Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Biol Chem ; 286(25): 22489-98, 2011 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-21536681

RESUMEN

In view of understanding the mechanisms of retinal neovascularization, we had reported previously that vascular endothelial growth factor (VEGF)-induced pathological retinal angiogenesis requires the activation of Src-PLD1-PKCγ signaling. In the present work, we have identified cytosolic phospholipase A(2) (cPLA(2)) as an effector molecule of Src-PLD1-PKCγ signaling in the mediation of VEGF-induced pathological retinal angiogenesis based on the following observations. VEGF induced cPLA(2) phosphorylation in a time-dependent manner in human retinal microvascular endothelial cells (HRMVECs). VEGF also induced arachidonic acid (AA) release in a dose-, time-, and cPLA(2)-dependent manner. Depletion of cPLA(2) levels inhibited VEGF-induced HRMVEC DNA synthesis, migration, and tube formation. In addition, the exogenous addition of AA rescued VEGF-induced HRMVEC DNA synthesis, migration, and tube formation from inhibition by down-regulation of cPLA(2). Inhibition of Src, PLD1, or PKCγ attenuated VEGF-induced cPLA(2) phosphorylation and AA release. Consistent with these findings, hypoxia induced cPLA(2) phosphorylation and activity in VEGF-Src-PLD1-PKCγ-dependent manner in a mouse model of oxygen-induced retinopathy. In addition, siRNA-mediated down-regulation of cPLA(2) levels in the retina abrogated hypoxia-induced retinal endothelial cell proliferation and neovascularization. These observations suggest that cPLA(2)-dependent AA release is required for VEGF-induced Src-PLD1-PKCγ-mediated pathological retinal angiogenesis.


Asunto(s)
Hipoxia/fisiopatología , Fosfolipasa D/metabolismo , Fosfolipasas A2 Citosólicas/metabolismo , Proteína Quinasa C/metabolismo , Proteínas Proto-Oncogénicas pp60(c-src)/metabolismo , Retina/fisiopatología , Transducción de Señal , Animales , Ácido Araquidónico/metabolismo , Movimiento Celular/efectos de los fármacos , ADN/biosíntesis , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Células Endoteliales/patología , Activación Enzimática/efectos de los fármacos , Humanos , Hipoxia/metabolismo , Hipoxia/patología , Ratones , Neovascularización Patológica/metabolismo , Neovascularización Patológica/patología , Oxígeno/farmacología , Retina/efectos de los fármacos , Retina/metabolismo , Retina/patología , Transducción de Señal/efectos de los fármacos , Factor A de Crecimiento Endotelial Vascular/farmacología
2.
Blood ; 116(8): 1377-85, 2010 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-20421451

RESUMEN

Vascular endothelial growth factor (VEGF) appears to be an important mediator of pathologic retinal angiogenesis. In understanding the mechanisms of pathologic retinal neovascularization, we found that VEGF activates PLD1 in human retinal microvascular endothelial cells, and this event is dependent on Src. In addition, VEGF activates protein kinase C-gamma (PKCgamma) via Src-dependent PLD1 stimulation. Inhibition of Src, PLD1, or PKCgamma via pharmacologic, dominant negative mutant, or siRNA approaches significantly attenuated VEGF-induced human retinal microvascular endothelial cell migration, proliferation, and tube formation. Hypoxia also induced Src-PLD1-PKCgamma signaling in retina, leading to retinal neovascularization. Furthermore, siRNA-mediated down-regulation of VEGF inhibited hypoxia-induced Src-PLD1-PKCgamma activation and neovascularization. Blockade of Src-PLD1-PKCgamma signaling via the siRNA approach also suppressed hypoxia-induced retinal neovascularization. Thus, these observations demonstrate, for the first time, that Src-dependent PLD1-PKCgamma activation plays an important role in pathologic retinal angiogenesis.


Asunto(s)
Endotelio Vascular/metabolismo , Fosfolipasa D/metabolismo , Proteína Quinasa C/metabolismo , Proteínas Proto-Oncogénicas pp60(c-src)/metabolismo , Retina/metabolismo , Neovascularización Retiniana , Western Blotting , Adhesión Celular , Movimiento Celular , Proliferación Celular , Células Cultivadas , Técnica del Anticuerpo Fluorescente , Humanos , Fosforilación , Retina/patología , Transducción de Señal , Factor A de Crecimiento Endotelial Vascular/metabolismo
3.
J Biol Chem ; 277(24): 21325-31, 2002 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-11925444

RESUMEN

Previously we have demonstrated that activation of p38 mitogen-activated protein kinase (MAPK) and induction of DNA synthesis in response to receptor tyrosine kinase (RTK) and G protein-coupled receptor (GPCR) agonists require NADH/NADPH-like oxidase activity in vascular smooth muscle cells (VSMC). Here we tested the role of p38 MAPK in RTK and GPCR agonist-induced DNA synthesis in VSMC. Platelet-derived growth factor (PDGF)-BB and thrombin (RTK and GPCR agonists, respectively) activated p38 MAPK in a time-dependent manner in VSMC. Inhibition of p38 MAPK led to a 50% decrease in the DNA synthesis induced by thrombin but not PDGF-BB. ATF-1 was found to be the predominant member of the cyclic AMP response element (CRE)-DNA complex formed in VSMC in response to PDGF-BB and thrombin, and both agonists induced its phosphorylation. Regardless of this, inhibition of p38 MAPK reduced only thrombin- but not PDGF-BB-induced ATF-1 phosphorylation. Similarly, inhibition of p38 MAPK caused a 50% decrease in thrombin- but not PDGF-BB-induced CRE promoter-dependent transcription. Ectopic expression of an inhibitory anti-ATF-1 single-chain antibody fragment, ScFv, significantly interfered with DNA synthesis induced by thrombin but not PDGF-BB. Together, these results suggest the following conclusions. 1) Both RTK and GPCR agonists activate p38 MAPK and induce CRE promoter-dependent transcription; 2) both RTK and GPCR agonists induce ATF-1 phosphorylation, and ATF-1 is a predominant member in the CRE-DNA complexes formed in response to these agents; and 3) p38 MAPK-dependent ATF-1 phosphorylation and CRE promoter-mediated transcription are associated with GPCR agonist-induced VSMC growth.


Asunto(s)
Proteínas de Unión al ADN , ADN/biosíntesis , Músculo Liso Vascular/citología , Proteínas Tirosina Quinasas/metabolismo , Receptores de Trombina/metabolismo , Factores de Transcripción/fisiología , Factor de Transcripción Activador 1 , Animales , Anticoagulantes/farmacología , Becaplermina , Western Blotting , División Celular , Cloranfenicol/metabolismo , ADN/metabolismo , Inhibidores Enzimáticos/farmacología , Genes Reporteros , Imidazoles/farmacología , Masculino , Proteínas Quinasas Activadas por Mitógenos/antagonistas & inhibidores , Proteínas Quinasas Activadas por Mitógenos/fisiología , Fosforilación , Plásmidos/metabolismo , Factor de Crecimiento Derivado de Plaquetas/metabolismo , Regiones Promotoras Genéticas , Proteínas Proto-Oncogénicas c-fos/metabolismo , Proteínas Proto-Oncogénicas c-jun/metabolismo , Proteínas Proto-Oncogénicas c-sis , Piridinas/farmacología , Ratas , Ratas Sprague-Dawley , Receptor PAR-1 , Trombina/metabolismo , Trombina/farmacología , Factores de Tiempo , Factores de Transcripción/metabolismo , Transcripción Genética , Transfección , Proteínas Quinasas p38 Activadas por Mitógenos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA