RESUMEN
The human transferrin receptor (TFR) is overexpressed in most breast cancers, including preneoplastic ductal carcinoma in situ (DCIS). HB21(Fv)-PE40 is a single-chain immunotoxin (IT) engineered by fusing the variable region of a monoclonal antibody (HB21) against a TFR with a 40 kDa fragment of Pseudomonas exotoxin (PE). In humans, the administration of other TFR-targeted immunotoxins intrathecally led to inflammation and vascular leakage. We proposed that for treatment of DCIS, intraductal (i.duc) injection of HB21(Fv)-PE40 could avoid systemic toxicity while retaining its potent antitumor effects on visible and occult tumors in the entire ductal tree. Pharmacokinetic studies in mice showed that, in contrast to intravenous injection, IT was undetectable by enzyme-linked immunosorbent assay in blood following i.duc injection of up to 3.0 µg HB21(Fv)-PE40. We demonstrated the antitumor efficacy of HB21(Fv)-PE40 in two mammary-in-duct (MIND) models, MCF7 and SUM225, grown in NOD/SCID/gamma mice. Tumors were undetectable by In Vivo Imaging System (IVIS) imaging in intraductally treated mice within 1 wk of initiation of the regimen (IT once weekly/3 wk, 1.5 µg/teat). MCF7 tumor-bearing mice remained tumor free for up to 60 d of observation with i.duc IT, whereas the HB21 antibody alone or intraperitoneal IT treatment had minimal/no antitumor effects. These and similar findings in the SUM225 MIND model were substantiated by analysis of mammary gland whole mounts, histology, and immunohistochemistry for the proteins Ki67, CD31, CD71 (TFR), and Ku80. This study provides a strong preclinical foundation for conducting feasibility and safety trials in patients with stage 0 breast cancer.
Asunto(s)
ADP Ribosa Transferasas , Toxinas Bacterianas , Neoplasias de la Mama , Carcinoma Intraductal no Infiltrante , Exotoxinas , Inmunotoxinas , Terapia Molecular Dirigida , Receptores de Transferrina , Factores de Virulencia , ADP Ribosa Transferasas/administración & dosificación , ADP Ribosa Transferasas/metabolismo , Animales , Anticuerpos Monoclonales/administración & dosificación , Toxinas Bacterianas/administración & dosificación , Neoplasias de la Mama/terapia , Carcinoma Intraductal no Infiltrante/terapia , Exotoxinas/administración & dosificación , Femenino , Humanos , Inmunotoxinas/administración & dosificación , Células MCF-7 , Ratones , Ratones Endogámicos NOD , Ratones SCID , Receptores de Transferrina/metabolismo , Factores de Virulencia/administración & dosificación , Exotoxina A de Pseudomonas aeruginosaRESUMEN
Alpha-particle radionuclide-antibody conjugates are being clinically evaluated against solid tumors even when they moderately express the targeted markers. At this limit of lower tumor-absorbed doses, to maintain efficacy, the few(er) intratumorally delivered alpha-particles need to traverse/hit as many different cancer cells as possible. We complement antibody-radioconjugate therapies with a separate nanocarrier delivering a fraction of the same total injected radioactivity to tumor regions geographically different than those affected by targeting antibodies; these carrier-cocktails collectively distribute the alpha-particle emitters better. METHODS: The efficacy of actinium-225 delivered by our carrier-cocktails was assessed in vitro and on mice with orthotopic MDA-MB-436 and/or MDA-MB-231 triple-negative breast cancers and/or an ectopic BxPC3 pancreatic cancer. Cells/tumors were chosen to express low-to-moderate levels of HER1, as model antibody-targeted marker. RESULTS: Independent of cell line, antibody-radioconjugates were most lethal on cell monolayers. On spheroids, with radii greater than alpha-particles' range, carrier-cocktails improved killing efficacy (p < 0.0500). Treatment with carrier-cocktails decreased the MDA-MB-436 and MDA-MB-231 orthotopic tumor volumes by 73.7% and 72.1%, respectively, relative to treatment with antibody-radioconjugates alone, at same total injected radioactivity; these carrier-cocktails completely eliminated formation of spontaneous metastases vs. 50% and 25% elimination in mice treated with antibody-radioconjugates alone. In BxPC3 tumor-bearing mice, carrier-cocktails increased the median survival to 25-26 days (in male-female animals) vs. 20-21 days of mice treated with antibody-radioconjugates alone (vs. 17 days for non-treated animals). Survival with carrier-cocktail radiotherapy was further prolonged by pre-injecting low-dose, standard-of-care, gemcitabine (p = 0.0390). CONCLUSION: Tumor-agnostic carrier-cocktails significantly enhance the therapeutic efficacy of existing alpha-particle radionuclide-antibody treatments.
Asunto(s)
Actinio , Partículas alfa , Animales , Actinio/química , Actinio/uso terapéutico , Ratones , Línea Celular Tumoral , Humanos , Partículas alfa/uso terapéutico , Femenino , Inmunoconjugados/química , Inmunoconjugados/uso terapéutico , Biomarcadores de Tumor/metabolismo , Portadores de Fármacos/químicaRESUMEN
PURPOSE: Current treatments for osteosarcoma (OS) have a poor prognosis, particularly for patients with metastasis and recurrence, underscoring an urgent need for new targeted therapies to improve survival. Targeted alpha-particle therapy selectively delivers cytotoxic payloads to tumors with radiolabeled molecules that recognize tumor-associated antigens. We have recently demonstrated the potential of an FDA approved, humanized anti-GD2 antibody, hu3F8, as a targeted delivery vector for radiopharmaceutical imaging of OS. The current study aims to advance this system for alpha-particle therapy of OS. METHODS: The hu3F8 antibody was radiolabeled with actinium-225, and the safety and therapeutic efficacy of the [225Ac]Ac-DOTA-hu3F8 were evaluated in both orthotopic murine xenografts of OS and spontaneously occurring OS in canines. RESULTS: Significant antitumor activity was proven in both cases, leading to improved overall survival. In the murine xenograft's case, tumor growth was delayed by 16-18 days compared to the untreated cohort as demonstrated by bioluminescence imaging. The results were further validated with magnetic resonance imaging at 33 days after treatment, and microcomputed tomography and planar microradiography post-mortem. Histological evaluations revealed radiation-induced renal toxicity, manifested as epithelial cell karyomegaly and suggestive polyploidy in the kidneys, suggesting rapid recovery of renal function after radiation damage. Treatment of the two canine patients delayed the progression of metastatic spread, with an overall survival time of 211 and 437 days and survival beyond documented metastasis of 111 and 84 days, respectively. CONCLUSION: This study highlights the potential of hu3F8-based alpha-particle therapy as a promising treatment strategy for OS.
Asunto(s)
Neoplasias Óseas , Osteosarcoma , Humanos , Ratones , Animales , Perros , Prueba de Estudio Conceptual , Microtomografía por Rayos X , Anticuerpos Monoclonales Humanizados , Osteosarcoma/diagnóstico por imagen , Osteosarcoma/radioterapia , Neoplasias Óseas/diagnóstico por imagen , Neoplasias Óseas/radioterapia , Línea Celular TumoralRESUMEN
Wilson disease (WND) is caused by inactivation of the copper transporter ATP7B and copper accumulation in tissues. WND presentations vary from liver steatosis to inflammation, fibrosis, and liver failure. Diets influence the liver phenotype in WND, but findings are inconsistent. To better understand the impact of excess calories on liver phenotype in WND, the study compared C57BL/6J Atp7b-/- and C57BL/6J mice fed for 12 weeks with Western diet or normal chow. Serum and liver metabolites, body fat content, liver histology, hepatic proteome, and copper content were analyzed. Wild-type and Atp7b-/- livers showed striking similarities in their responses to Western diet, most notably down-regulation of cholesterol biosynthesis, altered nuclear receptor signaling, and changes in cytoskeleton. Western diet increased body fat content and induced liver steatosis in males and females regardless of genotype; however, the effects were less pronounced in Atp7b-/- mice compared with those in the wild type mice. Although hepatic copper remained elevated in Atp7b-/- mice, liver inflammation was reduced. The diet diminished signaling by Rho GTPases, integrin, IL8, and reversed changes in cell cycle machinery and cytoskeleton. Overall, high calories decreased inflammatory response in favor of steatosis without improving markers of cell viability. Similar changes of cellular pathways during steatosis development in wild-type and Atp7b-/- mice explain histologic overlap between WND and non-alcoholic fatty liver disease despite opposite copper changes in these disorders.
Asunto(s)
Degeneración Hepatolenticular/complicaciones , Inflamación/patología , Enfermedad del Hígado Graso no Alcohólico/complicaciones , Adiposidad , Animales , Supervivencia Celular , Colesterol/biosíntesis , Cobre/metabolismo , ATPasas Transportadoras de Cobre/deficiencia , ATPasas Transportadoras de Cobre/metabolismo , Dieta Occidental , Modelos Animales de Enfermedad , Regulación hacia Abajo , Conducta Alimentaria , Femenino , Inflamación/complicaciones , Hígado/metabolismo , Hígado/patología , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Fenotipo , Proteoma/metabolismo , Transducción de Señal , Triglicéridos/metabolismo , Aumento de PesoRESUMEN
Cryptococcosis is a devastating fungal disease associated with high morbidity and mortality even when treated with antifungal drugs. Bionized nanoferrite (BNF) nanoparticles are powerful immunomodulators, but their efficacy for infectious diseases has not been investigated. Administration of BNF nanoparticles to mice with experimental cryptococcal pneumonia altered the outcome of infection in a dose response manner as measured by CFU and survival. The protective effects were higher at lower doses, with reductions in IL-2, IL-4, and TNF-α, consistent with immune modulation whereby reductions in inflammation translate into reduced host damage, clearance of infection, and longer survival.
Asunto(s)
Criptococosis , Cryptococcus neoformans , Animales , Criptococosis/tratamiento farmacológico , Criptococosis/microbiología , Inflamación , Ratones , Factor de Necrosis Tumoral alfaRESUMEN
Children born to women who experience stress during pregnancy have an increased risk of atherosclerosis in later life, but few animal models have explored mechanisms. To study this phenomenon, timed-bred ApoE knockout mice were determined pregnant with ultrasound and randomly assigned on gestation day 8.5 to either a control (no stress) or prenatal stress (PS) group using 2 h of restraint for five consecutive days. PS significantly increased plasma corticosterone levels in pregnant mice. The litters from PS mice showed increased neonatal mortality within the first week of life. Body weights (at euthanasia) of adult offspring at 25 wk from the PS group were significantly increased compared with weights of controls. Adult offspring from these pregnancies were serially imaged with ultrasound to measure plaque thickness and were compared with plaque macroscopic and microscopic pathology. PS groups had increased plaque thickness determined by ultrasound, gross, histological evaluation and increased aortic root and valve macrophage infiltration at 25 wk. Five-week-old mice from PS group had significant decrease in mean arterial pressure, yet blood pressure normalized by 10 wk. As prenatal stress induced increased atherosclerosis, and telomeres are susceptible to stress, aortas from 10-wk-old mice were compared for telomere lengths and were found to be significantly shorter in PS mice compared with control mice. These studies support future investigation of how stress impacts telomere shortening in animal models and human aortas. This model could be further used to investigate the role of prenatal stress, telomere biology, and atherosclerosis pathogenesis in adults.
Asunto(s)
Aterosclerosis , Efectos Tardíos de la Exposición Prenatal , Animales , Aorta , Apolipoproteínas E/genética , Aterosclerosis/genética , Aterosclerosis/patología , Femenino , Humanos , Ratones , Ratones Noqueados , Embarazo , Estrés Psicológico , Acortamiento del TelómeroRESUMEN
Marmosets are becoming more utilized in biomedical research due to multiple advantages including (1) a nonhuman primate of a smaller size with less cost for housing, (2) physiologic similarities to humans, (3) translatable hepatic metabolism, (4) higher numbers of litters per year, (5) genome is sequenced, molecular reagents are available, (6) immunologically similar to humans, (7) transgenic marmosets with germline transmission have been produced, and (8) are naturally occurring hematopoietic chimeras. With more use of marmosets, disease surveillance over a wide range of ages of marmosets has been performed. This has led to a better understanding of the disease management of spontaneous diseases that can occur in colonies. Knowledge of clinical signs and histologic lesions can assist in maximizing the colony's health, allowing for improved outcomes in translational studies within biomedical research. Here, we describe some basic husbandry, biology, common spontaneous diseases, and animal model applications for the common marmoset in biomedical research.
Asunto(s)
Investigación Biomédica , Callithrix , Animales , Callithrix/fisiología , Modelos Animales de Enfermedad , HumanosRESUMEN
Snyder-Robinson syndrome (SRS) is an X-linked intellectual disability syndrome caused by a loss-of-function mutation in the spermine synthase (SMS) gene. Primarily affecting males, the main manifestations of SRS include osteoporosis, hypotonic stature, seizures, cognitive impairment, and developmental delay. Because there is no cure for SRS, treatment plans focus on alleviating symptoms rather than targeting the underlying causes. Biochemically, the cells of individuals with SRS accumulate excess spermidine, whereas spermine levels are reduced. We recently demonstrated that SRS patient-derived lymphoblastoid cells are capable of transporting exogenous spermine and its analogs into the cell and, in response, decreasing excess spermidine pools to normal levels. However, dietary supplementation of spermine does not appear to benefit SRS patients or mouse models. Here, we investigated the potential use of a metabolically stable spermine mimetic, (R,R)-1,12-dimethylspermine (Me2SPM), to reduce the intracellular spermidine pools of SRS patient-derived cells. Me2SPM can functionally substitute for the native polyamines in supporting cell growth while stimulating polyamine homeostatic control mechanisms. We found that both lymphoblasts and fibroblasts from SRS patients can accumulate Me2SPM, resulting in significantly decreased spermidine levels with no adverse effects on growth. Me2SPM administration to mice revealed that Me2SPM significantly decreases spermidine levels in multiple tissues. Importantly, Me2SPM was detectable in brain tissue, the organ most affected in SRS, and was associated with changes in polyamine metabolic enzymes. These findings indicate that the (R,R)-diastereomer of 1,12-Me2SPM represents a promising lead compound in developing a treatment aimed at targeting the molecular mechanisms underlying SRS pathology.
Asunto(s)
Discapacidad Intelectual Ligada al Cromosoma X/patología , Espermidina/metabolismo , Espermina/análogos & derivados , Acetiltransferasas/genética , Acetiltransferasas/metabolismo , Animales , Encéfalo/metabolismo , Cromatografía Líquida de Alta Presión , Fibroblastos/citología , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Humanos , Masculino , Discapacidad Intelectual Ligada al Cromosoma X/metabolismo , Ratones , Ratones Endogámicos C57BL , Poliaminas/análisis , Poliaminas/metabolismo , Espermina/administración & dosificación , Espermina/metabolismo , Espermina/farmacología , Espermina Sintasa/genética , Células Tumorales CultivadasRESUMEN
PURPOSE: Highly cytotoxic α-particle radiotherapy delivered by tumor-selective nanocarriers is evaluated on metastatic Triple Negative Breast Cancer (TNBC). On vascularized tumors, the limited penetration of nanocarriers (<50-80 µm) combined with the short range of α-particles (40-100 µm) may, however, result in only partial tumor irradiation, compromising efficacy. Utilizing the α-particle emitter Actinium-225 (225Ac), we studied how the therapeutic potential of a general delivery strategy using nanometer-sized engineered liposomes was affected by two key transport-driven properties: (1) the release from liposomes, when in the tumor interstitium, of the highly diffusing 225Ac-DOTA that improves the uniformity of tumor irradiation by α-particles and (2) the adhesion of liposomes on the tumors' ECM that increases liposomes' time-integrated concentrations within tumors and, therefore, the tumor-delivered radioactivities. METHODS: On an orthotopic MDA-MB-231 TNBC murine model forming spontaneous metastases, we evaluated the maximum tolerated dose (MTD), biodistributions, and control of tumor growth and/or spreading after administration of 225Ac-DOTA-encapsulating liposomes, with different combinations of the two transport-driven properties. RESULTS: At 83% of MTD, 225Ac-DOTA-encapsulating liposomes with both properties (1) eliminated formation of spontaneous metastases and (2) best inhibited the progression of orthotopic xenografts, compared to liposomes lacking one or both properties. These findings were primarily affected by the extent of uniformity of the intratumoral microdistributions of 225Ac followed by the overall tumor uptake of radioactivity. At the MTD, long-term toxicities were not detected 9.5 months post administration. CONCLUSION: Our findings demonstrate the potential of a general, transport-driven strategy enabling more uniform and prolonged solid tumor irradiation by α-particles without cell-specific targeting.
Asunto(s)
Antineoplásicos , Neoplasias de la Mama Triple Negativas , Partículas alfa/uso terapéutico , Animales , Antineoplásicos/uso terapéutico , Línea Celular Tumoral , Humanos , Liposomas , Ratones , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/radioterapiaRESUMEN
Pretargeted drug delivery has been explored for decades as a promising approach in cancer therapy. An image-guided pretargeting strategy significantly enhances the intrinsic advantages of this approach since imaging the pretargeting step can be used for diagnostic purposes, while imaging of the drug delivery step can be utilized to evaluate drug distribution and assess therapeutic response. A trastuzumab (Tz)-based HER2 pretargeting component (Tz-TCO-[89Zr-DFO]) was developed by conjugating with trans-cyclooctene (TCO) bioorthogonal click chemistry functional groups and deferoxamine (DFO) to enable radiolabeling with a 89Zr PET tracer. The drug delivery component (HSA-DM1-Tt-[99mTc-HyNic]) was developed by conjugating human serum albumin (HSA) with mertansine (DM1), tetrazine (Tt) functional groups, and a HyNic chelator and radiolabeling with 99mTc. For ex vivo biodistribution studies, pretargeting and delivery components (without drug) were administered subsequently to mice bearing human HER2(+) breast cancer xenografts, and a high tumor uptake of Tz-TCO-[89Zr-DFO] (26.4% ID/g) and HSA-Tt-[99mTc-HyNic] (4.6% ID/g) was detected at 24 h postinjection. In vivo treatment studies were performed in the same HER2(+) breast cancer model using PET-SPECT image guidance. The increased tumor uptake of the pretargeting and drug delivery components was detected by PET-CT and SPECT-CT, respectively. The study showed a significant 92% reduction of the relative tumor volume in treated mice (RTV = 0.08 in 26 days), compared to the untreated control mice (RTV = 1.78 in 11 days) and to mice treated with only HSA-DM1-Tt-[99mTc-HyNic] (RTV = 1.88 in 16 days). Multimodality PET-SPECT image-guided and pretargeted drug delivery can be utilized to maximize efficacy, predict therapeutic response, and minimize systemic toxicity.
Asunto(s)
Neoplasias de la Mama , Tomografía Computarizada por Tomografía de Emisión de Positrones , Animales , Neoplasias de la Mama/diagnóstico por imagen , Neoplasias de la Mama/tratamiento farmacológico , Línea Celular Tumoral , Femenino , Humanos , Ratones , Distribución Tisular , Tomografía Computarizada de Emisión de Fotón ÚnicoRESUMEN
Children born to women who experience stress during pregnancy have an increased risk of cancer in later life, but no previous animal studies have tested such a link. We questioned whether prenatal stress (PS) in A/J mice affected the development of lung tumors after postnatal response to tobacco-specific nitrosamine, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK). Timed-bred A/J mice were randomly assigned on gestation day 12.5 to PS by restraint for 5 consecutive days or control (no restraint). Adult offspring of control and stressed pregnancies were all treated with three NNK injections (50 mg/kg every other day) and euthanized 16 weeks later to examine their lungs. Compared with controls, PS dams exhibited significantly increased levels of plasma corticosterone, increased adrenal weights and decreased fetus weights without fetal loss. Prenatally stressed litters had a significantly higher neonatal death rate within first week of life, and surviving male and female offspring developed lung epithelial proliferations with increase multiplicity, increased area and aggressive morphology. PS also induced more advanced atypical adenomatous hyperplasia lesions. We found no difference in lung NNK-derived methyl DNA adducts, but PS did significantly enhance CD3+ T cell and Foxp3+ T cell tumor infiltration. PS significantly increases multiplicity, area of NNK-induced lung tumors and advanced morphology. PS did not affect production of NNK-derived methyl DNA adducts but did increase lymphocytic infiltration of lung tumors. To our knowledge, this is the first animal model of PS with evaluation of cancer development in offspring.
Asunto(s)
Neoplasias Pulmonares/patología , Nitrosaminas/toxicidad , Efectos Tardíos de la Exposición Prenatal/fisiopatología , Estrés Psicológico , Animales , Femenino , Neoplasias Pulmonares/inducido químicamente , Masculino , Ratones , Ratones Endogámicos A , Embarazo , Restricción FísicaRESUMEN
Prostate cancer (PC) is a potentially high-risk disease and the most common cancer in American men. It is a leading cause of cancer-related deaths in men in the US, second only to lung and bronchus cancer. Advanced and metastatic PC is initially treated with androgen deprivation therapy (ADT), but nearly all cases eventually progress to castrate-resistant prostate cancer (CRPC). CRPC is incurable in the metastatic stage but can be slowed by some conventional chemotherapeutics and second-generation ADT, such as enzalutamide and abiraterone. Therefore, novel therapeutic strategies are urgently needed. Prostate-specific membrane antigen (PSMA) is overexpressed in almost all aggressive PCs. PSMA is widely used as a target for PC imaging and drug delivery. Anti-PSMA monoclonal antibodies (mAbs) have been developed as bioligands for diagnostic imaging and targeted PC therapy. However, these mAbs are successfully used in PC imaging and only a few have gone beyond phase-I for targeted therapy. The 5D3 mAb is a novel, high-affinity, and fast-internalizing anti-PSMA antibody. Importantly, 5D3 mAb demonstrates a unique pattern of cellular localization to the centrosome after internalization in PSMA(+) PC3-PIP cells. These characteristics make 5D3 mAb an ideal bioligand to deliver tubulin inhibitors, such as mertansine, to the cell centrosome, leading to mitotic arrest and elimination of dividing PC cells. We have successfully developed a 5D3 mAb- and mertansine (DM1)-based antibody-drug conjugate (ADC) and evaluated it in vitro for binding affinity, internalization, and cytotoxicity. The in vivo therapeutic efficacy of 5D3-DM1 ADC was evaluated in PSMA(+) PC3-PIP and PSMA(-) PC3-Flu mouse models of human PC. This therapeutic study has revealed that this new anti-PSMA ADC can successfully control the growth of PSMA(+) tumors without inducing systemic toxicity.
Asunto(s)
Antagonistas de Andrógenos/farmacología , Anticuerpos Monoclonales/farmacología , Antígenos de Superficie/metabolismo , Glutamato Carboxipeptidasa II/metabolismo , Inmunoconjugados/farmacología , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Androstenos/farmacología , Animales , Benzamidas/farmacología , Línea Celular Tumoral , Centrosoma/metabolismo , Humanos , Masculino , Ratones , Ratones Desnudos , Nitrilos/farmacología , Células PC-3 , Feniltiohidantoína/farmacología , Neoplasias de la Próstata Resistentes a la Castración/metabolismo , Moduladores de Tubulina/farmacología , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
Purpose: Enhancing immune responses in triple negative breast cancers (TNBCs) remains a challenge. Our study aimed to determine whether magnetic iron oxide nanoparticle (MION) hyperthermia (HT) can enhance abscopal effects with radiotherapy (RT) and immune checkpoint inhibitors (IT) in a metastatic TNBC model.Methods: One week after implanting 4T1-luc cells into the mammary glands of BALB/c mice, tumors were treated with RT (3 × 8 Gy)±local HT, mild (HTM, 43 °C/20 min) or partially ablative (HTAbl, 45 °C/5 min plus 43 °C/15 min),±IT with anti-PD-1 and anti-CTLA-4 antibodies (both 4 × 10 mg/kg, i.p.). Tumor growth was measured daily. Two weeks after treatment, lungs and livers were harvested for histopathology evaluation of metastases.Results: Compared to untreated controls, all treatment groups demonstrated a decreased tumor volume; however, when compared against surgical resection, only RT + HTM+IT, RT + HTAbl+IT and RT + HTAbl had similar or smaller tumors. These cohorts showed more infiltration of CD3+ T-lymphocytes into the primary tumor. Tumor growth effects were partially reversed with T-cell depletion. Combinations that proved most effective for primary tumors generated modest reductions in numbers of lung metastases. Conversely, numbers of lung metastases showed potential to increase following HT + IT treatment, particularly when compared to RT. Compared to untreated controls, there was no improvement in survival with any treatment.Conclusions: Single-fraction MION HT added to RT + IT improved local tumor control and recruitment of CD3+ T-lymphocytes, with only a modest effect to reduce lung metastases and no improvement in overall survival. HT + IT showed potential to increase metastatic dissemination to lungs.
Asunto(s)
Anticuerpos Monoclonales/uso terapéutico , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/radioterapia , Animales , Anticuerpos Monoclonales/farmacología , Terapia Combinada , Modelos Animales de Enfermedad , Femenino , Humanos , Nanopartículas de Magnetita , Ratones , Metástasis de la Neoplasia , TransfecciónRESUMEN
A group of five juvenile Meller's chameleons (Trioceros melleri) experienced 100% mortality over a period of 1 mo due to ranavirus infection. The index case was found dead without premonitory signs. The three subsequent cases presented with nonspecific clinical signs (lethargy, decreased appetite, ocular discharge) and were ultimately euthanatized. The final case died after initially presenting with skin lesions. Postmortem examination revealed thin body condition in all five animals and mild coelomic effusion and petechiae affecting the tongue and kidneys of one animal. Microscopically, all animals had multifocal necrosis of the spleen, liver, and kidney; four of five animals had necrosis of the nasal cavity; and two of five had necrosis of adrenal tissue, bone marrow, and skin. Numerous basophilic intracytoplasmic inclusions were present in the liver of all animals and nasal mucosa of three of the five animals. Consensus polymerase chain reaction for herpesvirus and adenovirus were negative, whereas ranavirus quantitative polymerase chain reaction was positive. Virus isolation followed by whole genome sequencing and Bayesian phylogenetic analysis classified the isolates as a strain of frog virus 3 (FV3) most closely related to an FV3 isolate responsible for a previous outbreak in the zoo's eastern box turtle (Terrapene carolina carolina) group. This case series documents the first known occurrence of ranavirus-associated disease in chameleons and demonstrates the potential for interspecies transmission between chelonian and squamate reptiles.
Asunto(s)
Infecciones por Virus ADN/veterinaria , Lagartos/virología , Ranavirus , Animales , Animales de Zoológico , Infecciones por Virus ADN/mortalidad , Infecciones por Virus ADN/patología , Infecciones por Virus ADN/virologíaRESUMEN
Mitochondrial dynamics and mitophagy have been linked to cardiovascular and neurodegenerative diseases. Here, we demonstrate that the mitochondrial division dynamin Drp1 and the Parkinson's disease-associated E3 ubiquitin ligase parkin synergistically maintain the integrity of mitochondrial structure and function in mouse heart and brain. Mice lacking cardiac Drp1 exhibited lethal heart defects. In Drp1KO cardiomyocytes, mitochondria increased their connectivity, accumulated ubiquitinated proteins, and decreased their respiration. In contrast to the current views of the role of parkin in ubiquitination of mitochondrial proteins, mitochondrial ubiquitination was independent of parkin in Drp1KO hearts, and simultaneous loss of Drp1 and parkin worsened cardiac defects. Drp1 and parkin also play synergistic roles in neuronal mitochondrial homeostasis and survival. Mitochondrial degradation was further decreased by combination of Drp1 and parkin deficiency, compared with their single loss. Thus, the physiological importance of parkin in mitochondrial homeostasis is revealed in the absence of mitochondrial division in mammals.
Asunto(s)
Encéfalo/metabolismo , Dinaminas/metabolismo , Mitocondrias/metabolismo , Mitofagia/fisiología , Miocitos Cardíacos/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Dinaminas/genética , Tomografía con Microscopio Electrónico , Ratones , Ratones Noqueados , Microscopía Fluorescente , Cadenas Pesadas de Miosina/genética , UbiquitinaciónRESUMEN
Available imaging systems for use in preclinical toxicology studies increasingly show utility as important tools in the toxicologic pathologist's armamentarium, permit longitudinal evaluation of functional and morphological changes in tissues, and provide important information such as organ and lesion volume not obtained by conventional toxicology study parameters. Representative examples of practical imaging applications in toxicology research and preclinical studies are presented for ultrasound, positron emission tomography/single-photon emission computed tomography, optical, magnetic resonance imaging, and matrix-assisted laser desorption ionization-imaging mass spectrometry imaging. Some of the challenges for making imaging systems good laboratory practice-compliant for regulatory submission are presented. Use of imaging data on a case-by-case basis as part of safety evaluation in regulatory submissions is encouraged.
Asunto(s)
Imagen por Resonancia Magnética , Tomografía de Emisión de Positrones , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Tomografía Computarizada de Emisión de Fotón Único , Toxicología/métodos , Ultrasonografía , Animales , Modelos Animales de Enfermedad , Procesamiento de Imagen Asistido por Computador , Ratones , RatasRESUMEN
The adenosine A2A receptor (A2A R) is expressed in immune cells, as well as brain and heart tissue, and has been intensively studied as a therapeutic target for multiple disease indications. Inhibitors of the A2A R have the potential for stimulating immune response, which could be valuable for cancer immune surveillance and mounting a response against pathogens. One well-established potent and selective small molecule A2A R antagonist, ZM-241385 (ZM), has a short pharmacokinetic half-life and the potential for systemic toxicity due to A2A R effects in the brain and the heart. In this study, we designed an analogue of ZM and tethered it to the Fc domain of the immunoglobulin IgG3 by using expressed protein ligation. The resulting protein-small molecule conjugate, Fc-ZM, retained high affinity for two Fc receptors: FcγRI and the neonatal Fc receptor, FcRn. In addition, Fc-ZM was a potent A2A R antagonist, as measured by a cell-based cAMP assay. Cell-based assays also revealed that Fc-ZM could stimulate interferonâ γ production in splenocytes in a fashion that was dependent on the presence of A2A R. We found that Fc-ZM, compared with the small molecule ZM, was a superior A2A R antagonist in mice, consistent with the possibility that Fc attachment can improve pharmacokinetic and/or pharmacodynamic properties of the small molecule.
Asunto(s)
Antagonistas del Receptor de Adenosina A2/farmacología , Fragmentos Fab de Inmunoglobulinas/farmacología , Receptor de Adenosina A2A/metabolismo , Triazinas/farmacología , Triazoles/farmacología , Antagonistas del Receptor de Adenosina A2/síntesis química , Antagonistas del Receptor de Adenosina A2/química , Animales , Femenino , Humanos , Fragmentos Fab de Inmunoglobulinas/química , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Modelos Moleculares , Estructura Molecular , Receptor de Adenosina A2A/deficiencia , Infecciones del Sistema Respiratorio/tratamiento farmacológico , Triazinas/síntesis química , Triazinas/química , Triazoles/síntesis química , Triazoles/química , Virus Vaccinia/aislamiento & purificaciónRESUMEN
Stem cell therapies are being developed for radiotherapy-induced brain injuries (RIBI). Magnetic resonance imaging (MRI) offers advantages for imaging transplanted stem cells. However, most MRI cell-tracking techniques employ superparamagnetic iron oxide particles (SPIOs), which are difficult to distinguish from hemorrhage. In current preclinical RIBI models, hemorrhage occurs concurrently with other injury markers. This makes the evaluation of the recruitment of transplanted SPIO-labeled stem cells to injury sites difficult. Here, we developed a RIBI model, with early injury markers reflective of hippocampal dysfunction, which can be detected noninvasively with MRI and behavioral tests. Lesions were generated by sub-hemispheric irradiation of mouse hippocampi with single X-ray beams of 80 Gy. Lesion formation was monitored with anatomical and contrast-enhanced MRI and changes in memory and learning were assessed with fear-conditioning tests. Early injury markers were detected 2 weeks after irradiation. These included an increase in the permeability of the blood-brain barrier, demonstrated by a 92 ± 20 % contrast enhancement of the irradiated versus the non-irradiated brain hemispheres, within 15 min of the administration of an MRI contrast agent. A change in short-term memory was also detected, as demonstrated by a 40.88 ± 5.03 % decrease in the freezing time measured during the short-term memory context test at this time point, compared to that before irradiation. SPIO-labeled stem cells transplanted contralateral to the lesion migrated toward the lesion at this time point. No hemorrhage was detected up to 10 weeks after irradiation. This model can be used to evaluate SPIO-based stem cell-tracking agents, short-term.
Asunto(s)
Escala de Evaluación de la Conducta , Aprendizaje , Imagen por Resonancia Magnética , Memoria , Traumatismos Experimentales por Radiación/diagnóstico por imagen , Traumatismos Experimentales por Radiación/psicología , Animales , Hipocampo/diagnóstico por imagen , Hipocampo/lesiones , Hipocampo/efectos de la radiación , Hemorragias Intracraneales/diagnóstico por imagen , Hemorragias Intracraneales/etiología , Hemorragias Intracraneales/psicología , Masculino , Ratones Endogámicos BALB C , Traumatismos Experimentales por Radiación/terapia , Trasplante de Células Madre , Células Madre , Rayos XRESUMEN
Levels of the HER2/ErbB2 protein in the heart are upregulated in some women during breast cancer therapy, and these women are at high risk for developing heart dysfunction after sequential treatment with anti-ErbB2/trastuzumab or doxorubicin. Doxorubicin is known to increase oxidative stress in the heart, and thus we considered the possibility that ErbB2 protein influences the status of cardiac antioxidant defenses in cardiomyocytes. In this study, we measured reactive oxygen species (ROS) in cardiac mitochondria and whole hearts from mice with cardiac-specific overexpression of ErbB2 (ErbB2(tg)) and found that, compared with control mice, high levels of ErbB2 in myocardium result in lower levels of ROS in mitochondria (P = 0.0075) and whole hearts (P = 0.0381). Neonatal cardiomyocytes isolated from ErbB2(tg) hearts have lower ROS levels and less cellular death (P < 0.0001) following doxorubicin treatment. Analyzing antioxidant enzyme levels and activities, we found that ErbB2(tg) hearts have increased levels of glutathione peroxidase 1 (GPx1) protein (P < 0.0001) and GPx activity (P = 0.0031) in addition to increased levels of two known GPx activators, c-Abl (P = 0.0284) and Arg (P < 0.0001). Interestingly, although mitochondrial ROS emission is reduced in the ErbB2(tg) hearts, oxygen consumption rates and complex I activity are similar to control littermates. Compared with these in vivo studies, H9c2 cells transfected with ErbB2 showed less cellular toxicity and produced less ROS (P < 0.0001) after doxorubicin treatment but upregulated GR activity (P = 0.0237) instead of GPx. Our study shows that ErbB2-dependent signaling contributes to antioxidant defenses and suggests a novel mechanism by which anticancer therapies involving ErbB2 antagonists can harm myocardial structure and function.
Asunto(s)
Antineoplásicos/toxicidad , Antioxidantes/metabolismo , Doxorrubicina/toxicidad , Glutatión Peroxidasa/metabolismo , Cardiopatías/prevención & control , Mitocondrias Cardíacas/efectos de los fármacos , Miocitos Cardíacos/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Receptor ErbB-2/metabolismo , Animales , Animales Recién Nacidos , Muerte Celular/efectos de los fármacos , Línea Celular , Relación Dosis-Respuesta a Droga , Glutatión Reductasa/metabolismo , Cardiopatías/inducido químicamente , Cardiopatías/enzimología , Cardiopatías/genética , Cardiopatías/patología , Ratones Endogámicos C57BL , Ratones Transgénicos , Mitocondrias Cardíacas/enzimología , Mitocondrias Cardíacas/patología , Miocitos Cardíacos/enzimología , Miocitos Cardíacos/patología , Proteínas Tirosina Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-abl/metabolismo , Ratas , Receptor ErbB-2/genética , Glutatión Peroxidasa GPX1RESUMEN
CD4(+) T cells play a central role in inflammatory heart disease, implicating a cytokine product associated with Th cell effector function as a necessary mediator of this pathophysiology. IFN-γ-deficient mice developed severe experimental autoimmune myocarditis (EAM), in which mice are immunized with cardiac myosin peptide, whereas IL-17A-deficient mice were protected from progression to dilated cardiomyopathy. We generated IFN-γ(-/-)IL-17A(-/-) mice to assess whether IL-17 signaling was responsible for the severe EAM of IFN-γ(-/-) mice. Surprisingly, IFN-γ(-/-)IL-17A(-/-) mice developed a rapidly fatal EAM. Eosinophils constituted a third of infiltrating leukocytes, qualifying this disease as eosinophilic myocarditis. We found increased cardiac production of CCL11/eotaxin, as well as Th2 deviation, among heart-infiltrating CD4(+) cells. Ablation of eosinophil development improved survival of IFN-γ(-/-)IL-17A(-/-) mice, demonstrating the necessity of eosinophils in fatal heart failure. The severe and rapidly fatal autoimmune inflammation that developed in the combined absence of IFN-γ and IL-17A constitutes a novel model of eosinophilic heart disease in humans. This is also, to our knowledge, the first demonstration that eosinophils have the capacity to act as necessary mediators of morbidity in an autoimmune process.