationalized with the help of density functional theory calculations. This molecule crystallizes in two distinct light-emitting crystalline phases, which can be interconverted in response to pressure, temperature, and solvent vapors. Powder X-ray diffraction indicates that in both polymorph, molecules adopt a lamellar packing, the different interlayer spacing being the main difference between the two structures. Single-crystal analysis of one of the polymorphs allows us to identify weak interaction planes, which presumably facilitates the polymorphic transformation through mechanically or thermally induced sliding processes. The polymorphic transformation and the origin of the switchable fluorescence have been rationalized through a spectroscopic and theoretical study. This study suggests that the different colors observed are due to different intermolecular aromatic interactions owing to the displacement of the molecules with respect to the layer normal. Interestingly, blending this molecule with a biodegradable polymer such as poly(vinyl alcohol) gives rise to a thermally activated reversible switchable fluorescent system, which entitles this material as an attractive candidate for technological applications, such as thermal sensors, security inks, or rewritable paper.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA