Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Dev Sci ; : e13570, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39352772

RESUMEN

Caregivers play an outsized role in shaping early life experiences and development, but we often lack mechanistic insight into how exactly caregiver behavior scaffolds the neurodevelopment of specific learning processes. Here, we capitalized on the fact that caregivers differ in how predictable their behavior is to ask if infants' early environmental input shapes their brains' later ability to learn about predictable information. As part of an ongoing longitudinal study in South Africa, we recorded naturalistic, dyadic interactions between 103 (46 females and 57 males) infants and their primary caregivers at 3-6 months of age, from which we calculated the predictability of caregivers' behavior, following caregiver vocalization and overall. When the same infants were 6-12-months-old they participated in an auditory statistical learning task during EEG. We found evidence of learning-related change in infants' neural responses to predictable information during the statistical learning task. The magnitude of statistical learning-related change in infants' EEG responses was associated with the predictability of their caregiver's vocalizations several months earlier, such that infants with more predictable caregiver vocalization patterns showed more evidence of statistical learning later in the first year of life. These results suggest that early experiences with caregiver predictability influence learning, providing support for the hypothesis that the neurodevelopment of core learning and memory systems is closely tied to infants' experiences during key developmental windows.

2.
Behav Res Methods ; 56(7): 8038-8056, 2024 10.
Artículo en Inglés | MEDLINE | ID: mdl-39103597

RESUMEN

Early home musical environments can significantly impact sensory, cognitive, and socioemotional development. While longitudinal studies may be resource-intensive, retrospective reports are a relatively quick and inexpensive way to examine associations between early home musical environments and adult outcomes. We present the Music@Home-Retrospective scale, derived partly from the Music@Home-Preschool scale (Politimou et al., 2018), to retrospectively assess the childhood home musical environment. In two studies (total n = 578), we conducted an exploratory factor analysis (Study 1) and confirmatory factor analysis (Study 2) on items, including many adapted from the Music@Home-Preschool scale. This revealed a 20-item solution with five subscales. Items retained for three subscales (Caregiver Beliefs, Caregiver Initiation of Singing, Child Engagement with Music) load identically to three in the Music@Home--Preschool Scale. We also identified two additional dimensions of the childhood home musical environment. The Attitude Toward Childhood Home Musical Environment subscale captures participants' current adult attitudes toward their childhood home musical environment, and the Social Listening Contexts subscale indexes the degree to which participants listened to music at home with others (i.e., friends, siblings, and caregivers). Music@Home-Retrospective scores were related to adult self-reports of musicality, performance on a melodic perception task, and self-reports of well-being, demonstrating utility in measuring the early home music environment as captured through this scale. The Music@Home-Retrospective scale is freely available to enable future investigations exploring how the early home musical environment relates to adult cognition, affect, and behavior.


Asunto(s)
Música , Humanos , Femenino , Masculino , Adulto , Estudios Retrospectivos , Preescolar , Adulto Joven , Análisis Factorial , Niño , Cuidadores/psicología , Adolescente , Encuestas y Cuestionarios , Percepción Auditiva/fisiología
3.
J Neurosci ; 36(17): 4771-84, 2016 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-27122035

RESUMEN

UNLABELLED: Although the functional architecture of the brain is indexed by resting-state connectivity networks, little is currently known about the mechanisms through which these networks assemble into stable mature patterns. The current study posits and tests the long-term phasic molding hypothesis that resting-state networks are gradually shaped by recurring stimulus-elicited connectivity across development by examining how both stimulus-elicited and resting-state functional connections of the human brain emerge over development at the systems level. Using a sequential design following 4- to 18-year-olds over a 2 year period, we examined the predictive associations between stimulus-elicited and resting-state connectivity in amygdala-cortical circuitry as an exemplar case (given this network's protracted development across these ages). Age-related changes in amygdala functional connectivity converged on the same regions of medial prefrontal cortex (mPFC) and inferior frontal gyrus when elicited by emotional stimuli and when measured at rest. Consistent with the long-term phasic molding hypothesis, prospective analyses for both connections showed that the magnitude of an individual's stimulus-elicited connectivity unidirectionally predicted resting-state functional connectivity 2 years later. For the amygdala-mPFC connection, only stimulus-elicited connectivity during childhood and the transition to adolescence shaped future resting-state connectivity, consistent with a sensitive period ending with adolescence for the amygdala-mPFC circuit. Together, these findings suggest that resting-state functional architecture may arise from phasic patterns of functional connectivity elicited by environmental stimuli over the course of development on the order of years. SIGNIFICANCE STATEMENT: A fundamental issue in understanding the ontogeny of brain function is how resting-state (intrinsic) functional networks emerge and relate to stimulus-elicited functional connectivity. Here, we posit and test the long-term phasic molding hypothesis that resting-state network development is influenced by recurring stimulus-elicited connectivity through prospective examination of the developing human amygdala-cortical functional connections. Our results provide critical insight into how early environmental events sculpt functional network architecture across development and highlight childhood as a potential developmental period of heightened malleability for the amygdala-medial prefrontal cortex circuit. These findings have implications for how both positive and adverse experiences influence the developing brain and motivate future investigations of whether this molding mechanism reflects a general phenomenon of brain development.


Asunto(s)
Desarrollo del Adolescente/fisiología , Mapeo Encefálico , Desarrollo Infantil/fisiología , Emociones/fisiología , Descanso/fisiología , Adolescente , Amígdala del Cerebelo/crecimiento & desarrollo , Amígdala del Cerebelo/fisiología , Niño , Preescolar , Estudios Transversales , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador , Estudios Longitudinales , Imagen por Resonancia Magnética , Masculino , Vías Nerviosas/crecimiento & desarrollo , Corteza Prefrontal/crecimiento & desarrollo , Corteza Prefrontal/fisiología
4.
Dev Cogn Neurosci ; 69: 101447, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39305603

RESUMEN

The HEALthy Brain and Child Development (HBCD) Study, a multi-site prospective longitudinal cohort study, will examine human brain, cognitive, behavioral, social, and emotional development beginning prenatally and planned through early childhood. Electroencephalography (EEG) is one of two brain imaging modalities central to the HBCD Study. EEG records electrical signals from the scalp that reflect electrical brain activity. In addition, the EEG signal can be synchronized to the presentation of discrete stimuli (auditory or visual) to measure specific cognitive processes with excellent temporal precision (e.g., event-related potentials; ERPs). EEG is particularly helpful for the HBCD Study as it can be used with awake, alert infants, and can be acquired continuously across development. The current paper reviews the HBCD Study's EEG/ERP protocol: (a) the selection and development of the tasks (Video Resting State, Visual Evoked Potential, Auditory Oddball, Face Processing); (b) the implementation of common cross-site acquisition parameters and hardware, site setup, training, and initial piloting; (c) the development of the preprocessing pipelines and creation of derivatives; and (d) the incorporation of equity and inclusion considerations. The paper also provides an overview of the functioning of the EEG Workgroup and the input from members across all steps of protocol development and piloting.


Asunto(s)
Encéfalo , Desarrollo Infantil , Electroencefalografía , Humanos , Electroencefalografía/métodos , Encéfalo/fisiología , Desarrollo Infantil/fisiología , Lactante , Estudios Longitudinales , Preescolar , Niño , Potenciales Evocados/fisiología , Estudios Prospectivos , Femenino , Masculino
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA