Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Eur J Neurol ; : e16367, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38859620

RESUMEN

BACKGROUND AND PURPOSE: Hereditary spastic paraplegias (HSPs) comprise a group of inherited neurodegenerative disorders characterized by progressive spasticity and weakness. Botulinum toxin has been approved for lower limb spasticity following stroke and cerebral palsy, but its effects in HSPs remain underexplored. We aimed to characterize the effects of botulinum toxin on clinical, gait, and patient-reported outcomes in HSP patients and explore the potential of mobile digital gait analysis to monitor treatment effects and predict treatment response. METHODS: We conducted a prospective, observational, multicenter study involving ambulatory HSP patients treated with botulinum toxin tailored to individual goals. Comparing data at baseline, after 1 month, and after 3 months, treatment response was assessed using clinical parameters, goal attainment scaling, and mobile digital gait analysis. Machine learning algorithms were used for predicting individual goal attainment based on baseline parameters. RESULTS: A total of 56 patients were enrolled. Despite the heterogeneity of treatment goals and targeted muscles, botulinum toxin led to a significant improvement in specific clinical parameters and an improvement in specific gait characteristics, peaking at the 1-month and declining by the 3-month follow-up. Significant correlations were identified between gait parameters and clinical scores. With a mean balanced accuracy of 66%, machine learning algorithms identified important denominators to predict treatment response. CONCLUSIONS: Our study provides evidence supporting the beneficial effects of botulinum toxin in HSP when applied according to individual treatment goals. The use of mobile digital gait analysis and machine learning represents a novel approach for monitoring treatment effects and predicting treatment response.

2.
Nervenarzt ; 95(6): 539-543, 2024 Jun.
Artículo en Alemán | MEDLINE | ID: mdl-38483548

RESUMEN

BACKGROUND: As the most rapidly increasing neurodegenerative disease worldwide, Parkinson's disease is highly relevant to society. Successful treatment requires active patient participation. Patient education has been successfully implemented for many chronic diseases, such as diabetes and could also provide people with Parkinson's disease with skills to manage the disease better and to participate in shared decision making. MATERIAL AND METHODS: To prepare the implementation of a concept for patient education for people with Parkinson's disease, a structured consensus study was conducted and a pilot project formatively evaluated. The structured consensus study included experts from all over Germany. It consisted of two online surveys and an online consensus conference. The formative evaluation was conducted as three focus groups. Transcripts were evaluated using content-structuring qualitative content analysis. RESULTS: From the consensus procedure 59 consented statements emerged, mainly regarding the contents of a patient school and a group size of 6-8 persons. Only two statements could not be consented. The formative evaluation detected a tendency towards a positive attitude for a digital training format and a very positive evaluation of the contents. DISCUSSION: Overall, important recommendations for a patient school can be drawn from this study. The following subjects require further investigation: format, inclusion criteria, group composition and inclusion of caregivers.


Asunto(s)
Enfermedad de Parkinson , Educación del Paciente como Asunto , Enfermedad de Parkinson/terapia , Humanos , Educación del Paciente como Asunto/métodos , Alemania , Proyectos Piloto , Participación del Paciente , Consenso , Instrucción por Computador/métodos , Curriculum , Grupos Focales , Masculino , Toma de Decisiones Conjunta
3.
J Neural Transm (Vienna) ; 129(9): 1189-1200, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35697942

RESUMEN

Motor-cognitive dual tasks are used to investigate the interplay between gait and cognition. Dual task walking in patients with Parkinson's disease (PD) results in decreased gait speed and more importantly in an increased fall risk. There is evidence that physical training may improve gait during dual task challenge. Physiotherapy and treadmill walking are known to improve single task gait. The aim of this study was to investigate the impact of individualized physiotherapy or treadmill training on gait during dual task performance. 105 PD patients were randomly assigned to an intervention group (physiotherapy or treadmill). Both groups received 10 individual interventional sessions of 25 min each and additional group therapy sessions for 14 days. Primary outcome measure was the dual task gait speed. Secondary outcomes were additional gait parameters during dual task walking, UPDRS-III, BBS and walking capacity. All gait parameters were recorded using sensor-based gait analysis. Gait speed improved significantly by 4.2% (treadmill) and 8.3% (physiotherapy). Almost all secondary gait parameters, UPDRS-III, BBS, and walking capacity improved significantly and similarly in both groups. However, interaction effects were not observed. Both interventions significantly improved gait in patients with mild to moderate PD. However, treadmill walking did not show significant benefits compared to individualized physiotherapy. Our data suggest that both interventions improve dual task walking and therefore support safe and independent walking. This result may lead to more tailored therapeutic preferences.


Asunto(s)
Enfermedad de Parkinson , Prueba de Esfuerzo , Terapia por Ejercicio/métodos , Marcha , Humanos , Enfermedad de Parkinson/complicaciones , Enfermedad de Parkinson/terapia , Modalidades de Fisioterapia , Caminata
4.
Sensors (Basel) ; 22(15)2022 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-35957406

RESUMEN

Developing machine learning algorithms for time-series data often requires manual annotation of the data. To do so, graphical user interfaces (GUIs) are an important component. Existing Python packages for annotation and analysis of time-series data have been developed without addressing adaptability, usability, and user experience. Therefore, we developed a generic open-source Python package focusing on adaptability, usability, and user experience. The developed package, Machine Learning and Data Analytics (MaD) GUI, enables developers to rapidly create a GUI for their specific use case. Furthermore, MaD GUI enables domain experts without programming knowledge to annotate time-series data and apply algorithms to it. We conducted a small-scale study with participants from three international universities to test the adaptability of MaD GUI by developers and to test the user interface by clinicians as representatives of domain experts. MaD GUI saves up to 75% of time in contrast to using a state-of-the-art package. In line with this, subjective ratings regarding usability and user experience show that MaD GUI is preferred over a state-of-the-art package by developers and clinicians. MaD GUI reduces the effort of developers in creating GUIs for time-series analysis and offers similar usability and user experience for clinicians as a state-of-the-art package.


Asunto(s)
Programas Informáticos , Interfaz Usuario-Computador , Algoritmos , Humanos , Aprendizaje Automático
5.
Neurobiol Learn Mem ; 178: 107366, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33358765

RESUMEN

Acute cardiovascular exercise has shown to promote neuroplastic processes supporting the consolidation of newly acquired motor skills in healthy adults. First results suggest that this concept may be transferred to populations with motor and cognitive dysfunctions. In this context, Parkinson's disease (PD) is highly relevant since patients demonstrate deficits in motor learning. Hence, in the present study we sought to explore the effect of a single post-practice exercise bout on motor memory consolidation in PD. For this purpose, 17 patients with PD (Hoehn and Yahr: 1 - 2.5, age: 60.1 ± 7.9 y) practiced a whole-body skill followed by either (i) a moderate-intense bout of cycling, or (ii) seated rest for a total of 30 min. The motor skill required the participants to balance on a tiltable platform (stabilometer) for 30 s. During skill practice, participants performed 15 trials followed by a retention test 1 day and 7 days later. We calculated time in balance (platform within ± 5° from horizontal) for each trial and within- and between-group differences in memory consolidation (i.e. offline learning = skill change from last acquisition block to retention tests) were analyzed. Groups revealed similar improvements during skill practice (F4,60 = 0.316, p = 0.866), but showed differences in offline learning, which were only evident after 7 days (F1,14 = 5.602, p = 0.033). Our results suggest that a single post-practice exercise bout is effective in enhancing long-term motor memory consolidation in a population with motor learning impairments. This may point at unique promoting effects of exercise on dopamine neurotransmission involved in memory formation. Future studies should investigate the potential role of exercise-induced effects on the dopaminergic system.


Asunto(s)
Ejercicio Físico/psicología , Consolidación de la Memoria/fisiología , Destreza Motora/fisiología , Enfermedad de Parkinson/psicología , Anciano , Ejercicio Físico/fisiología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Plasticidad Neuronal/fisiología , Enfermedad de Parkinson/fisiopatología , Práctica Psicológica
6.
Sensors (Basel) ; 21(19)2021 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-34640878

RESUMEN

Climbing stairs is a fundamental part of daily life, adding additional demands on the postural control system compared to level walking. Although real-world gait analysis studies likely contain stair ambulation sequences, algorithms dedicated to the analysis of such activities are still missing. Therefore, we propose a new gait analysis pipeline for foot-worn inertial sensors, which can segment, parametrize, and classify strides from continuous gait sequences that include level walking, stair ascending, and stair descending. For segmentation, an existing approach based on the hidden Markov model and a feature-based gait event detection were extended, reaching an average segmentation F1 score of 98.5% and gait event timing errors below ±10ms for all conditions. Stride types were classified with an accuracy of 98.2% using spatial features derived from a Kalman filter-based trajectory reconstruction. The evaluation was performed on a dataset of 20 healthy participants walking on three different staircases at different speeds. The entire pipeline was additionally validated end-to-end on an independent dataset of 13 Parkinson's disease patients. The presented work aims to extend real-world gait analysis by including stair ambulation parameters in order to gain new insights into mobility impairments that can be linked to clinically relevant conditions such as a patient's fall risk and disease state or progression.


Asunto(s)
Análisis de la Marcha , Caminata , Algoritmos , Pie , Marcha , Humanos
7.
Sensors (Basel) ; 21(22)2021 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-34833755

RESUMEN

Digital technologies provide the opportunity to analyze gait patterns in patients with Parkinson's Disease using wearable sensors in clinical settings and a home environment. Confirming the technical validity of inertial sensors with a 3D motion capture system is a necessary step for the clinical application of sensor-based gait analysis. Therefore, the objective of this study was to compare gait parameters measured by a mobile sensor-based gait analysis system and a motion capture system as the gold standard. Gait parameters of 37 patients were compared between both systems after performing a standardized 5 × 10 m walking test by reliability analysis using intra-class correlation and Bland-Altman plots. Additionally, gait parameters of an age-matched healthy control group (n = 14) were compared to the Parkinson cohort. Gait parameters representing bradykinesia and short steps showed excellent reliability (ICC > 0.96). Shuffling gait parameters reached ICC > 0.82. In a stridewise synchronization, no differences were observed for gait speed, stride length, stride time, relative stance and swing time (p > 0.05). In contrast, heel strike, toe off and toe clearance significantly differed between both systems (p < 0.01). Both gait analysis systems distinguish Parkinson patients from controls. Our results indicate that wearable sensors generate valid gait parameters compared to the motion capture system and can consequently be used for clinically relevant gait recordings in flexible environments.


Asunto(s)
Trastornos Neurológicos de la Marcha , Enfermedad de Parkinson , Marcha , Análisis de la Marcha , Humanos , Enfermedad de Parkinson/diagnóstico , Reproducibilidad de los Resultados , Caminata
8.
Eur J Cancer Care (Engl) ; 29(2): e13199, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31829481

RESUMEN

OBJECTIVE: Gait is a sensitive marker for functional declines commonly seen in patients treated for advanced cancer. We tested the effect of a combined exercise and nutrition programme on gait parameters of advanced-stage cancer patients using a novel wearable gait analysis system. METHODS: Eighty patients were allocated to a control group with nutritional support or to an intervention group additionally receiving whole-body electromyostimulation (WB-EMS) training (2×/week). At baseline and after 12 weeks, physical function was assessed by a biosensor-based gait analysis during a six-minute walk test, a 30-s sit-to-stand test, a hand grip strength test, the Karnofsky Index and EORTC QLQ-C30 questionnaire. Body composition was measured by bioelectrical impedance analysis and inflammation by blood analysis. RESULTS: Final analysis included 41 patients (56.1% male; 60.0 ± 13.0 years). After 12 weeks, the WB-EMS group showed higher stride length, gait velocity (p < .05), six-minute walking distance (p < .01), bodyweight and skeletal muscle mass, and emotional functioning (p < .05) compared with controls. Correlations between changes in gait and in body composition, physical function and inflammation were detected. CONCLUSION: Whole-body electromyostimulation combined with nutrition may help to improve gait and functional status of cancer patients. Sensor-based mobile gait analysis objectively reflects patients' physical status and could support treatment decisions.


Asunto(s)
Terapia por Ejercicio/métodos , Marcha , Músculo Esquelético , Neoplasias/rehabilitación , Apoyo Nutricional , Rendimiento Físico Funcional , Adulto , Anciano , Composición Corporal , Consejo , Suplementos Dietéticos , Impedancia Eléctrica , Terapia por Estimulación Eléctrica , Femenino , Análisis de la Marcha , Neoplasias Gastrointestinales/patología , Neoplasias Gastrointestinales/fisiopatología , Neoplasias Gastrointestinales/rehabilitación , Neoplasias de los Genitales Femeninos/patología , Neoplasias de los Genitales Femeninos/fisiopatología , Neoplasias de los Genitales Femeninos/rehabilitación , Humanos , Estado de Ejecución de Karnofsky , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/fisiopatología , Neoplasias Pulmonares/rehabilitación , Masculino , Persona de Mediana Edad , Estadificación de Neoplasias , Neoplasias/patología , Neoplasias/fisiopatología , Medición de Resultados Informados por el Paciente , Proyectos Piloto , Calidad de Vida , Neoplasias Urológicas/patología , Neoplasias Urológicas/fisiopatología , Neoplasias Urológicas/rehabilitación , Prueba de Paso , Velocidad al Caminar
9.
J Neuroeng Rehabil ; 17(1): 165, 2020 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-33339530

RESUMEN

BACKGROUND: Multiple sclerosis (MS) is a disabling disease affecting the central nervous system and consequently the whole body's functional systems resulting in different gait disorders. Fatigue is the most common symptom in MS with a prevalence of 80%. Previous research studied the relation between fatigue and gait impairment using stationary gait analysis systems and short gait tests (e.g. timed 25 ft walk). However, wearable inertial sensors providing gait data from longer and continuous gait bouts have not been used to assess the relation between fatigue and gait parameters in MS. Therefore, the aim of this study was to evaluate the association between fatigue and spatio-temporal gait parameters extracted from wearable foot-worn sensors and to predict the degree of fatigue. METHODS: Forty-nine patients with MS (32 women; 17 men; aged 41.6 years, EDSS 1.0-6.5) were included where each participant was equipped with a small Inertial Measurement Unit (IMU) on each foot. Spatio-temporal gait parameters were obtained from the 6-min walking test, and the Borg scale of perceived exertion was used to represent fatigue. Gait parameters were normalized by taking the difference of averaged gait parameters between the beginning and end of the test to eliminate inter-individual differences. Afterwards, normalized parameters were transformed to principle components that were used as input to a Random Forest regression model to formulate the relationship between gait parameters and fatigue. RESULTS: Six principal components were used as input to our model explaining more than 90% of variance within our dataset. Random Forest regression was used to predict fatigue. The model was validated using 10-fold cross validation and the mean absolute error was 1.38 points. Principal components consisting mainly of stride time, maximum toe clearance, heel strike angle, and stride length had large contributions (67%) to the predictions made by the Random Forest. CONCLUSIONS: The level of fatigue can be predicted based on spatio-temporal gait parameters obtained from an IMU based system. The results can help therapists to monitor fatigue before and after treatment and in rehabilitation programs to evaluate their efficacy. Furthermore, this can be used in home monitoring scenarios where therapists can monitor fatigue using IMUs reducing time and effort of patients and therapists.


Asunto(s)
Fatiga/diagnóstico , Fatiga/etiología , Análisis de la Marcha/instrumentación , Esclerosis Múltiple/complicaciones , Dispositivos Electrónicos Vestibles , Adulto , Femenino , Marcha/fisiología , Humanos , Masculino , Persona de Mediana Edad , Esclerosis Múltiple/fisiopatología , Medición de Resultados Informados por el Paciente
10.
J Neurol Phys Ther ; 43(4): 224-232, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31517749

RESUMEN

BACKGROUND AND PURPOSE: Perturbation training is a promising approach to reduce fall incidence in persons with Parkinson disease (PwPD). This study aimed to evaluate interindividual differences in balance adaptations in response to perturbation treadmill training (PTT) and identify potential outcome predictors. METHODS: PwPD (n = 43, Hoehn & Yahr stage 1-3.5) were randomly assigned to either 8 weeks of PTT or conventional treadmill training (CTT) without perturbations. At baseline and following intervention, data from 4 domains of balance function (reactive, anticipatory, dynamic postural control, and quiet stance) were collected. Using responder analysis we investigated interindividual differences (responder rates and magnitude of change) and potential predictive factors. RESULTS: PTT showed a significantly higher responder rate in the Mini Balance Evaluation Systems Test (Mini-BESTest) subscore reactive postural control, compared with CTT (PTT = 44%; CTT = 10%; risk ratio = 4.22, confidence interval = 1.03-17.28). Additionally, while between-groups differences were not significant, the proportion of responders in the measures of dynamic postural control was higher for PTT compared with CTT (PTT: 22%-39%; CTT: 5%-10%). The magnitude of change in responders and nonresponders was similar in both groups. PTT responders showed significantly lower initial balance performance (4/8 measures) and cognitive function (3/8 measures), and were older and at a more advanced disease stage, based on descriptive evaluation. DISCUSSION AND CONCLUSIONS: Our findings suggest that PTT is beneficial to improve reactive balance in PwPD. Further, PTT appeared to be effective only for a part of PwPD, especially for those with lower balance and cognitive function, which needs further attention.Video Abstract available for more insights from the authors (see the Video, Supplemental Digital Content 1, http://links.lww.com/JNPT/A1).


Asunto(s)
Accidentes por Caídas/prevención & control , Adaptación Fisiológica/fisiología , Terapia por Ejercicio , Enfermedad de Parkinson/fisiopatología , Equilibrio Postural/fisiología , Anciano , Cognición/fisiología , Femenino , Humanos , Masculino , Persona de Mediana Edad
11.
J Neuroeng Rehabil ; 16(1): 98, 2019 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-31349860

RESUMEN

The original article [1] contained an error whereby Fig. 6 contained a minor shading glitch affecting its presentation. This has now been corrected.

12.
J Neuroeng Rehabil ; 16(1): 77, 2019 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-31242915

RESUMEN

BACKGROUND: Gait symptoms and balance impairment are characteristic indicators for the progression in Parkinson's disease (PD). Current gait assessments mostly focus on straight strides with assumed constant velocity, while acceleration/deceleration and turning strides are often ignored. This is either due to the set up of typical clinical assessments or technical limitations in capture volume. Wearable inertial measurement units are a promising and unobtrusive technology to overcome these limitations. Other gait phases such as initiation, termination, transitioning (between straight walking and turning) and turning might be relevant as well for the evaluation of gait and balance impairments in PD. METHOD: In a cohort of 119 PD patients, we applied unsupervised algorithms to find different gait clusters which potentially include the clinically relevant information from distinct gait phases in the standardized 4x10 m gait test. To clinically validate our approach, we determined the discriminative power in each gait cluster to classify between impaired and unimpaired PD patients and compared it to baseline (analyzing all straight strides). RESULTS: As a main result, analyzing only one of the gait clusters constant, non-constant or turning led in each case to a better classification performance in comparison to the baseline (increase of area under the curve (AUC) up to 19% relative to baseline). Furthermore, gait parameters (for turning, constant and non-constant gait) that best predict motor impairment in PD were identified. CONCLUSIONS: We conclude that a more detailed analysis in terms of different gait clusters of standardized gait tests such as the 4x10 m walk may give more insights about the clinically relevant motor impairment in PD patients.


Asunto(s)
Algoritmos , Trastornos Neurológicos de la Marcha/clasificación , Trastornos Neurológicos de la Marcha/diagnóstico , Enfermedad de Parkinson/complicaciones , Actigrafía/instrumentación , Anciano , Análisis por Conglomerados , Femenino , Humanos , Masculino , Persona de Mediana Edad , Dispositivos Electrónicos Vestibles
13.
Sensors (Basel) ; 19(14)2019 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-31337067

RESUMEN

Mobile gait analysis systems using wearable sensors have the potential to analyze and monitor pathological gait in a finer scale than ever before. A closer look at gait in Parkinson's disease (PD) reveals that turning has its own characteristics and requires its own analysis. The goal of this paper is to present a system with on-shoe wearable sensors in order to analyze the abnormalities of turning in a standardized gait test for PD. We investigated turning abnormalities in a large cohort of 108 PD patients and 42 age-matched controls. We quantified turning through several spatio-temporal parameters. Analysis of turn-derived parameters revealed differences of turn-related gait impairment in relation to different disease stages and motor impairment. Our findings confirm and extend the results from previous studies and show the applicability of our system in turning analysis. Our system can provide insight into the turning in PD and be used as a complement for physicians' gait assessment and to monitor patients in their daily environment.


Asunto(s)
Algoritmos , Monitoreo Fisiológico/instrumentación , Enfermedad de Parkinson/fisiopatología , Zapatos , Dispositivos Electrónicos Vestibles , Adulto , Anciano , Anciano de 80 o más Años , Estudios de Casos y Controles , Diseño de Equipo , Femenino , Trastornos Neurológicos de la Marcha/diagnóstico , Trastornos Neurológicos de la Marcha/fisiopatología , Humanos , Masculino , Persona de Mediana Edad , Monitoreo Fisiológico/métodos , Monitoreo Fisiológico/normas , Reproducibilidad de los Resultados , Análisis Espacio-Temporal
14.
Sensors (Basel) ; 18(1)2018 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-29316636

RESUMEN

Robust gait segmentation is the basis for mobile gait analysis. A range of methods have been applied and evaluated for gait segmentation of healthy and pathological gait bouts. However, a unified evaluation of gait segmentation methods in Parkinson's disease (PD) is missing. In this paper, we compare four prevalent gait segmentation methods in order to reveal their strengths and drawbacks in gait processing. We considered peak detection from event-based methods, two variations of dynamic time warping from template matching methods, and hierarchical hidden Markov models (hHMMs) from machine learning methods. To evaluate the methods, we included two supervised and instrumented gait tests that are widely used in the examination of Parkinsonian gait. In the first experiment, a sequence of strides from instructed straight walks was measured from 10 PD patients. In the second experiment, a more heterogeneous assessment paradigm was used from an additional 34 PD patients, including straight walks and turning strides as well as non-stride movements. The goal of the latter experiment was to evaluate the methods in challenging situations including turning strides and non-stride movements. Results showed no significant difference between the methods for the first scenario, in which all methods achieved an almost 100% accuracy in terms of F-score. Hence, we concluded that in the case of a predefined and homogeneous sequence of strides, all methods can be applied equally. However, in the second experiment the difference between methods became evident, with the hHMM obtaining a 96% F-score and significantly outperforming the other methods. The hHMM also proved promising in distinguishing between strides and non-stride movements, which is critical for clinical gait analysis. Our results indicate that both the instrumented test procedure and the required stride segmentation algorithm have to be selected adequately in order to support and complement classical clinical examination by sensor-based movement assessment.


Asunto(s)
Marcha , Algoritmos , Trastornos Neurológicos de la Marcha , Humanos , Enfermedad de Parkinson
15.
Sensors (Basel) ; 17(7)2017 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-28657587

RESUMEN

The purpose of this study was to assess the concurrent validity and test-retest reliability of a sensor-based gait analysis system. Eleven healthy subjects and four Parkinson's disease (PD) patients were asked to complete gait tasks whilst wearing two inertial measurement units at their feet. The extracted spatio-temporal parameters of 1166 strides were compared to those extracted from a reference camera-based motion capture system concerning concurrent validity. Test-retest reliability was assessed for five healthy subjects at three different days in a two week period. The two systems were highly correlated for all gait parameters ( r > 0.93 ). The bias for stride time was 0 ± 16 ms and for stride length was 1.4 ± 6.7 cm. No systematic range dependent errors were observed and no significant changes existed between healthy subjects and PD patients. Test-retest reliability was excellent for all parameters (intraclass correlation (ICC) > 0.81) except for gait velocity (ICC > 0.55). The sensor-based system was able to accurately capture spatio-temporal gait parameters as compared to the reference camera-based system for normal and impaired gait. The system's high retest reliability renders the use in recurrent clinical measurements and in long-term applications feasible.


Asunto(s)
Marcha , Pie , Voluntarios Sanos , Humanos , Imagen por Resonancia Magnética , Reproducibilidad de los Resultados
16.
Sensors (Basel) ; 15(3): 6419-40, 2015 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-25789489

RESUMEN

Changes in gait patterns provide important information about individuals' health. To perform sensor based gait analysis, it is crucial to develop methodologies to automatically segment single strides from continuous movement sequences. In this study we developed an algorithm based on time-invariant template matching to isolate strides from inertial sensor signals. Shoe-mounted gyroscopes and accelerometers were used to record gait data from 40 elderly controls, 15 patients with Parkinson's disease and 15 geriatric patients. Each stride was manually labeled from a straight 40 m walk test and from a video monitored free walk sequence. A multi-dimensional subsequence Dynamic Time Warping (msDTW) approach was used to search for patterns matching a pre-defined stride template constructed from 25 elderly controls. F-measure of 98% (recall 98%, precision 98%) for 40 m walk tests and of 97% (recall 97%, precision 97%) for free walk tests were obtained for the three groups. Compared to conventional peak detection methods up to 15% F-measure improvement was shown. The msDTW proved to be robust for segmenting strides from both standardized gait tests and free walks. This approach may serve as a platform for individualized stride segmentation during activities of daily living.

17.
EPMA J ; 15(2): 275-287, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38841617

RESUMEN

Background: Huntington's disease (HD) is a progressive neurodegenerative disease caused by a CAG trinucleotide expansion in the huntingtin gene. The length of the CAG repeat is inversely correlated with disease onset. HD is characterized by hyperkinetic movement disorder, psychiatric symptoms, and cognitive deficits, which greatly impact patient's quality of life. Despite this clear genetic course, high variability of HD patients' symptoms can be observed. Current clinical diagnosis of HD solely relies on the presence of motor signs, disregarding the other important aspects of the disease. By incorporating a broader approach that encompasses motor as well as non-motor aspects of HD, predictive, preventive, and personalized (3P) medicine can enhance diagnostic accuracy and improve patient care. Methods: Multisymptom disease trajectories of HD patients collected from the Enroll-HD study were first aligned on a common disease timescale to account for heterogeneity in disease symptom onset and diagnosis. Following this, the aligned disease trajectories were clustered using the previously published Variational Deep Embedding with Recurrence (VaDER) algorithm and resulting progression subtypes were clinically characterized. Lastly, an AI/ML model was learned to predict the progression subtype from only first visit data or with data from additional follow-up visits. Results: Results demonstrate two distinct subtypes, one large cluster (n = 7122) showing a relative stable disease progression and a second, smaller cluster (n = 411) showing a dramatically more progressive disease trajectory. Clinical characterization of the two subtypes correlates with CAG repeat length, as well as several neurobehavioral, psychiatric, and cognitive scores. In fact, cognitive impairment was found to be the major difference between the two subtypes. Additionally, a prognostic model shows the ability to predict HD subtypes from patients' first visit only. Conclusion: In summary, this study aims towards the paradigm shift from reactive to preventive and personalized medicine by showing that non-motor symptoms are of vital importance for predicting and categorizing each patients' disease progression pattern, as cognitive decline is oftentimes more reflective of HD progression than its motor aspects. Considering these aspects while counseling and therapy definition will personalize each individuals' treatment. The ability to provide patients with an objective assessment of their disease progression and thus a perspective for their life with HD is the key to improving their quality of life. By conducting additional analysis on biological data from both subtypes, it is possible to gain a deeper understanding of these subtypes and uncover the underlying biological factors of the disease. This greatly aligns with the goal of shifting towards 3P medicine. Supplementary Information: The online version contains supplementary material available at 10.1007/s13167-024-00368-2.

18.
Front Neurosci ; 18: 1393749, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38812972

RESUMEN

The human's upright standing is a complex control process that is not yet fully understood. Postural control models can provide insights into the body's internal control processes of balance behavior. Using physiologically plausible models can also help explaining pathophysiological motion behavior. In this paper, we introduce a neuromusculoskeletal postural control model using sensor feedback consisting of somatosensory, vestibular and visual information. The sagittal plane model was restricted to effectively six degrees of freedom and consisted of nine muscles per leg. Physiologically plausible neural delays were considered for balance control. We applied forward dynamic simulations and a single shooting approach to generate healthy reactive balance behavior during quiet and perturbed upright standing. Control parameters were optimized to minimize muscle effort. We showed that our model is capable of fulfilling the applied tasks successfully. We observed joint angles and ranges of motion in physiologically plausible ranges and comparable to experimental data. This model represents the starting point for subsequent simulations of pathophysiological postural control behavior.

19.
BMJ Open ; 14(5): e081317, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38692728

RESUMEN

INTRODUCTION: Gait and mobility impairment are pivotal signs of parkinsonism, and they are particularly severe in atypical parkinsonian disorders including multiple system atrophy (MSA) and progressive supranuclear palsy (PSP). A pilot study demonstrated a significant improvement of gait in patients with MSA of parkinsonian type (MSA-P) after physiotherapy and matching home-based exercise, as reflected by sensor-based gait parameters. In this study, we aim to investigate whether a gait-focused physiotherapy (GPT) and matching home-based exercise lead to a greater improvement of gait performance compared with a standard physiotherapy/home-based exercise programme (standard physiotherapy, SPT). METHODS AND ANALYSIS: This protocol was deployed to evaluate the effects of a GPT versus an active control undergoing SPT and matching home-based exercise with regard to laboratory gait parameters, physical activity measures and clinical scales in patients with Parkinson's disease (PD), MSA-P and PSP. The primary outcomes of the trial are sensor-based laboratory gait parameters, while the secondary outcome measures comprise real-world derived parameters, clinical rating scales and patient questionnaires. We aim to enrol 48 patients per disease group into this double-blind, randomised-controlled trial. The study starts with a 1 week wearable sensor-based monitoring of physical activity. After randomisation, patients undergo a 2 week daily inpatient physiotherapy, followed by 5 week matching unsupervised home-based training. A 1 week physical activity monitoring is repeated during the last week of intervention. ETHICS AND DISSEMINATION: This study, registered as 'Mobility in Atypical Parkinsonism: a Trial of Physiotherapy (Mobility_APP)' at clinicaltrials.gov (NCT04608604), received ethics approval by local committees of the involved centres. The patient's recruitment takes place at the Movement Disorders Units of Innsbruck (Austria), Erlangen (Germany), Lausanne (Switzerland), Luxembourg (Luxembourg) and Bolzano (Italy). The data resulting from this project will be submitted to peer-reviewed journals, presented at international congresses and made publicly available at the end of the trial. TRIAL REGISTRATION NUMBER: NCT04608604.


Asunto(s)
Terapia por Ejercicio , Trastornos Parkinsonianos , Modalidades de Fisioterapia , Humanos , Terapia por Ejercicio/métodos , Trastornos Parkinsonianos/rehabilitación , Trastornos Parkinsonianos/terapia , Método Doble Ciego , Ensayos Clínicos Controlados Aleatorios como Asunto , Marcha , Enfermedad de Parkinson/rehabilitación , Enfermedad de Parkinson/terapia , Atrofia de Múltiples Sistemas/rehabilitación , Atrofia de Múltiples Sistemas/terapia , Parálisis Supranuclear Progresiva/terapia , Parálisis Supranuclear Progresiva/rehabilitación , Servicios de Atención de Salud a Domicilio , Anciano , Masculino , Femenino , Trastornos Neurológicos de la Marcha/rehabilitación , Trastornos Neurológicos de la Marcha/etiología
20.
Int J Med Inform ; 177: 105145, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37473657

RESUMEN

BACKGROUND: Gait and cognition impairments are common problems among People with Multiple Sclerosis (PwMS). Previous studies have investigated cross-sectional associations between gait and cognition. However, there is a lack of evidence regarding the longitudinal association between these factors in PwMS. Therefore, the objective of this study was to explore this longitudinal relationship using smartphone-based data from the Floodlight study. METHODS: Using the publicly available Floodlight dataset, which contains smartphone-based longitudinal data, we used a linear mixed model to investigate the longitudinal relationship between cognition, measured by the Symbol Digit Modalities Test (SDMT), and gait, measured by the 2 Minute Walking test (2 MW) step count and Five-U-Turn Test (FUTT) turning speed. Four mixed models were fitted to explore the association between: 1) SDMT and mean step count; 2) SDMT and variability of step count; 3) SDMT and mean FUTT turning speed; and 4) SDMT and variability of FUTT turningt speed. RESULTS: After controlling for age, sex, weight, and height, there were significant correlations between SDMT and the variability of 2 MW step count, the mean of FUTT turning speed. No significant correlation was observed between SDMT and the 2 MW mean step count. SIGNIFICANCE: Our findings support the evidence that gait and cognition are associated in PwMS. This may support clinicians to adjust treatment and intervention programs that address both gait and cognitive impairments.


Asunto(s)
Esclerosis Múltiple , Humanos , Esclerosis Múltiple/complicaciones , Estudios Transversales , Teléfono Inteligente , Marcha , Cognición
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA