Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
J Biol Chem ; 300(8): 107507, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38944121

RESUMEN

Aggregation of aberrant fragment of plasma gelsolin, AGelD187N, is a crucial event underlying the pathophysiology of Finnish gelsolin amyloidosis, an inherited form of systemic amyloidosis. The amyloidogenic gelsolin fragment AGelD187N does not play any physiological role in the body, unlike most aggregating proteins related to other protein misfolding diseases. However, no therapeutic agents that specifically and effectively target and neutralize AGelD187N exist. We used phage display technology to identify novel single-chain variable fragments that bind to different epitopes in the monomeric AGelD187N that were further maturated by variable domain shuffling and converted to antigen-binding fragment (Fab) antibodies. The generated antibody fragments had nanomolar binding affinity for full-length AGelD187N, as evaluated by biolayer interferometry. Importantly, all four Fabs selected for functional studies efficiently inhibited the amyloid formation of full-length AGelD187N as examined by thioflavin fluorescence assay and transmission electron microscopy. Two Fabs, neither of which bound to the previously proposed fibril-forming region of AGelD187N, completely blocked the amyloid formation of AGelD187N. Moreover, no small soluble aggregates, which are considered pathogenic species in protein misfolding diseases, were formed after successful inhibition of amyloid formation by the most promising aggregation inhibitor, as investigated by size-exclusion chromatography combined with multiangle light scattering. We conclude that all regions of the full-length AGelD187N are important in modulating its assembly into fibrils and that the discovered epitope-specific anti-AGelD187N antibody fragments provide a promising starting point for a disease-modifying therapy for gelsolin amyloidosis, which is currently lacking.


Asunto(s)
Epítopos , Gelsolina , Humanos , Gelsolina/química , Gelsolina/metabolismo , Gelsolina/inmunología , Epítopos/inmunología , Epítopos/química , Amiloidosis/metabolismo , Amiloidosis/inmunología , Amiloide/metabolismo , Amiloide/inmunología , Agregado de Proteínas , Fragmentos Fab de Inmunoglobulinas/química , Fragmentos Fab de Inmunoglobulinas/inmunología , Agregación Patológica de Proteínas/metabolismo
2.
Microb Cell Fact ; 16(1): 108, 2017 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-28619018

RESUMEN

BACKGROUND: The production of recombinant proteins containing disulfide bonds in Escherichia coli is challenging. In most cases the protein of interest needs to be either targeted to the oxidizing periplasm or expressed in the cytoplasm in the form of inclusion bodies, then solubilized and re-folded in vitro. Both of these approaches have limitations. Previously we showed that soluble expression of disulfide bonded proteins in the cytoplasm of E. coli is possible at shake flask scale with a system, known as CyDisCo, which is based on co-expression of a protein of interest along with a sulfhydryl oxidase and a disulfide bond isomerase. With CyDisCo it is possible to produce disulfide bonded proteins in the presence of intact reducing pathways in the cytoplasm. RESULTS: Here we scaled up production of four disulfide bonded proteins to stirred tank bioreactors and achieved high cell densities and protein yields in glucose fed-batch fermentations, using an E. coli strain (BW25113) with the cytoplasmic reducing pathways intact. Even without process optimization production of purified human single chain IgA1 antibody fragment reached 139 mg/L and hen avidin 71 mg/L, while purified yields of human growth hormone 1 and interleukin 6 were around 1 g/L. Preliminary results show that human growth hormone 1 was also efficiently produced in fermentations of W3110 strain and when glucose was replaced with glycerol as the carbon source. CONCLUSIONS: Our results show for the first time that efficient production of high yields of soluble disulfide bonded proteins in the cytoplasm of E. coli with the reducing pathways intact is feasible to scale-up to bioreactor cultivations on chemically defined minimal media.


Asunto(s)
Citoplasma/química , Disulfuros/química , Escherichia coli/genética , Animales , Avidina/análisis , Avidina/biosíntesis , Avidina/genética , Reactores Biológicos , Pollos , Medios de Cultivo/química , Citoplasma/metabolismo , Escherichia coli/química , Escherichia coli/citología , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Femenino , Fermentación , Glucosa/metabolismo , Glicerol/metabolismo , Hormona de Crecimiento Humana/biosíntesis , Hormona de Crecimiento Humana/genética , Humanos , Fragmentos de Inmunoglobulinas/biosíntesis , Fragmentos de Inmunoglobulinas/genética , Cuerpos de Inclusión/química , Cuerpos de Inclusión/metabolismo , Interleucina-6/biosíntesis , Interleucina-6/genética , Oxidación-Reducción , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química
3.
Microb Cell Fact ; 15: 22, 2016 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-26809624

RESUMEN

BACKGROUND: Disulfide bonds are the most common structural, post-translational modification found in proteins. Antibodies contain up to 25 disulfide bonds depending on type, with scFv fragments containing two disulfides and Fab fragments containing five or six disulfide bonds. The production of antibody fragments that contain native disulfide bonds can be challenging, especially on a large scale. The protein needs to be targeted to prokaryotic periplasm or the eukaryotic endoplasmic reticulum. These compartments are specialised for disulfide bond formation, but both compartments have limitations. RESULTS: Here we show that the introduction into the cytoplasm of a catalyst of disulfide bond formation and a catalyst of disulfide bond isomerization allows the efficient formation of natively folded scFv and Fab antibody fragments in the cytoplasm of Escherichia coli with intact reducing pathways. Eleven scFv and eleven Fab fragments were screened and ten of each were obtained in yields of >5 mg/L from deep-well plates. Production of eight of the scFv and all ten of the Fab showed a strong dependence on the addition of the folding factors. Yields of purified scFv of up to 240 mg/L and yields of purified Fab fragments of up to 42 mg/L were obtained. Purified fragments showed circular dichroism spectra consistent with being natively folded and were biologically active. CONCLUSIONS: Our results show that the efficient production of soluble, biologically active scFv and Fab antibody fragments in the cytoplasm of E. coli is not only possible, but facile. The required components can be easily transferred between different E. coli strains.


Asunto(s)
Citoplasma/metabolismo , Escherichia coli/metabolismo , Fragmentos de Inmunoglobulinas/metabolismo , Ingeniería de Proteínas/métodos , Animales , Anticuerpos/aislamiento & purificación , Vectores Genéticos/metabolismo , Humanos , Fragmentos de Inmunoglobulinas/aislamiento & purificación , Ratones , Peso Molecular , Plásmidos/metabolismo , Anticuerpos de Cadena Única/metabolismo , Solubilidad , Espectrometría de Masa por Ionización de Electrospray
4.
Sci Rep ; 12(1): 18157, 2022 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-36307539

RESUMEN

Vascular endothelial growth factor-C (VEGF-C) stimulates lymphatic vessel growth in transgenic models, via viral gene delivery, and as a recombinant protein. Expressing eukaryotic proteins like VEGF-C in bacterial cells has limitations, as these cells lack specific posttranslational modifications and provisions for disulfide bond formation. However, given the cost and time savings associated with bacterial expression systems, there is considerable value in expressing VEGF-C using bacterial cells. We identified two approaches that result in biologically active Escherichia coli-derived VEGF-C. Expectedly, VEGF-C expressed from a truncated cDNA became bioactive after in vitro folding from inclusion bodies. Given that VEGF-C is one of the cysteine-richest growth factors in humans, it was unclear whether known methods to facilitate correct cysteine bond formation allow for the direct expression of bioactive VEGF-C in the cytoplasm. By fusing VEGF-C to maltose-binding protein and expressing these fusions in the redox-modified cytoplasm of the Origami (DE3) strain, we could recover biological activity for deletion mutants lacking the propeptides of VEGF-C. This is the first report of a bioactive VEGF growth factor obtained from E. coli cells circumventing in-vitro folding.


Asunto(s)
Escherichia coli , Factor C de Crecimiento Endotelial Vascular , Humanos , Escherichia coli/genética , Escherichia coli/metabolismo , Factor C de Crecimiento Endotelial Vascular/genética , Factor C de Crecimiento Endotelial Vascular/metabolismo , Cisteína/metabolismo , Proteínas Recombinantes/metabolismo , Proteínas de Unión a Maltosa/metabolismo
5.
PLoS One ; 12(12): e0189964, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29253024

RESUMEN

CyDisCo is a system facilitating disulfide bond formation in recombinant proteins in the cytoplasm of Escherichia coli. Previously we screened for soluble expression of single chain antibody fragments (scFv) in the cytoplasm of E. coli in the presence and absence of CyDisCo, with >90% being solubly expressed. Two scFv, those derived from natalizumab and trastuzumab, were solubly produced in high amounts even in the absence of folding catalysts i.e. disulfide bond formation is not critical for their folding. Here we investigate the contribution of the framework and the complementarity determining regions (CDRs) of scFv to the disulfide-independence of folding. We swapped CDRs between four scFv that have different properties, including two scFv that can efficiently fold independently from disulfide bonds and two more disulfide-dependent scFv. To confirm disulfide-independence we generated cysteine to alanine mutants of the disulfide-independent scFv. All of the scFv were tested for soluble expression in the cytoplasm of E. coli in the presence and absence of the oxidative folding catalysts Erv1p and PDI. Eight of the hybrid scFv were solubly produced in the presence of CyDisCo, while seven were solubly produced in the absence of CyDisCo, though the yields were often much lower when CyDisCo was absent. Soluble expression was also observed for scFv natalizumab and trastuzumab containing no cysteines. We compared yields, thermal stability and secondary structure of solubly produced scFv and undertook binding studies by western blotting, dot blotting or surface plasmon resonance of those produced in good yields. Our results indicate that both the CDRs and the framework contribute to the disulfide-dependence of soluble production of scFv, with the CDRs having the largest effect. In addition, there was no correlation between thermal stability and disulfide-dependence of folding and only a weak correlation between the yield of protein and the thermal stability of the protein.


Asunto(s)
Regiones Determinantes de Complementariedad/química , Disulfuros/química , Proteínas Recombinantes/química , Anticuerpos de Cadena Única/química , Alanina/genética , Catálisis , Escherichia coli/metabolismo , Concentración de Iones de Hidrógeno , Cinética , Mutación , Natalizumab/química , Oxidación-Reducción , Oxígeno/química , Pliegue de Proteína , Trastuzumab/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA