Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 149(4): 819-31, 2012 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-22541069

RESUMEN

Repetitive sequences account for more than 50% of the human genome. Facioscapulohumeral muscular dystrophy (FSHD) is an autosomal-dominant disease associated with reduction in the copy number of the D4Z4 repeat mapping to 4q35. By an unknown mechanism, D4Z4 deletion causes an epigenetic switch leading to de-repression of 4q35 genes. Here we show that the Polycomb group of epigenetic repressors targets D4Z4 in healthy subjects and that D4Z4 deletion is associated with reduced Polycomb silencing in FSHD patients. We identify DBE-T, a chromatin-associated noncoding RNA produced selectively in FSHD patients that coordinates de-repression of 4q35 genes. DBE-T recruits the Trithorax group protein Ash1L to the FSHD locus, driving histone H3 lysine 36 dimethylation, chromatin remodeling, and 4q35 gene transcription. This study provides insights into the biological function of repetitive sequences in regulating gene expression and shows how mutations of such elements can influence the progression of a human genetic disease.


Asunto(s)
Epigénesis Genética , Distrofia Muscular Facioescapulohumeral/genética , Proteína de la Leucemia Mieloide-Linfoide/metabolismo , ARN no Traducido/metabolismo , Proteínas Represoras/metabolismo , Animales , Células CHO , Células Cultivadas , Cricetinae , Proteínas de Unión al ADN/metabolismo , N-Metiltransferasa de Histona-Lisina , Humanos , Datos de Secuencia Molecular , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Distrofia Muscular Facioescapulohumeral/fisiopatología , Proteínas del Grupo Polycomb , Elementos de Respuesta , Factores de Transcripción/metabolismo
2.
Nucleic Acids Res ; 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38994563

RESUMEN

SMCHD1 is an epigenetic regulatory protein known to modulate the targeted repression of large chromatin domains. Diminished SMCHD1 function in muscle fibers causes Facioscapulohumeral Muscular Dystrophy (FSHD2) through derepression of the D4Z4 chromatin domain, an event which permits the aberrant expression of the disease-causing gene DUX4. Given that SMCHD1 plays a broader role in establishing the cellular epigenome, we examined whether loss of SMCHD1 function might affect muscle homeostasis through additional mechanisms. Here we show that acute depletion of SMCHD1 results in a DUX4-independent defect in myoblast proliferation. Genomic and transcriptomic experiments determined that SMCHD1 associates with enhancers of genes controlling cell cycle to activate their expression. Amongst these cell cycle regulatory genes, we identified LAP2 as a key target of SMCHD1 required for the expansion of myoblasts, where the ectopic expression of LAP2 rescues the proliferation defect of SMCHD1-depleted cells. Thus, the epigenetic regulator SMCHD1 can play the role of a transcriptional co-activator for maintaining the expression of genes required for muscle progenitor expansion. This DUX4-independent role for SMCHD1 in myoblasts suggests that the pathology of FSHD2 may be a consequence of defective muscle regeneration in addition to the muscle wasting caused by spurious DUX4 expression.

3.
Nucleic Acids Res ; 51(10): 5144-5161, 2023 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-37021550

RESUMEN

Facioscapulohumeral muscular dystrophy (FSHD) is one of the most prevalent neuromuscular disorders. The disease is linked to copy number reduction and/or epigenetic alterations of the D4Z4 macrosatellite on chromosome 4q35 and associated with aberrant gain of expression of the transcription factor DUX4, which triggers a pro-apoptotic transcriptional program leading to muscle wasting. As today, no cure or therapeutic option is available to FSHD patients. Given its centrality in FSHD, blocking DUX4 expression with small molecule drugs is an attractive option. We previously showed that the long non protein-coding RNA DBE-T is required for aberrant DUX4 expression in FSHD. Using affinity purification followed by proteomics, here we identified the chromatin remodeling protein WDR5 as a novel DBE-T interactor and a key player required for the biological activity of the lncRNA. We found that WDR5 is required for the expression of DUX4 and its targets in primary FSHD muscle cells. Moreover, targeting WDR5 rescues both cell viability and myogenic differentiation of FSHD patient cells. Notably, comparable results were obtained by pharmacological inhibition of WDR5. Importantly, WDR5 targeting was safe to healthy donor muscle cells. Our results support a pivotal role of WDR5 in the activation of DUX4 expression identifying a druggable target for an innovative therapeutic approach for FSHD.


Asunto(s)
Distrofia Muscular Facioescapulohumeral , Humanos , Regulación de la Expresión Génica , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Células Musculares/metabolismo , Músculo Esquelético/metabolismo , Distrofia Muscular Facioescapulohumeral/metabolismo , Factores de Transcripción/metabolismo
4.
Int J Mol Sci ; 23(9)2022 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-35563127

RESUMEN

The post-translational modification of histone tails is a dynamic process that provides chromatin with high plasticity. Histone modifications occur through the recruitment of nonhistone proteins to chromatin and have the potential to influence fundamental biological processes. Many recent studies have been directed at understanding the role of methylated lysine 20 of histone H4 (H4K20) in physiological and pathological processes. In this review, we will focus on the function and regulation of the histone methyltransferases SUV4-20H1 and SUV4-20H2, which catalyze the di- and tri-methylation of H4K20 at H4K20me2 and H4K20me3, respectively. We will highlight recent studies that have elucidated the functions of these enzymes in various biological processes, including DNA repair, cell cycle regulation, and DNA replication. We will also provide an overview of the pathological conditions associated with H4K20me2/3 misregulation as a result of mutations or the aberrant expression of SUV4-20H1 or SUV4-20H2. Finally, we will critically analyze the data supporting these functions and outline questions for future research.


Asunto(s)
Histonas , Lisina , Cromatina/genética , Histona Metiltransferasas , Histonas/metabolismo , Lisina/metabolismo , Metilación
5.
Hum Mol Genet ; 26(4): 753-767, 2017 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-28040729

RESUMEN

Repression of repetitive elements is crucial to preserve genome integrity and has been traditionally ascribed to constitutive heterochromatin pathways. FacioScapuloHumeral Muscular Dystrophy (FSHD), one of the most common myopathies, is characterized by a complex interplay of genetic and epigenetic events. The main FSHD form is linked to a reduced copy number of the D4Z4 macrosatellite repeat on 4q35, causing loss of silencing and aberrant expression of the D4Z4-embedded DUX4 gene leading to disease. By an unknown mechanism, D4Z4 copy-number correlates with FSHD phenotype. Here we show that the DUX4 proximal promoter (DUX4p) is sufficient to nucleate the enrichment of both constitutive and facultative heterochromatin components and to mediate a copy-number dependent gene silencing. We found that both the CpG/GC dense DNA content and the repetitive nature of DUX4p arrays are important for their repressive ability. We showed that DUX4p mediates a copy number-dependent Polycomb Repressive Complex 1 (PRC1) recruitment, which is responsible for the copy-number dependent gene repression. Overall, we directly link genetic and epigenetic defects in FSHD by proposing a novel molecular explanation for the copy number-dependency in FSHD pathogenesis, and offer insight into the molecular functions of repeats in chromatin regulation.


Asunto(s)
Variaciones en el Número de Copia de ADN , Proteínas de Homeodominio , Repeticiones de Microsatélite , Distrofia Muscular Facioescapulohumeral , Complejo Represivo Polycomb 1 , Línea Celular , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Humanos , Distrofia Muscular Facioescapulohumeral/genética , Distrofia Muscular Facioescapulohumeral/metabolismo , Complejo Represivo Polycomb 1/genética , Complejo Represivo Polycomb 1/metabolismo
6.
Hum Mol Genet ; 24(5): 1256-66, 2015 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-25326393

RESUMEN

Facioscapulohumeral muscular dystrophy (FSHD) is one of the most common neuromuscular disorders. The major form of the disease (FSHD1) is linked to decrease in copy number of a 3.3-kb tandem repeated macrosatellite (D4Z4), located on chromosome 4q35. D4Z4 deletion alters chromatin structure of the locus leading to aberrant expression of nearby 4q35 genes. Given the high variability in disease onset and progression, multiple factors could contribute to the pathogenesis of FSHD. Among the FSHD candidate genes are double homeobox 4 (DUX4), encoded by the most telomeric D4Z4 unit, and FSHD region gene 1 (FRG1). DUX4 is a sequence-specific transcription factor. Here, we located putative DUX4 binding sites in the human FRG1 genomic area and we show specific DUX4 association to these regions. We found also that ectopically expressed DUX4 up-regulates the endogenous human FRG1 gene in healthy muscle cells, while DUX4 knockdown leads to a decrease in FRG1 expression in FSHD muscle cells. Moreover, DUX4 binds directly and specifically to its binding site located in the human FRG1 gene and transactivates constructs containing FRG1 genomic regions. Intriguingly, the mouse Frg1 genomic area lacks DUX4 binding sites and DUX4 is unable to activate the endogenous mouse Frg1 gene providing a possible explanation for the lack of muscle phenotype in DUX4 transgenic mice. Altogether, our results demonstrate that FRG1 is a direct DUX4 transcriptional target uncovering a novel regulatory circuit contributing to FSHD.


Asunto(s)
Proteínas de Homeodominio/metabolismo , Distrofia Muscular Facioescapulohumeral/genética , Proteínas Nucleares/metabolismo , Anciano , Animales , Línea Celular , Cromatina/genética , Cromatina/metabolismo , Clonación Molecular , Variaciones en el Número de Copia de ADN , Eliminación de Gen , Sitios Genéticos , Células HEK293 , Proteínas de Homeodominio/genética , Humanos , Masculino , Ratones , Ratones Transgénicos , Proteínas de Microfilamentos , Persona de Mediana Edad , Células Musculares/citología , Células Musculares/metabolismo , Músculo Esquelético/citología , Músculo Esquelético/metabolismo , Distrofia Muscular Facioescapulohumeral/patología , Mioblastos/citología , Mioblastos/metabolismo , Proteínas Nucleares/genética , Proteínas/genética , Proteínas/metabolismo , Proteínas de Unión al ARN , Regulación hacia Arriba
7.
J Cell Sci ; 128(4): 631-7, 2015 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-25609712

RESUMEN

Among the Mef2 family of transcription factors, Mef2D is unique in that it undergoes tissue-specific splicing to generate an isoform that is essential for muscle differentiation. However, the mechanisms mediating this muscle-specific processing of Mef2D remain unknown. Using bioinformatics, we identified Rbfox proteins as putative modulators of Mef2D muscle-specific splicing. Accordingly, we found direct and specific Rbfox1 and Rbfox2 binding to Mef2D pre-mRNA in vivo. Gain- and loss-of-function experiments demonstrated that Rbfox1 and Rbfox2 cooperate in promoting Mef2D splicing and subsequent myogenesis. Thus, our findings reveal a new role for Rbfox proteins in regulating myogenesis through activation of essential muscle-specific splicing events.


Asunto(s)
Empalme Alternativo/genética , Diferenciación Celular/genética , Proteínas de Unión al ARN/genética , Empalme Alternativo/fisiología , Animales , Línea Celular , Factores de Transcripción MEF2/genética , Ratones , Desarrollo de Músculos/genética , Desarrollo de Músculos/fisiología , Músculos/citología , Isoformas de Proteínas/metabolismo , Interferencia de ARN , Factores de Empalme de ARN , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Interferente Pequeño
8.
PLoS Genet ; 9(1): e1003186, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23300487

RESUMEN

Facioscapulohumeral muscular dystrophy (FSHD) is a common muscle disease whose molecular pathogenesis remains largely unknown. Over-expression of FSHD region gene 1 (FRG1) in mice, frogs, and worms perturbs muscle development and causes FSHD-like phenotypes. FRG1 has been implicated in splicing, and we asked how splicing might be involved in FSHD by conducting a genome-wide analysis in FRG1 mice. We find that splicing perturbations parallel the responses of different muscles to FRG1 over-expression and disease progression. Interestingly, binding sites for the Rbfox family of splicing factors are over-represented in a subset of FRG1-affected splicing events. Rbfox1 knockdown, over-expression, and RNA-IP confirm that these are direct Rbfox1 targets. We find that FRG1 is associated to the Rbfox1 RNA and decreases its stability. Consistent with this, Rbfox1 expression is down-regulated in mice and cells over-expressing FRG1 as well as in FSHD patients. Among the genes affected is Calpain 3, which is mutated in limb girdle muscular dystrophy, a disease phenotypically similar to FSHD. In FRG1 mice and FSHD patients, the Calpain 3 isoform lacking exon 6 (Capn3 E6-) is increased. Finally, Rbfox1 knockdown and over-expression of Capn3 E6- inhibit muscle differentiation. Collectively, our results suggest that a component of FSHD pathogenesis may arise by over-expression of FRG1, reducing Rbfox1 levels and leading to aberrant expression of an altered Calpain 3 protein through dysregulated splicing.


Asunto(s)
Calpaína , Proteínas Musculares , Distrofia Muscular Facioescapulohumeral , Proteínas , Proteínas de Unión al ARN/genética , Empalme Alternativo/genética , Animales , Calpaína/genética , Calpaína/metabolismo , Células Cultivadas , Modelos Animales de Enfermedad , Exones , Regulación del Desarrollo de la Expresión Génica , Células HEK293 , Humanos , Ratones , Proteínas de Microfilamentos , Desarrollo de Músculos/genética , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Distrofia Muscular Facioescapulohumeral/genética , Distrofia Muscular Facioescapulohumeral/metabolismo , Distrofia Muscular Facioescapulohumeral/patología , Mioblastos/citología , Mioblastos/metabolismo , Proteínas/genética , Proteínas/metabolismo , Factores de Empalme de ARN , Proteínas de Unión al ARN/metabolismo
9.
J Cell Sci ; 126(Pt 10): 2236-45, 2013 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-23525014

RESUMEN

Overexpression of facioscapulohumeral muscular dystrophy region gene 1 (FRG1) in mice, frogs and worms leads to muscular and vascular abnormalities. Nevertheless, the mechanism that follows FRG1 overexpression and finally leads to muscular defects is currently unknown. Here, we show that the earliest phenotype displayed by mice overexpressing FRG1 is a postnatal muscle-growth defect. Long before the development of muscular dystrophy, FRG1 mice also exhibit a muscle regeneration impairment. Ex vivo and in vivo experiments revealed that FRG1 overexpression causes myogenic stem cell activation and proliferative, clonogenic and differentiation defects. A comparative gene expression profiling of muscles from young pre-dystrophic wild-type and FRG1 mice identified differentially expressed genes in several gene categories and networks that could explain the emerging tissue and myogenic stem cell defects. Overall, our study provides new insights into the pathways regulated by FRG1 and suggests that muscle stem cell defects could contribute to the pathology of FRG1 mice.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Enfermedades Autoinmunes/metabolismo , Proteínas Portadoras/metabolismo , Extensiones de la Superficie Celular/fisiología , Proteínas del Citoesqueleto/metabolismo , Macrófagos/fisiología , Células Madre Multipotentes/fisiología , Distrofia Muscular Facioescapulohumeral/metabolismo , Citoesqueleto de Actina/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Proteínas Portadoras/genética , Línea Celular , Proteínas del Citoesqueleto/genética , Proteínas de Unión a Ácidos Grasos , Ratones , Desarrollo de Músculos/genética , Multimerización de Proteína/genética , Estructura Terciaria de Proteína/genética , ARN Interferente Pequeño/genética , Transgenes/genética , Proteína del Síndrome de Wiskott-Aldrich/metabolismo
10.
Proc Natl Acad Sci U S A ; 109(34): E2284-93, 2012 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-22826225

RESUMEN

The epigenetic silencing of exogenous transcriptional units integrated into the genome represents a critical problem both for long-term gene therapy efficacy and for the eradication of latent viral infections. We report here that limitation of essential amino acids, such as methionine and cysteine, causes selective up-regulation of exogenous transgene expression in mammalian cells. Prolonged amino acid deprivation led to significant and reversible increase in the expression levels of stably integrated transgenes transcribed by means of viral or human promoters in HeLa cells. This phenomenon was mediated by epigenetic chromatin modifications, because histone deacetylase (HDAC) inhibitors reproduced starvation-induced transgene up-regulation, and transcriptome analysis, ChIP, and pharmacological and RNAi approaches revealed that a specific class II HDAC, namely HDAC4, plays a critical role in maintaining the silencing of exogenous transgenes. This mechanism was also operational in cells chronically infected with HIV-1, the etiological agent of AIDS, in a latency state. Indeed, both amino acid starvation and pharmacological inhibition of HDAC4 promoted reactivation of HIV-1 transcription and reverse transcriptase activity production in HDAC4(+) ACH-2 T-lymphocytic cells but not in HDAC4(-) U1 promonocytic cells. Thus, amino acid deprivation leads to transcriptional derepression of silenced transgenes, including integrated plasmids and retroviruses, by a process involving inactivation or down-regulation of HDAC4. These findings suggest that selective targeting of HDAC4 might represent a unique strategy for modulating the expression of therapeutic viral vectors, as well as that of integrated HIV-1 proviruses in latent reservoirs without significant cytotoxicity.


Asunto(s)
Regulación hacia Abajo , Regulación Enzimológica de la Expresión Génica , Regulación Viral de la Expresión Génica , Silenciador del Gen , VIH-1/genética , Histona Desacetilasas/biosíntesis , Histona Desacetilasas/genética , Proteínas Represoras/biosíntesis , Proteínas Represoras/genética , Albinismo Ocular/metabolismo , Metilación de ADN , Proteínas del Ojo/metabolismo , Células HeLa , Humanos , Glicoproteínas de Membrana/metabolismo , Regiones Promotoras Genéticas , Provirus/genética , Activación Transcripcional , Transgenes , Factor de Necrosis Tumoral alfa/metabolismo , Tirosina/química
11.
Neuromuscul Disord ; 35: 53-57, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37978033

RESUMEN

Facioscapulohumeral muscular dystrophy (FSHD) is one of the most common inherited muscular dystrophies. As part of the FSHD Society's commitment to promote global communication and collaboration among researchers, the Society collaborated with FSHD Europe and convened its 30th annual International Research Congress (IRC) on June 15-16, 2023, in the city of Milan, Italy. Over 240 researchers, clinicians, patients and pharmaceutical company representatives from a wide geographical background participated to hear about the latest developments and breakthroughs in the field. The meeting was structured to provide a mix of basic and clinical research in five sessions: 1. Discovery research & genetics; 2. Outcome assessments; 3. Disease mechanisms & interventional strategies; 4. Clinical studies & trial design; and 5. Pediatric FSHD. The keynote speakers were Professor Baziel van Engelen (on the importance of incorporating the patient's voice to help refine and improve basic laboratory and clinical research) and Dr. Bénédict Chazaud (on the role of the immune system in normal muscle regeneration and in Duchenne muscular dystrophy). The FSHD IRC was preceded by the Industry Collaborative for Therapeutic Development in FSHD meeting and followed by the World FSHD Alliance network of national patient groups and advocacy organizations for FSHD summit. The Congress concluded with the announcement for the 2024 International Research Congress, which will take place on June 13-14, 2024 in Denver, Colorado, USA, and followed by the FSHD Society's flagship educational conference for the FSHD community, the Patient Connect Conference, on June 15-16, 2024.


Asunto(s)
Distrofia Muscular de Duchenne , Distrofia Muscular Facioescapulohumeral , Humanos , Europa (Continente) , Italia , Distrofia Muscular Facioescapulohumeral/terapia
12.
Curr Top Dev Biol ; 158: 433-465, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38670715

RESUMEN

In mammals, most of the genome is transcribed to generate a large and heterogeneous variety of non-protein coding RNAs, that are broadly grouped according to their size. Long noncoding RNAs include a very large and versatile group of molecules. Despite only a minority of them has been functionally characterized, there is emerging evidence indicating long noncoding RNAs as important regulators of expression at multiple levels. Several of them have been shown to be modulated during myogenic differentiation, playing important roles in the regulation of skeletal muscle development, differentiation and homeostasis, and contributing to neuromuscular diseases. In this chapter, we have summarized the current knowledge about long noncoding RNAs in skeletal muscle and discussed specific examples of long noncoding RNAs (lncRNAs and circRNAs) regulating muscle stem cell biology. We have also discussed selected long noncoding RNAs involved in the most common neuromuscular diseases.


Asunto(s)
Desarrollo de Músculos , Músculo Esquelético , ARN Largo no Codificante , Regeneración , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Animales , Humanos , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiología , Regeneración/genética , Desarrollo de Músculos/genética , Diferenciación Celular
13.
Cell Rep ; 42(9): 113120, 2023 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-37703175

RESUMEN

Facioscapulohumeral muscular dystrophy (FSHD) is one of the most common neuromuscular disorders and has no cure. Due to an unknown molecular mechanism, FSHD displays overlapping manifestations with the neurodegenerative disease amyotrophic lateral sclerosis (ALS). FSHD is caused by aberrant gain of expression of the transcription factor double homeobox 4 (DUX4), which triggers a pro-apoptotic transcriptional program resulting in inhibition of myogenic differentiation and muscle wasting. Regulation of DUX4 activity is poorly known. We identify Matrin 3 (MATR3), whose mutation causes ALS and dominant distal myopathy, as a cellular factor controlling DUX4 expression and activity. MATR3 binds to the DUX4 DNA-binding domain and blocks DUX4-mediated gene expression, rescuing cell viability and myogenic differentiation of FSHD muscle cells, without affecting healthy muscle cells. Finally, we characterize a shorter MATR3 fragment that is necessary and sufficient to directly block DUX4-induced toxicity to the same extent as the full-length protein. Collectively, our data suggest MATR3 as a candidate for developing a treatment for FSHD.


Asunto(s)
Proteínas de Homeodominio , Distrofia Muscular Facioescapulohumeral , Humanos , Esclerosis Amiotrófica Lateral/genética , Regulación de la Expresión Génica , Genes Homeobox , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Músculo Esquelético/metabolismo , Distrofia Muscular Facioescapulohumeral/genética , Distrofia Muscular Facioescapulohumeral/metabolismo , Enfermedades Neurodegenerativas/genética , Proteínas Asociadas a Matriz Nuclear/metabolismo , Proteínas de Unión al ARN/metabolismo
14.
Sci Adv ; 9(37): eadi3771, 2023 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-37713484

RESUMEN

Translocations producing rearranged versions of the transcription factor double homeobox 4 (DUX4-r) are one of the most frequent causes of B cell acute lymphoblastic leukemia (B-ALL). DUX4-r retains the DNA binding domain of wild-type DUX4 but is truncated on the C-terminal transcription activation domain. The precise mechanism through which DUX4-r causes leukemia is unknown, and no targeted therapy is currently available. We found that the rearrangement leads to both a loss and a gain of function in DUX4-r. Loss of CBP/EP300 transcriptional coactivator interaction leads to an inability to bind and activate repressed chromatin. Concurrently, a gain of interaction with the general transcription factor 2 I (GTF2I) redirects DUX4-r toward leukemogenic targets. This neomorphic activity exposes an Achilles' heel whereby DUX4-r-positive leukemia cells are exquisitely sensitive to GTF2I targeting, which inhibits DUX4-r leukemogenic activity. Our work elucidates the molecular mechanism through which DUX4-r causes leukemia and suggests a possible therapeutic avenue tailored to this B-ALL subtype.


Asunto(s)
Leucemia-Linfoma Linfoblástico de Células Precursoras , Factores de Transcripción TFIII , Factores de Transcripción TFII , Humanos , Anticuerpos , Cromatina , Reordenamiento Génico , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Factores de Transcripción
15.
Sci Adv ; 9(16): eadf5330, 2023 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-37075125

RESUMEN

Mixed-lineage leukemia 1 (MLL1) is a transcription activator of the HOX family, which binds to specific epigenetic marks on histone H3 through its third plant homeodomain (PHD3) domain. Through an unknown mechanism, MLL1 activity is repressed by cyclophilin 33 (Cyp33), which binds to MLL1 PHD3. We determined solution structures of Cyp33 RNA recognition motif (RRM) free, bound to RNA, to MLL1 PHD3, and to both MLL1 and the histone H3 lysine N6-trimethylated. We found that a conserved α helix, amino-terminal to the RRM domain, adopts three different positions facilitating a cascade of binding events. These conformational changes are triggered by Cyp33 RNA binding and ultimately lead to MLL1 release from the histone mark. Together, our mechanistic findings rationalize how Cyp33 binding to MLL1 can switch chromatin to a transcriptional repressive state triggered by RNA binding as a negative feedback loop.


Asunto(s)
Histonas , Leucemia , Humanos , Histonas/metabolismo , Proteína de la Leucemia Mieloide-Linfoide/genética , Proteína de la Leucemia Mieloide-Linfoide/metabolismo , N-Metiltransferasa de Histona-Lisina/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Proteínas de Unión al ADN/metabolismo , ARN
16.
RNA Biol ; 9(10): 1211-7, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23047063

RESUMEN

Two thirds of the human genome is composed of repetitive sequences. Despite their prevalence, DNA repeats are largely ignored. The vast majority of our genome is transcribed to produce non protein-coding RNAs. Among these, long non protein-coding RNAs represent the most prevalent and functionally diverse class. The relevance of the non protein-coding genome to human disease has mainly been studied regarding the altered microRNA expression and function in human cancer. On the contrary, the elucidation of the involvement of long non-coding RNAs in disease is only in its infancy. We have recently found that a chromatin associated, long non protein-coding RNA regulates a Polycomb/Trithorax epigenetic switch at the basis of the repeat associated facioscapulohumeral muscular dystrophy, a common muscle disorder. Based on this, we propose that long non-coding RNAs produced by repetitive sequences contribute in shaping the epigenetic landscape in normal human physiology and in disease.


Asunto(s)
Epigénesis Genética , Músculo Esquelético/metabolismo , Distrofia Muscular Facioescapulohumeral/genética , ARN Largo no Codificante/genética , Cromatina/genética , Cromatina/metabolismo , ADN/química , ADN/genética , ADN/metabolismo , Genoma Humano , N-Metiltransferasa de Histona-Lisina , Humanos , Músculo Esquelético/patología , Distrofia Muscular Facioescapulohumeral/metabolismo , Distrofia Muscular Facioescapulohumeral/patología , Proteína de la Leucemia Mieloide-Linfoide/genética , Proteína de la Leucemia Mieloide-Linfoide/metabolismo , Proteínas del Grupo Polycomb/genética , Proteínas del Grupo Polycomb/metabolismo , ARN Largo no Codificante/química , ARN Largo no Codificante/metabolismo , Secuencias Repetitivas de Ácidos Nucleicos
17.
Nature ; 439(7079): 973-7, 2006 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-16341202

RESUMEN

Facioscapulohumeral muscular dystrophy (FSHD) is an autosomal dominant neuromuscular disorder that is not due to a classical mutation within a protein-coding gene. Instead, almost all FSHD patients carry deletions of an integral number of tandem 3.3-kilobase repeat units, termed D4Z4, located on chromosome 4q35 (ref. 3). D4Z4 contains a transcriptional silencer whose deletion leads to inappropriate overexpression in FSHD skeletal muscle of 4q35 genes located upstream of D4Z4 (ref. 4). To identify the gene responsible for FSHD pathogenesis, we generated transgenic mice selectively overexpressing in skeletal muscle the 4q35 genes FRG1, FRG2 or ANT1. We find that FRG1 transgenic mice develop a muscular dystrophy with features characteristic of the human disease; by contrast, FRG2 and ANT1 transgenic mice seem normal. FRG1 is a nuclear protein and several lines of evidence suggest it is involved in pre-messenger RNA splicing. We find that in muscle of FRG1 transgenic mice and FSHD patients, specific pre-mRNAs undergo aberrant alternative splicing. Collectively, our results suggest that FSHD results from inappropriate overexpression of FRG1 in skeletal muscle, which leads to abnormal alternative splicing of specific pre-mRNAs.


Asunto(s)
Distrofia Muscular Facioescapulohumeral/genética , Distrofia Muscular Facioescapulohumeral/patología , Proteínas/genética , Proteínas/metabolismo , Transgenes/genética , Empalme Alternativo/genética , Animales , Línea Celular , Femenino , Humanos , Cifosis/complicaciones , Cifosis/genética , Cifosis/patología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteínas de Microfilamentos , Músculo Esquelético/patología , Distrofia Muscular Facioescapulohumeral/complicaciones , Distrofia Muscular Facioescapulohumeral/fisiopatología , Tamaño de los Órganos , Esfuerzo Físico/fisiología , Proteínas de Unión al ARN , Pérdida de Peso
18.
Mol Ther ; 19(11): 2055-64, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21829175

RESUMEN

Treatment of dominantly inherited muscle disorders remains a difficult task considering the need to eliminate the pathogenic gene product in a body-wide fashion. We show here that it is possible to reverse dominant muscle disease in a mouse model of facioscapulohumeral muscular dystrophy (FSHD). FSHD is a common form of muscular dystrophy associated with a complex cascade of epigenetic events following reduction in copy number of D4Z4 macrosatellite repeats located on chromosome 4q35. Several 4q35 genes have been examined for their role in disease, including FRG1. Overexpression of FRG1 causes features related to FSHD in transgenic mice and the FRG1 mouse is currently the only available mouse model of FSHD. Here we show that systemic delivery of RNA interference expression cassettes in the FRG1 mouse, after the onset of disease, led to a dose-dependent long-term FRG1 knockdown without signs of toxicity. Histological features including centrally nucleated fibers, fiber size reduction, fibrosis, adipocyte accumulation, and inflammation were all significantly improved. FRG1 mRNA knockdown resulted in a dramatic restoration of muscle function. Through RNA interference (RNAi) expression cassette redesign, our method is amenable to targeting any pathogenic gene offering a viable option for long-term, body-wide treatment of dominant muscle disease in humans.


Asunto(s)
Dependovirus/genética , Vectores Genéticos , Distrofia Muscular Facioescapulohumeral/terapia , ARN Interferente Pequeño/administración & dosificación , Animales , Modelos Animales de Enfermedad , Regulación hacia Abajo , Femenino , Regulación de la Expresión Génica , Silenciador del Gen , Vectores Genéticos/administración & dosificación , Vectores Genéticos/efectos adversos , Humanos , Inyecciones Intravenosas , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteínas de Microfilamentos , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Distrofia Muscular Facioescapulohumeral/genética , Distrofia Muscular Facioescapulohumeral/patología , Proteínas Nucleares/genética , Fenotipo , Proteínas de Unión al ARN , Factores de Tiempo , Transducción Genética
19.
Science ; 377(6606): 578-579, 2022 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-35926040
20.
Skelet Muscle ; 12(1): 1, 2022 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-35039091

RESUMEN

Facioscapulohumeral muscular dystrophy (FSHD) is the second most common genetic myopathy, characterized by slowly progressing and highly heterogeneous muscle wasting with a typical onset in the late teens/early adulthood [1]. Although the etiology of the disease for both FSHD type 1 and type 2 has been attributed to gain-of-toxic function stemming from aberrant DUX4 expression, the exact pathogenic mechanisms involved in muscle wasting have yet to be elucidated [2-4]. The 2021 FSHD International Research Congress, held virtually on June 24-25, convened over 350 researchers and clinicians to share the most recent advances in the understanding of the disease mechanism, discuss the proliferation of interventional strategies and refinement of clinical outcome measures, including results from the ReDUX4 trial, a phase 2b clinical trial of losmapimod in FSHD [NCT04003974].


Asunto(s)
Distrofia Muscular Facioescapulohumeral , Adolescente , Adulto , Proteínas de Homeodominio/genética , Humanos , Músculo Esquelético/metabolismo , Atrofia Muscular/metabolismo , Distrofia Muscular Facioescapulohumeral/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA