Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Reprod Fertil Dev ; 28(7): 982-994, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25562589

RESUMEN

Endometrial epithelium plays a crucial role in the first immune response to invading bacteria by producing cytokines and chemokines. The aim of this study was to investigate the first inflammatory response of the endometrium in vivo and in vitro. Gene expression of several pro-inflammatory factors and Toll-like receptors (TLR2, -4, -6) was determined in endometrial cytobrush samples obtained from healthy cows and cows with clinical or subclinical endometritis. Endometrial epithelial cells were co-cultured with an isolated autochthonous uterine bacterial strain Bacillus pumilus. Total RNA was extracted from in vivo and in vitro samples and subjected to real-time reverse transcription polymerase chain reaction. CXC ligands (CXCL) 1/2 and CXC chemokine receptor (CXCR) 2 mRNA expression was higher in cows with subclinical endometritis and CXCL3 mRNA expression was higher in cows with clinical endometritis compared with healthy cows. B. pumilus induced cell death of epithelial cells within 24h of co-culturing. The presence of B. pumilus resulted in significantly higher mRNA expression of interleukin 1α (IL1A), IL6, IL8, CXCL1-3 and prostaglandin-endoperoxide synthase 2 in co-cultured cells compared with untreated controls. The maximum increase was mainly detected after 2h. These results support the hypothesis that bacterial infection of endometrial cells might induce prompt synthesis of pro-inflammatory cytokines resulting in a local inflammatory reaction.


Asunto(s)
Bacillus pumilus , Bovinos , Endometrio/inmunología , Células Epiteliales/inmunología , ARN Mensajero/metabolismo , Animales , Células Cultivadas , Quimiocinas/inmunología , Citocinas/inmunología , Endometritis/inmunología , Endometrio/citología , Células Epiteliales/microbiología , Femenino , Receptores de Quimiocina/inmunología
2.
J Autoimmun ; 60: 12-9, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25911201

RESUMEN

Promiscuous gene expression (pGE) of tissue-restricted self-antigens (TRA) in medullary thymic epithelial cells (mTECs) is in part driven by the Autoimmune Regulator gene (AIRE) and essential for self-tolerance. The link between AIRE functional mutations and multi-organ autoimmunity in human and mouse supports the role of pGE. Deep sequencing of the transcriptome revealed that mouse mTECs potentially transcribe an unprecedented range of >90% of all genes. Yet, it remains unclear to which extent these low-level transcripts are actually translated into proteins, processed and presented by thymic APCs to induce tolerance. To address this, we analyzed the HLA-DR-associated thymus peptidome. Within a large panel of peptides from abundant proteins, two TRA peptides were identified: prostate-specific semenogelin-1 (an autoantigen in autoimmune chronic prostatitis/chronic pelvic pain syndrome) and central nervous system-specific contactin-2 (an autoantigen in multiple sclerosis). Thymus expression of both genes was restricted to mTECs. SEMG1 expression was confined to mature HLA-DR(hi) mTECs of male and female donors and was AIRE-dependent, whereas CNTN2 was apparently AIRE-independent and was expressed by both populations of mTECs. Our findings establish a link between pGE, MHC-II peptide presentation and autoimmunity for bona fide human TRAs.


Asunto(s)
Autoantígenos/inmunología , Antígenos HLA-DR/inmunología , Autotolerancia/inmunología , Linfocitos T/inmunología , Timo/inmunología , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Animales , Autoantígenos/biosíntesis , Autoinmunidad/inmunología , Niño , Preescolar , Contactina 2/biosíntesis , Contactina 2/inmunología , Células Epiteliales/inmunología , Femenino , Perfilación de la Expresión Génica , Humanos , Lactante , Recién Nacido , Masculino , Ratones , Persona de Mediana Edad , Proteínas de Secreción de la Vesícula Seminal/biosíntesis , Proteínas de Secreción de la Vesícula Seminal/inmunología , Timo/citología , Factores de Transcripción/biosíntesis , Transcriptoma , Adulto Joven , Proteína AIRE
3.
Hum Mol Genet ; 20(17): 3415-23, 2011 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-21642385

RESUMEN

Graves' disease (GD) is the paradigm of an anti-receptor autoimmune disease, with agonistic auto-antibodies against the thyrotropin receptor (TSHR-thyroid-stimulating hormone receptor) being the underlying pathogenic effector mechanism. The TSHR belongs to the category of tissue-restricted antigens, which are promiscuously expressed in the thymus and thereby induce central T cell tolerance. In order to understand the association between TSHR gene polymorphisms and GD, we tested the hypothesis that TSHR gene variants affect susceptibility to GD by influencing levels of TSHR transcription in the thymus. We show that thymic glands from non-autoimmune donors homozygous for the rs179247 SNP predisposing allele of TSHR had significantly fewer TSHR mRNA transcripts than carriers of the protective allele. In addition, in heterozygous individuals, the TSHR predisposing allele was expressed at a lower level than the protective one as demonstrated by allele-specific transcript quantification. This unbalanced allelic expression was detectable in both thymic epithelial cells and thymocytes. Since the level of self-antigen expression is known to influence the threshold of central tolerance, these results are compatible with the notion that defective central tolerance contributes to the pathogenesis of GD, a scenario already implicated in type 1 diabetes mellitus, myasthenia gravis and autoimmune myocarditis.


Asunto(s)
Enfermedad de Graves/genética , Polimorfismo de Nucleótido Simple/genética , Receptores de Tirotropina/genética , Timo/metabolismo , Anciano de 80 o más Años , Alelos , Femenino , Citometría de Flujo , Humanos , Lactante , Recién Nacido , Masculino , Reacción en Cadena en Tiempo Real de la Polimerasa
4.
Blood ; 117(17): 4449-59, 2011 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-21372153

RESUMEN

Notch signaling critically mediates various hematopoietic lineage decisions and is induced in mammals by Notch ligands that are classified into 2 families, Delta-like (Delta-like-1, -3 and -4) and Jagged (Jagged1 and Jagged2), based on structural homology with both Drosophila ligands Delta and Serrate, respectively. Because the functional differences between mammalian Notch ligands were still unclear, we have investigated their influence on early human hematopoiesis and show that Jagged2 affects hematopoietic lineage decisions very similarly as Delta-like-1 and -4, but very different from Jagged1. OP9 coculture experiments revealed that Jagged2, like Delta-like ligands, induces T-lineage differentiation and inhibits B-cell and myeloid development. However, dose-dependent Notch activation studies, gene expression analysis, and promoter activation assays indicated that Jagged2 is a weaker Notch1-activator compared with the Delta-like ligands, revealing a Notch1 specific signal strength hierarchy for mammalian Notch ligands. Strikingly, Lunatic-Fringe- mediated glycosylation of Notch1 potentiated Notch signaling through Delta-like ligands and also Jagged2, in contrast to Jagged1. Thus, our results reveal a unique role for Jagged1 in preventing the induction of T-lineage differentiation in hematopoietic stem cells and show an unexpected functional similarity between Jagged2 and the Delta-like ligands.


Asunto(s)
Hematopoyesis/fisiología , Células Madre Hematopoyéticas/citología , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas Adaptadoras Transductoras de Señales , Animales , Linfocitos B/citología , Linfocitos B/metabolismo , Proteínas de Unión al Calcio/metabolismo , Diferenciación Celular/fisiología , Células Cultivadas , Proteínas de Drosophila , Glicosilación , Glicosiltransferasas/metabolismo , Células Madre Hematopoyéticas/metabolismo , Humanos , Proteína Jagged-1 , Proteína Jagged-2 , Receptor Notch1/metabolismo , Proteínas Serrate-Jagged , Transducción de Señal/fisiología , Linfocitos T/citología , Linfocitos T/metabolismo
5.
PLoS One ; 10(3): e0119793, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25803719

RESUMEN

Bacterial infections and inflammation of the uterus are common in dairy cattle after parturition. In particular, pathogenic bacteria that cause endometritis have been the focus of research in cattle reproduction in the last ten years. The aim of the present study was to identify commensal lactobacilli in the bovine uterus and to examine their influence on the synthesis of pro-inflammatory factors in bovine endometrial epithelial cells in vitro. Lactobacillus species were isolated from healthy bovine uteri and further characterised. Bovine endometrial epithelial cells in the second passage (n = 5 animals) were co-cultured with the autochthonous isolates L. buchneri, L. ruminis and L. amylovorus as well as with a commercially available L. vaginalis in different multiplicities of infection (MOI = 1, 5 and 10, respectively). Endometrial epithelial cells cultured without bacteria served as controls. At distinct points in time (2, 4 and 6 h) total RNA was extracted from co-cultured epithelial cells and subjected to reverse transcription quantitative PCR of pro-inflammatory factors. Furthermore, the release of such factors by co-cultured epithelial cells was measured by ELISA or EIA after 24 and 48 h. L. ruminis and L. amylovorus induced increased interleukin (IL) IL1A, IL6, IL8 and prostaglandin-endoperoxide synthase 2 mRNA levels and the release of IL8 and prostaglandin F(2α) in endometrial epithelial cells compared with control cells. In contrast, L. buchneri did not significantly influence the expression and release of these factors. Toll-like receptors 2 and 6 transcripts were found unchanged in co-cultured and untreated epithelial cells in vitro. However, endometrial epithelial cells of each animal showed individual differences in the response to bacterial load. These results suggest that Lactobacillus species are present in the bovine uterus, revealing immunomodulatory properties.


Asunto(s)
Endometrio/citología , Endometrio/microbiología , Células Epiteliales/microbiología , Lactobacillus/aislamiento & purificación , Lactobacillus/fisiología , Animales , Bovinos , Supervivencia Celular , Técnicas de Cocultivo , Ciclooxigenasa 2/genética , Células Epiteliales/citología , Células Epiteliales/metabolismo , Femenino , Regulación de la Expresión Génica , Interleucinas/genética , Interleucinas/metabolismo , Lactobacillus/crecimiento & desarrollo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptor Toll-Like 2/genética , Receptor Toll-Like 6/genética
6.
J Mol Biol ; 390(5): 1074-85, 2009 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-19445951

RESUMEN

The 15th, 16th, and 17th repeats of chicken brain alpha-spectrin (R15, R16, and R17, respectively) are very similar in terms of structure and stability. However, R15 folds and unfolds 3 orders of magnitude faster than R16 and R17. This is unexpected. The rate-limiting transition state for R15 folding is investigated using protein engineering methods (Phi-value analysis) and compared with previously completed analyses of R16 and R17. Characterisation of many mutants suggests that all three proteins have similar complexity in the folding landscape. The early rate-limiting transition states of the three domains are similar in terms of overall structure, but there are significant differences in the patterns of Phi-values. R15 apparently folds via a nucleation-condensation mechanism, which involves concomitant folding and packing of the A- and C-helices, establishing the correct topology. R16 and R17 fold via a more framework-like mechanism, which may impede the search to find the correct packing of the helices, providing a possible explanation for the fast folding of R15.


Asunto(s)
Pliegue de Proteína , Espectrina/química , Espectrina/metabolismo , Secuencia de Aminoácidos , Animales , Pollos , Humanos , Cinética , Datos de Secuencia Molecular , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Mutación/genética , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Termodinámica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA