Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Genome Res ; 32(5): 956-967, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35332098

RESUMEN

RNA homodimerization is important for various physiological processes, including the assembly of membraneless organelles, RNA subcellular localization, and packaging of viral genomes. However, understanding RNA dimerization has been hampered by the lack of systematic in vivo detection methods. Here, we show that CLASH, PARIS, and other RNA proximity ligation methods detect RNA homodimers transcriptome-wide as "overlapping" chimeric reads that contain more than one copy of the same sequence. Analyzing published proximity ligation data sets, we show that RNA:RNA homodimers mediated by direct base-pairing are rare across the human transcriptome, but highly enriched in specific transcripts, including U8 snoRNA, U2 snRNA, and a subset of tRNAs. Mutations in the homodimerization domain of U8 snoRNA impede dimerization in vitro and disrupt zebrafish development in vivo, suggesting an evolutionarily conserved role of this domain. Analysis of virus-infected cells reveals homodimerization of SARS-CoV-2 and Zika genomes, mediated by specific palindromic sequences located within protein-coding regions of N gene in SARS-CoV-2 and NS2A gene in Zika. We speculate that regions of viral genomes involved in homodimerization may constitute effective targets for antiviral therapies.


Asunto(s)
COVID-19 , Infección por el Virus Zika , Virus Zika , Animales , Secuencia de Bases , ARN Nucleolar Pequeño/genética , ARN Viral/genética , SARS-CoV-2/genética , Pez Cebra/genética , Virus Zika/genética , Infección por el Virus Zika/genética
2.
Nat Methods ; 15(10): 785-788, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30202058

RESUMEN

The structural flexibility of RNA underlies fundamental biological processes, but there are no methods for exploring the multiple conformations adopted by RNAs in vivo. We developed cross-linking of matched RNAs and deep sequencing (COMRADES) for in-depth RNA conformation capture, and a pipeline for the retrieval of RNA structural ensembles. Using COMRADES, we determined the architecture of the Zika virus RNA genome inside cells, and identified multiple site-specific interactions with human noncoding RNAs.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Conformación de Ácido Nucleico , ARN Viral/química , ARN Viral/metabolismo , Proteínas de Unión al ARN/metabolismo , Infección por el Virus Zika/metabolismo , Virus Zika/fisiología , Humanos , Proteínas de Unión al ARN/química , Análisis de Secuencia de ARN/métodos , Transcriptoma , Virus Zika/aislamiento & purificación , Infección por el Virus Zika/genética , Infección por el Virus Zika/virología
3.
Methods Mol Biol ; 2765: 299-309, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38381346

RESUMEN

Circular RNAs (circRNAs) are a widespread, cell-, tissue-, and disease-specific class of largely non-coding RNA transcripts. These single-stranded, covalently-closed transcripts arise through non-canonical splicing of pre-mRNA, a process called back-splicing. Back-splicing results in circRNAs which are distinguishable from their cognate mRNA as they possess a unique sequence of nucleic acids called the backsplice junction (BSJ). CircRNAs have been shown to play key functional roles in various cellular contexts and achieve this through their interaction with other macromolecules, particularly other RNA molecules and proteins. To elucidate the molecular mechanisms underlying circRNA function, it is necessary to identify these interacting partners. Herein, we present an optimized strategy for the simultaneous purification of the circRNA interactome within eukaryotic cells, allowing the identification of both circRNA-RNA and circRNA-protein interactions.

4.
Postepy Biochem ; 59(3): 246-56, 2013.
Artículo en Polaco | MEDLINE | ID: mdl-24364207

RESUMEN

One of the key questions of biology is the nature and mechanisms of gene function. It has been 60 years since proposing the right-handed model of DNA double helix in 1953. This discovery was honored with Nobel Prize in 1962 and become a breakthrough in knowing and understanding mechanisms of heredity and genetic code. Since that time a great deal of data have been gathered considering functions, structure and DNA application. It became the basis of modern molecular biology, chemical biology and biotechnology. Today we know, that double helix is characterized by its dynamics and plasticity, which depend on its nucleotide sequence. Chromatin structure and DNA mediated charge transport have a crucial role in understanding mechanisms of its damage and repair. Progress in epigenetics allowed to identify new DNA bases, such as 5-methylcytosine, 5-hydroxymethylcytosine, 5-formylcytosine and 5-carboxycytosine. Design of new catalytic nucleic acids and the nanotechnology field of DNA origami reveal its application potential.


Asunto(s)
ADN/química , Biología Molecular/tendencias , 5-Metilcitosina/análisis , Secuencia de Bases , Cromatina/química , Citosina/análogos & derivados , Citosina/análisis , Reparación del ADN , ADN Catalítico/química , Epigenómica , Predicción , Humanos , Nanotecnología/tendencias
5.
Postepy Biochem ; 59(1): 22-32, 2013.
Artículo en Polaco | MEDLINE | ID: mdl-23821940

RESUMEN

Hammerhead ribozyme is the smallest naturally occurring catalytic RNA. It is a perfect model for structure-function relation studies. Initially, it was identified as an autocatalytic part of viroid and virusoid genomic RNA. It exists within the genomes of many organisms including human, which makes it the most common autocatalytic motif in the nature. After 25 years of intensive research, there are a lot of data considering its structure, conformational dynamics and an influence of tertiary stabilizing motifs on its stability and properties. Structure of the hammerhead ribozyme is a system of elements that influence each other. The knowledge of ribozyme architecture is outstandingly interesting in the context of rules and logic of design, construction and application of such molecules as spatial molecular constructions. Presence of additional structural motifs distinguishes extended hammerhead ribozyme from the minimal one. Hammerhead ribozyme recognizes complementary RNA and catalyses transesterification after the 5'-NUH-3' sequence. Reaction efficiency depends on an arrangement of atoms of the catalytic core presence of metal ions and other intracellular factors. Innovative and potentially better derivatives of the hammerhead ribozyme are objects of extensive research in the field of molecular medicine.


Asunto(s)
Modelos Moleculares , ARN Catalítico/química , Catálisis , Humanos , Conformación de Ácido Nucleico , Estructura Terciaria de Proteína , Relación Estructura-Actividad
6.
Wiley Interdiscip Rev RNA ; 14(5): e1786, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37042179

RESUMEN

Ribonucleic acid (RNA) molecules are indispensable for cellular homeostasis in healthy and malignant cells. However, the functions of RNA extend well beyond that of a protein-coding template. Rather, both coding and non-coding RNA molecules function through critical interactions with a plethora of cellular molecules, including other RNAs, DNA, and proteins. Deconvoluting this RNA interactome, including the interacting partners, the nature of the interaction, and dynamic changes of these interactions in malignancies has yielded fundamental advances in knowledge and are emerging as a novel therapeutic strategy in cancer. Here, we present an RNA-centric review of recent advances in the field of RNA-RNA, RNA-protein, and RNA-DNA interactomic network analysis and their impact across the Hallmarks of Cancer. This article is categorized under: RNA in Disease and Development > RNA in Disease RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes.


Asunto(s)
Neoplasias , ARN , Humanos , ARN/genética , ARN/metabolismo , Neoplasias/genética , Proteínas/metabolismo , ADN/metabolismo
7.
Postepy Biochem ; 55(3): 342-54, 2009.
Artículo en Polaco | MEDLINE | ID: mdl-19928592

RESUMEN

DNA, one of the most famous molecules is 140-years-old. Its history has engaged three centuries of experiments, leading us to a point, where the Homo sapiens genome sequence is known. The "DNA breakthrough" is dated on 1953, when James Watson and Francis Crick proposed the model of molecular structure of DNA. But the origin of that great achievement goes back to 1869 and early efforts of Friedrich Miescher, the Swiss doctor, who isolated DNA (than termed nuclein) for the first time. Since that time wealth information on "nuclein", its functions, structure and usage has been collected and formed a basis for modern molecular biology, chemical biology and biotechnology. This article describes the events and circumstances of the most important DNA discoveries since its first isolation up to completing the human genome project and deep DNA sequencing techniques application.


Asunto(s)
ADN/historia , Biología Molecular/historia , Europa (Continente) , Código Genético , Historia del Siglo XIX , Historia del Siglo XX , Historia del Siglo XXI , Humanos , Japón , Análisis de Secuencia de ADN/historia , Estados Unidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA