Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Nucl Med Biol ; 104-105: 1-10, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34763197

RESUMEN

BACKGROUND: As the demand for 68Ga continues to grow, there is increasing interest in single-to-multi-Curie production quantities of both [68Ga]GaCl3 and tracers such as [68Ga]Ga-PSMA-11. While such quantities are possible with solid targets, this implementation is often challenging as it typically requires significant site expertise for solid target processing and careful operator-dependent synchronization of multiple independent time-sensitive chemistry steps. Herein we focus on a fully automated solid target production and purification process whereby we avoid the need for tongs/tele-pliers, and have simplified the chemistry by implementing a single sequence (i.e. "time-list") to execute cassette-based dissolution, purification, and labeling. METHODS: Electroplated 68Zn was irradiated in a PETtrace prototype automated solid target system. Following irradiation, and using a single FASTlab time-list, the 68Zn was automatically dissolved with HCl/H2O2 and purified as [68Ga]GaCl3 using a combination of resins (ZR/TK400, A8, TK200: Triskem). For select experiments, [68Ga]Ga-PSMA-11 was also produced on the same cassette/single time-list (N = 4), or, by kit labeling (N = 1). Efforts focused towards on-cassette production of [68Ga]GaCl3 strived to maximize activity and quality, whereas efforts focused towards on-cassette production of [68Ga]Ga-PSMA-11 aimed at limiting the entire production cycle to 1 h including the irradiation time (i.e. start-of-bombardment âž” end-of-synthesis [EOS]). RESULTS: For the high activity triplicate [68Ga]GaCl3 productions (i.e. 80 µA, 102 min, 216 ± 10 mg), [68Ga]GaCl3 was purified (end-of-bombardment âž” end-of-purification [EOP]) in ~28 min with activity yields of 181 ± 8 GBq at EOP and average radiochemical yields of 66 ± 5%. Average AMAs of 2.26 ± 0.16 TBq/µmol using DOTA (N = 3) and 12.00 TBq/µmol using HBED (PSMA-11) (N = 1) at EOP were measured. For the single kit test, (80 µA, 120 min, 263 mg 68Zn) for which 18 mg ascorbic acid was added to the buffer, 199 GBq of [68Ga]Ga-PSMA-11 was successfully produced (thin layer chromatography-based radiochemical purity >99% at 6 h EOS). Finally, for efforts focused at expedient [68Ga]Ga-PSMA-11, up to 42 GBq [68Ga]Ga-PSMA-11 with a radiochemical yield of 51.2% was produced in 63 min, including beamtime, using 220 mg of 68Zn as target material. CONCLUSION: With the goal of simplifying solid target production and purification efforts, automated methods using single-use, cassette-based approaches for rapid, large-scale, single time-list production of [68Ga]GaCl3 and [68Ga]Ga-PSMA-11 were developed. These methods were simple to execute and yielded high quality multi-Curie levels of both [68Ga]GaCl3 and [68Ga]Ga-PSMA-11.


Asunto(s)
Radioisótopos de Galio , Peróxido de Hidrógeno , Radioquímica/métodos , Radiofármacos
2.
Nat Protoc ; 17(4): 980-1003, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35246649

RESUMEN

[68Ga]Ga-PSMA-11, a urea-based peptidomimetic, is a diagnostic radiopharmaceutical for positron emission tomography (PET) imaging that targets the prostate-specific membrane antigen (PSMA). The recent Food and Drug Administration approval of [68Ga]Ga-PSMA-11 for PET imaging of patients with prostate cancer, expected follow-up approval of companion radiotherapeutics (e.g., [177Lu]Lu-PSMA-617, [225Ac]Ac-PSMA-617) and large prostate cancer patient volumes requiring access are poised to create an unprecedented demand for [68Ga]Ga-PSMA-11 in nuclear medicine clinics around the world. Meeting this global demand is going to require a variety of synthesis methods compatible with 68Ga eluted from a generator or produced on a cyclotron. To address this urgent need in the PET radiochemistry community, herein we report detailed protocols for the synthesis of [68Ga]Ga-PSMA-11, (also known as HBED-CC, Glu-urea-Lys(Ahx)-HBED-CC and PSMA-HBED-CC) using both generator-eluted and cyclotron-produced 68Ga and contrast the pros and cons of each method. The radiosyntheses are automated and have been validated for human use at two sites (University of Michigan (UM), United States; Royal Prince Alfred Hospital (RPA), Australia) and used to produce [68Ga]Ga-PSMA-11 for patient use in good activity yields (single generator, 0.52 GBq (14 mCi); dual generators, 1.04-1.57 GBq (28-42 mCi); cyclotron method (single target), 1.47-1.89 GBq (40-51 mCi); cyclotron method (dual target), 3.63 GBq (98 mCi)) and high radiochemical purity (99%) (UM, n = 645; RPA, n > 600). Both methods are appropriate for clinical production but, in the long term, the method employing cyclotron-produced 68Ga is the most promising for meeting high patient volumes. Quality control testing (visual inspection, pH, radiochemical purity and identity, radionuclidic purity and identity, sterile filter integrity, bacterial endotoxin content, sterility, stability) confirmed doses are suitable for clinical use, and there is no difference in clinical prostate cancer PET imaging using [68Ga]Ga-PSMA-11 prepared using the two production methods.


Asunto(s)
Neoplasias de la Próstata , Radiofármacos , Ciclotrones , Ácido Edético , Radioisótopos de Galio/química , Humanos , Masculino , Tomografía de Emisión de Positrones/métodos , Neoplasias de la Próstata/diagnóstico por imagen , Urea
3.
Sci Rep ; 11(1): 3631, 2021 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-33574368

RESUMEN

Molecular imaging of the gastrin-releasing peptide receptor (GRPR) could improve patient management in prostate cancer. This study aimed to produce gallium-66 (T½ = 9.5 h) suitable for radiolabeling, and investigate the imaging properties of gallium-66 labeled GRPR-antagonist NOTA-PEG2-RM26 for later-time point PET-imaging of GRPR expression. Gallium-66 was cyclotron-produced using a liquid target, and enriched [66Zn]Zn(NO3)2. In vitro, [66Ga]Ga-NOTA-PEG2-RM26 was characterized in GRPR-expressing PC-3 prostate cancer cells. In vivo, specificity test and biodistribution studies were performed 3 h and 22 h pi in PC-3 xenografted mice. microPET/MR was performed 3 h and 22 h pi. Biodistribution of [66Ga]Ga-NOTA-PEG2-RM26 was compared with [68Ga]Ga-NOTA-PEG2-RM26 3 h pi. [66Ga]Ga-NOTA-PEG2-RM26 was successfully prepared with preserved binding specificity and high affinity towards GRPR. [66Ga]Ga-NOTA-PEG2-RM26 cleared rapidly from blood via kidneys. Tumor uptake was GRPR-specific and exceeded normal organ uptake. Normal tissue clearance was limited, resulting in no improvement of tumor-to-organ ratios with time. Tumors could be clearly visualized using microPET/MR. Gallium-66 was successfully produced and [66Ga]Ga-NOTA-PEG2-RM26 was able to clearly visualize GRPR-expression both shortly after injection and on the next day using PET. However, delayed imaging did not improve contrast for Ga-labeled NOTA-PEG2-RM26.


Asunto(s)
Radioisótopos de Galio/química , Tomografía de Emisión de Positrones , Neoplasias de la Próstata/diagnóstico por imagen , Receptores de Bombesina/metabolismo , Animales , Línea Celular Tumoral , Femenino , Humanos , Cinética , Ligandos , Imagen por Resonancia Magnética , Masculino , Ratones Endogámicos BALB C , Ratones Desnudos , Distribución Tisular , Ensayos Antitumor por Modelo de Xenoinjerto
4.
Curr Radiopharm ; 14(4): 315-324, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33357189

RESUMEN

Gallium-68 is a positron-emitting nuclide that has recently achieved clinical acceptance as the diagnostic radionuclide in PET tracers used for theranostic studies of lutetium-177 labeled therapeutic drugs due to the ease of access provided by germanium-68/gallium-68 generators. An alternative method of production currently being explored uses accelerators to form gallium-68 directly. This review of gallium-68 production strategies discusses available accelerator targetry at a range of beam energies and intensities, the many radiochemical separation techniques available to isolate Ga-68 from irradiated targets, isotopically enriched target material recovery, and the implications of these techniques for downstream radiolabeling applications.


Asunto(s)
Radioisótopos de Galio/química , Lutecio/química , Radioquímica/métodos , Radioisótopos/química , Radiofármacos/síntesis química , Ciclotrones , Tomografía de Emisión de Positrones , Medicina de Precisión
5.
Pharmaceutics ; 13(2)2021 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-33672373

RESUMEN

Epidermal growth factor receptor (EGFR) is overexpressed in many malignancies. EGFR-targeted therapy extends survival of patients with disseminated cancers. Radionuclide molecular imaging of EGFR expression would make EGFR-directed treatment more personalized and therefore more efficient. A previous study demonstrated that affibody molecule [68Ga]Ga-DFO-ZEGFR:2377 permits specific positron-emission tomography (PET) imaging of EGFR expression in xenografts at 3 h after injection. We anticipated that imaging at 24 h after injection would provide higher contrast, but this is prevented by the short half-life of 68Ga (67.6 min). Here, we therefore tested the hypothesis that the use of the non-conventional long-lived positron emitter 66Ga (T1/2 = 9.49 h, ß+ = 56.5%) would permit imaging with higher contrast. 66Ga was produced by the 66Zn(p,n)66Ga nuclear reaction and DFO-ZEGFR:2377 was efficiently labelled with 66Ga with preserved binding specificity in vitro and in vivo. At 24 h after injection, [66Ga]Ga-DFO-ZEGFR:2377 provided 3.9-fold higher tumor-to-blood ratio and 2.3-fold higher tumor-to-liver ratio than [68Ga]Ga-DFO-ZEGFR:2377 at 3 h after injection. At the same time point, [66Ga]Ga-DFO-ZEGFR:2377 provided 1.8-fold higher tumor-to-blood ratio, 3-fold higher tumor-to-liver ratio, 1.9-fold higher tumor-to-muscle ratio and 2.3-fold higher tumor-to-bone ratio than [89Zr]Zr-DFO-ZEGFR:2377. Biodistribution data were confirmed by whole body PET combined with magnetic resonance imaging (PET/MRI). The use of the positron emitter 66Ga for labelling of DFO-ZEGFR:2377 permits PET imaging of EGFR expression at 24 h after injection and improves imaging contrast.

6.
Curr Radiopharm ; 14(4): 306-314, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-32988359

RESUMEN

Despite interesting properties, the use of 67Cu, 186Re and 47Sc theranostic radionuclides in preclinical studies and clinical trials is curtailed by their limited availability due to a lack of widely established production methods. An IAEA Coordinated Research Project (CRP) was initiated to identify important technical issues related to the production and quality control of these emerging radionuclides and related radiopharmaceuticals, based on the request from IAEA Member States. The international team worked on targetry, separation, quality control and radiopharmaceutical aspects of the radionuclides obtained from research reactors and cyclotrons leading to preparation of a standard recommendations for all Member States. The CRP was initiated in 2016 with fourteen participants from thirteen Member States from four continents. Extraordinary results on the production, quality control and preclinical evaluation of selected radionuclides were reported in this project that was finalized in 2020. The outcomes, outputs and results of this project achieved by participating Member States are described in this minireview.


Asunto(s)
Radioisótopos de Cobre/química , Medicina de Precisión , Radioisótopos/química , Radioisótopos/normas , Radiofármacos/síntesis química , Radiofármacos/normas , Renio/química , Escandio/química , Ciclotrones , Humanos , Agencias Internacionales , Control de Calidad
7.
Molecules ; 15(4): 2686-718, 2010 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-20428073

RESUMEN

The use of radiopharmaceuticals for molecular imaging of biochemical and physiological processes in vivo has evolved into an important diagnostic tool in modern nuclear medicine and medical research. Positron emission tomography (PET) is currently the most sophisticated molecular imaging methodology, mainly due to the unrivalled high sensitivity which allows for the studying of biochemistry in vivo on the molecular level. The most frequently used radionuclides for PET have relatively short half-lives (e.g. 11C: 20.4 min; 18F: 109.8 min) which may limit both the synthesis procedures and the time frame of PET studies. Iodine-124 (124I, t1/2 = 4.2 d) is an alternative long-lived PET radionuclide attracting increasing interest for long term clinical and small animal PET studies. The present review gives a survey on the use of 124I as promising PET radionuclide for molecular imaging. The first part describes the production of 124I. The second part covers basic radiochemistry with 124I focused on the synthesis of 124I-labeled compounds for molecular imaging purposes. The review concludes with a summary and an outlook on the future prospective of using the long-lived positron emitter 124I in the field of organic PET chemistry and molecular imaging.


Asunto(s)
Radioisótopos de Yodo/química , Marcaje Isotópico/métodos , Tomografía de Emisión de Positrones/métodos , Radiofármacos/química , Anticuerpos/química , Semivida , Humanos , Neoplasias/diagnóstico , Péptidos/química , Proteínas/química
8.
EJNMMI Radiopharm Chem ; 5(1): 21, 2020 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-33151400

RESUMEN

BACKGROUND: A need for improved, cassette-based automation of 61Cu separation from irradiated Ni targets was identified given the growing interest in theranostics, and generally lengthy separation chemistries for 64Cu/64Ni, upon which 61Cu chemistry is often based. METHODS: A method for separating 61Cu from irradiated natNi targets was therefore developed, with provision for target recycling. Following deuteron irradiation, electroplated natNi targets were remotely transferred from the cyclotron and dissolved in acid. The dissolved target solution was then transferred to an automated FASTlab chemistry module, where sequential TBP and TK201 (Triskem) resins isolated the [61Cu]CuCl2, removed Ni, Co, and Fe, and concentrated the product into a formulation suitable for anticipated radiolabelling reactions. RESULTS: 61Cu saturation yields of 190 ± 33 MBq/µA from energetically thick natNi targets were measured. The average, decay-corrected, activity-based dissolution efficiency was 97.5 ± 1.4% with an average radiochemical yield of 90.4 ± 3.2% (N = 5). The isolated activity was collected approximately 65 min post end of bombardment in ~ 2 mL of 0.06 M HCl (HCl concentration was verified by titration). Quality control of the isolated [61Cu]CuCl2 (N = 5) measured 58Co content of (8.3 ± 0.6) × 10- 5% vs. 61Cu by activity, Ni separation factors ≥ (2.2 ± 1.8) × 106, EoB molar activities 85 ± 23 GBq/µmol and NOTA-based EoB apparent molar activities of 31 ± 8 MBq/nmol and 201 MBq/nmol for the 30 min and 3.3 h (N = 1) irradiations, respectively. CONCLUSION: High purity 61Cu was produced with the developed automated method using a single-use, cassette-based approach. It was also applicable for 64Cu, as demonstrated with a single proof-of-concept 64Ni target production run.

9.
EJNMMI Radiopharm Chem ; 5(1): 25, 2020 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-33180205

RESUMEN

PURPOSE: To optimize the direct production of 68Ga on a cyclotron, via the 68Zn(p,n)68Ga reaction using a liquid cyclotron target. We Investigated the yield of cyclotron-produced 68Ga, extraction of [68Ga]GaCl3 and subsequent [68Ga]Ga-PSMA-11 labeling using an automated synthesis module. METHODS: Irradiations of a 1.0 M solution of [68Zn]Zn(NO3)2 in dilute (0.2-0.3 M) HNO3 were conducted using GE PETtrace cyclotrons and GE 68Ga liquid targets. The proton beam energy was degraded to a nominal 14.3 MeV to minimize the co-production of 67Ga through the 68Zn(p,2n)67Ga reaction without unduly compromising 68Ga yields. We also evaluated the effects of varying beam times (50-75 min) and beam currents (27-40 µA). Crude 68Ga production was measured. The extraction of [68Ga]GaCl3 was performed using a 2 column solid phase method on the GE FASTlab Developer platform. Extracted [68Ga]GaCl3 was used to label [68Ga]Ga-PSMA-11 that was intended for clinical use. RESULTS: The decay corrected yield of 68Ga at EOB was typically > 3.7 GBq (100 mCi) for a 60 min beam, with irradiations of [68Zn]Zn(NO3)2 at 0.3 M HNO3. Target/chemistry performance was more consistent when compared with 0.2 M HNO3. Radionuclidic purity of 68Ga was typically > 99.8% at EOB and met the requirements specified in the European Pharmacopoeia (< 2% combined 66/67Ga) for a practical clinical product shelf-life. The activity yield of [68Ga]GaCl3 was typically > 50% (~ 1.85 GBq, 50 mCi); yields improved as processes were optimized. Labeling yields for [68Ga]Ga-PSMA-11 were near quantitative (~ 1.67 GBq, 45 mCi) at EOS. Cyclotron produced [68Ga]Ga-PSMA-11 underwent full quality control, stability and sterility testing, and was implemented for human use at the University of Michigan as an Investigational New Drug through the US FDA and also at the Royal Prince Alfred Hospital (RPA). CONCLUSION: Direct cyclotron irradiation of a liquid target provides clinically relevant quantities of [68Ga]Ga-PSMA-11 and is a viable alternative to traditional 68Ge/68Ga generators.

10.
Rev Sci Instrum ; 89(4): 043511, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29716332

RESUMEN

Radiochromic film is used extensively in many medical, industrial, and scientific applications. In particular, the film is used in analysis of proton generation and in high intensity laser-plasma experiments where very high dose levels can be obtained. The present study reports calibration of the dose response of Gafchromic EBT3 and HD-V2 radiochromic films up to high exposure densities. A 2D scanning confocal densitometer system is employed to carry out accurate optical density measurements up to optical density 5 on the exposed films at the peak spectral absorption wavelengths. Various wavelengths from 400 to 740 nm are also scanned to extend the practical dose range of such films by measuring the response at wavelengths removed from the peak response wavelengths. Calibration curves for the optical density versus exposure dose are determined and can be used for quantitative evaluation of measured doses based on the measured optical densities. It was found that blue and UV wavelengths allowed the largest dynamic range though at some trade-off with overall accuracy.

11.
Appl Radiat Isot ; 115: 197-207, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27423020

RESUMEN

This investigation evaluated target fabrication and beam parameters for scale-up production of high specific activity (186)Re using deuteron irradiation of enriched (186)W via the (186)W(d,2n)(186)Re reaction. Thick W and WO3 targets were prepared, characterized and evaluated in deuteron irradiations. Full-thickness targets, as determined using SRIM, were prepared by uniaxially pressing powdered natural abundance W and WO3, or 96.86% enriched (186)W, into Al target supports. Alternatively, thick targets were prepared by pressing (186)W between two layers of graphite powder or by placing pre-sintered (1105°C, 12h) natural abundance WO3 pellets into an Al target support. Assessments of structural integrity were made on each target prepared. Prior to irradiation, material composition analyses were conducted using SEM, XRD, and Raman spectroscopy. Within a minimum of 24h post irradiation, gamma-ray spectroscopy was performed on all targets to assess production yields and radionuclidic byproducts. Problems were encountered with the structural integrity of some pressed W and WO3 pellets before and during irradiation, and target material characterization results could be correlated with the structural integrity of the pressed target pellets. Under the conditions studied, the findings suggest that all WO3 targets prepared and studied were unacceptable. By contrast, (186)W metal was found to be a viable target material for (186)Re production. Thick targets prepared with powdered (186)W pressed between layers of graphite provided a particularly robust target configuration.

12.
Nucl Med Biol ; 39(4): 551-9, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22226026

RESUMEN

INTRODUCTION: The shortage of reactor-produced molybdenum-99 ((99)Mo, t(½)=66 h) has renewed interest in alternative production methods of its daughter isotope, technetium-99m ((99m)Tc, t(½)=6.02 h). While adsorption chromatography serves as a mechanism for selective elution of sodium pertechnetate from technetium generators, this method of purification is not sufficient for many alternative production methods. Several ion-separation/solid phase extraction chromatography methods are known, yet none have been demonstrated on cyclotron-produced [(99m)Tc]TcO(4)(-). Herein we describe the design, manufacture and optimization of a remotely operated module for the purification of sodium pertechnetate from a bulk solution of molybdate. METHODS: The automated purification module was designed to separate [(99m)Tc]TcO(4)(-) using either Dowex 1x8 or an Aqueous Biphasic Extraction Chromatography (ABEC) resin. (100)Mo composite targets were irradiated with 18.5 MeV protons for 10 µA·h using an ASCI TR19 cyclotron. Once purified, the radiopharmaceutical quality of (99m)TcO(4)(-) isolated from each process (Dowex and/or ABEC) was established by assaying for molybdate breakthrough, alumina levels and, in the case of the Dowex approach, residual organics. RESULTS: The separation processes are efficient (75% for Dowex, 90% for ABEC) and complete in less than 30 min. Overall, up to 2.1 GBq of (99m)Tc was produced using the (100)Mo(p,2n)(99m)Tc transformation, processed using the separation module and subjected to a detailed chemical and radionuclidic analysis. Due to its expense and limited availability, (100)MoO(4)(2-) was recovered in >90% yield using a precipitation/filtration/lyophilization approach. CONCLUSIONS: Na[(99m)Tc]TcO(4) was produced using a medical cyclotron, recovered using an automated purification module and found to exceed all established quality control parameters.


Asunto(s)
Fraccionamiento Químico/métodos , Ciclotrones , Pertecnetato de Sodio Tc 99m/aislamiento & purificación , Automatización , Cromatografía por Intercambio Iónico , Resinas de Intercambio Iónico/química , Molibdeno/aislamiento & purificación , Control de Calidad , Pertecnetato de Sodio Tc 99m/química
13.
Curr Radiopharm ; 4(2): 90-101, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22191648

RESUMEN

This review gives a survey on the use and applications of technetium-94m ((94m)Tc) as a non-conventional positron emission tomography (PET) radionuclide for molecular imaging. The first part of this review describes the production and processing of (94m)Tc. The second part covers basic concepts of technetium coordination chemistry with a special focus on the synthesis of (94m)Tc-labeled compounds for molecular imaging purposes. The review concludes with a summary and an outlook on the prospects of using (94m)Tc in the field of PET chemistry and molecular imaging.


Asunto(s)
Tomografía de Emisión de Positrones/métodos , Radiofármacos , Tecnecio , Humanos , Isótopos , Tecnecio/química , Tecnecio/aislamiento & purificación
14.
Appl Radiat Isot ; 69(1): 247-53, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20926304

RESUMEN

This work recommends a new and simple-to-perform method for measuring the beam energy of an accelerator. The proposed method requires the irradiation of two monitor foils interspaced by an energy degrader. The primary advantage of the proposed method, which makes this method unique from previous energy evaluation strategies that employ the use of monitor foils, is that this method is independent of the detector efficiency calibration. This method was evaluated by performing proton activation of (nat)Cu foils using both a cyclotron and a tandem Van de Graaff accelerator. The monitor foil activities were read using a dose calibrator set to an arbitrary calibration setting. Excellent agreement was noted between the nominal and measured proton energies.


Asunto(s)
Ciclotrones/instrumentación , Medicina Nuclear/métodos , Radiofármacos/química , Ciclotrones/normas , Humanos , Medicina Nuclear/normas , Radiofármacos/síntesis química
15.
Nucl Med Biol ; 38(6): 907-16, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21843787

RESUMEN

INTRODUCTION: The cyclotron-based (100)Mo(p,2n)(99m)Tc transformation has been proposed as a viable alternative to the reactor based (235)U(n,f)(99)Mo→(99m)Tc strategy for production of (99m)Tc. Despite efforts to theoretically model the amount of ground-state (99g)Tc present at end of bombardment for the (p,2n) reaction, experimental validation has yet to be performed. The co-production of (99g)Tc may have important implications in both the subsequent radiopharmaceutical chemistry and patient dosimetry upon injection. METHODS: To determine the extent of (99g)Tc co-production, we have experimentally measured the (100)Mo(p,x)(99)Mo, (99m)Tc, and (99g)Tc excitation functions in the 8-18 MeV range using a combination of natural abundance and 97.42% enriched (100)Mo foils along with γ-ray spectrometry and ICP-MS. Although the excitation functions for production of (99)Mo and (99m)Tc have been presented previously in the literature, to the best of our knowledge, this work presents the first experimental evaluation of the (100)Mo(p,2n)(99g)Tc excitation function. RESULTS: From the experimental cross-section measurements, the (99m)Tc production yields and (99m)Tc/(99m+g)Tc nuclei ratio were calculated for various thick target irradiation conditions. Results suggest that TBq quantities of (99m)Tc can be achieved with a (99m)Tc/(99m+g)Tc nuclei ratio that is on par with the current (99)Mo/(99m)Tc generator standard eluted at a 24-h frequency. CONCLUSION: These findings suggest that the cyclotron production of (99m)Tc may be a feasible alternative to the current reactor-based production strategy.


Asunto(s)
Ciclotrones , Molibdeno/química , Radioquímica/instrumentación , Radioisótopos/química , Tecnecio/química , Molibdeno/aislamiento & purificación , Radioisótopos/aislamiento & purificación , Tecnecio/aislamiento & purificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA