Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Digit Imaging ; 36(5): 2259-2277, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37468696

RESUMEN

Peri-implantitis can cause marginal bone remodeling around implants. The aim is to develop an automatic image processing approach based on two artificial intelligence (AI) techniques in intraoral (periapical and bitewing) radiographs to assist dentists in determining bone loss. The first is a deep learning (DL) object-detector (YOLOv3) to roughly identify (no exact localization is required) two objects: prosthesis (crown) and implant (screw). The second is an image understanding-based (IU) process to fine-tune lines on screw edges and to identify significant points (intensity bone changes, intersections between screw and crown). Distances between these points are used to compute bone loss. A total of 2920 radiographs were used for training (50%) and testing (50%) the DL process. The mAP@0.5 metric is used for performance evaluation of DL considering periapical/bitewing and screws/crowns in upper and lower jaws, with scores ranging from 0.537 to 0.898 (sufficient because DL only needs an approximation). The IU performance is assessed with 50% of the testing radiographs through the t test statistical method, obtaining p values of 0.0106 (line fitting) and 0.0213 (significant point detection). The IU performance is satisfactory, as these values are in accordance with the statistical average/standard deviation in pixels for line fitting (2.75/1.01) and for significant point detection (2.63/1.28) according to the expert criteria of dentists, who establish the ground-truth lines and significant points. In conclusion, AI methods have good prospects for automatic bone loss detection in intraoral radiographs to assist dental specialists in diagnosing peri-implantitis.


Asunto(s)
Pérdida de Hueso Alveolar , Periimplantitis , Diente , Humanos , Inteligencia Artificial , Prótesis e Implantes
2.
Sensors (Basel) ; 19(3)2019 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-30764528

RESUMEN

The automation of the Wilderness Search and Rescue (WiSAR) task aims for high levels of understanding of various scenery. In addition, working in unfriendly and complex environments may cause a time delay in the operation and consequently put human lives at stake. In order to address this problem, Unmanned Aerial Vehicles (UAVs), which provide potential support to the conventional methods, are used. These vehicles are provided with reliable human detection and tracking algorithms; in order to be able to find and track the bodies of the victims in complex environments, and a robust control system to maintain safe distances from the detected bodies. In this paper, a human detection based on the color and depth data captured from onboard sensors is proposed. Moreover, the proposal of computing data association from the skeleton pose and a visual appearance measurement allows the tracking of multiple people with invariance to the scale, translation and rotation of the point of view with respect to the target objects. The system has been validated with real and simulation experiments, and the obtained results show the ability to track multiple individuals even after long-term disappearances. Furthermore, the simulations present the robustness of the implemented reactive control system as a promising tool for assisting the pilot to perform approaching maneuvers in a safe and smooth manner.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA