Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Cell ; 179(5): 1057-1067.e14, 2019 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-31730849

RESUMEN

The transition to a terrestrial environment, termed terrestrialization, is generally regarded as a pivotal event in the evolution and diversification of the land plant flora that changed the surface of our planet. Through phylogenomic studies, a group of streptophyte algae, the Zygnematophyceae, have recently been recognized as the likely sister group to land plants (embryophytes). Here, we report genome sequences and analyses of two early diverging Zygnematophyceae (Spirogloea muscicola gen. nov. and Mesotaenium endlicherianum) that share the same subaerial/terrestrial habitat with the earliest-diverging embryophytes, the bryophytes. We provide evidence that genes (i.e., GRAS and PYR/PYL/RCAR) that increase resistance to biotic and abiotic stresses in land plants, in particular desiccation, originated or expanded in the common ancestor of Zygnematophyceae and embryophytes, and were gained by horizontal gene transfer (HGT) from soil bacteria. These two Zygnematophyceae genomes represent a cornerstone for future studies to understand the underlying molecular mechanism and process of plant terrestrialization.


Asunto(s)
Evolución Biológica , Embryophyta/genética , Genoma de Planta , Streptophyta/genética , Ácido Abscísico/farmacología , Secuencia de Aminoácidos , Familia de Multigenes , Filogenia , Proteínas de Plantas/química , Dominios Proteicos , Streptophyta/clasificación , Simbiosis/genética , Sintenía/genética
2.
New Phytol ; 235(4): 1409-1425, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35560066

RESUMEN

The Pedinophyceae (Viridiplantae) comprise a class of small uniflagellate algae with a pivotal position in the phylogeny of the Chlorophyta as the sister group of the 'core chlorophytes'. We present a chromosome-level genome assembly of the freshwater type species of the class, Pedinomonas minor. We sequenced the genome using Pacbio, Illumina and Hi-C technologies, performed comparative analyses of genome and gene family evolution, and analyzed the transcriptome under various abiotic stresses. Although the genome is relatively small (55 Mb), it shares many traits with core chlorophytes including number of introns and protein-coding genes, messenger RNA (mRNA) lengths, and abundance of transposable elements. Pedinomonas minor is only bounded by the plasma membrane, thriving in temporary habitats that frequently dry out. Gene family innovations and expansions and transcriptomic responses to abiotic stresses have shed light on adaptations of P. minor to its fluctuating environment. Horizontal gene transfers from bacteria and fungi have possibly contributed to the evolution of some of these traits. We identified a putative endogenization site of a nucleocytoplasmic large DNA virus and hypothesized that endogenous viral elements donated foreign genes to the host genome, their spread enhanced by transposable elements, located at gene boundaries in several of the expanded gene families.


Asunto(s)
Chlorophyta , Elementos Transponibles de ADN , Chlorophyta/metabolismo , Cromosomas , Elementos Transponibles de ADN/genética , Filogenia , Estrés Fisiológico/genética
3.
Protist ; 171(5): 125760, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33126021

RESUMEN

Several species of the genus Tetraselmis (Chlorodendrophyceae, Chlorophyta) were recently discovered to possess unsuspected biomineralization capacities: they produce multiple intracellular inclusions of amorphous calcium carbonate (ACC), called micropearls. Early light-microscopists had spotted rows of refractive granules in some species, although without identifying their mineral nature. Scanning electron microscope (SEM) observations showed that the distribution of the micropearls in the cell forms a pattern, which appears to be characteristic for a given species. The present study shows that this pattern correlates with the shape of the chloroplast, which differs between Tetraselmis species, because micropearls align themselves along the incisions between chloroplast lobes. This was observed both by SEM and in live cells by light microscopy (LM) using Nomarski differential interference contrast. Additionally, molecular phylogenetic analyses, of rbcL and ITS2 gene sequences from diverse strains of Chlorodendrophyceae, corroborated the morphological observations by identifying two groups among nominal Tetraselmis spp. that differ in chloroplast morphology, micropearl arrangement, and ITS2 RNA secondary structure.


Asunto(s)
Carbonato de Calcio/metabolismo , Chlorophyta/metabolismo , Chlorophyta/ultraestructura , Cloroplastos/ultraestructura , Biomineralización
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA