Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
IEEE Trans Med Imaging ; 40(1): 81-92, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32894711

RESUMEN

Alzheimer's Disease (AD), one of the main causes of death in elderly people, is characterized by Mild Cognitive Impairment (MCI) at prodromal stage. Nevertheless, only part of MCI subjects could progress to AD. The main objective of this paper is thus to identify those who will develop a dementia of AD type among MCI patients. 18F-FluoroDeoxyGlucose Positron Emission Tomography (18F-FDG PET) serves as a neuroimaging modality for early diagnosis as it can reflect neural activity via measuring glucose uptake at resting-state. In this paper, we design a deep network on 18F-FDG PET modality to address the problem of AD identification at early MCI stage. To this end, a Multi-view Separable Pyramid Network (MiSePyNet) is proposed, in which representations are learned from axial, coronal and sagittal views of PET scans so as to offer complementary information and then combined to make a decision jointly. Different from the widely and naturally used 3D convolution operations for 3D images, the proposed architecture is deployed with separable convolution from slice-wise to spatial-wise successively, which can retain the spatial information and reduce training parameters compared to 2D and 3D networks, respectively. Experiments on ADNI dataset show that the proposed method can yield better performance than both traditional and deep learning-based algorithms for predicting the progression of Mild Cognitive Impairment, with a classification accuracy of 83.05%.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Anciano , Enfermedad de Alzheimer/diagnóstico por imagen , Encéfalo/diagnóstico por imagen , Disfunción Cognitiva/diagnóstico por imagen , Progresión de la Enfermedad , Fluorodesoxiglucosa F18 , Humanos , Tomografía de Emisión de Positrones
2.
IEEE J Biomed Health Inform ; 23(4): 1499-1506, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30028716

RESUMEN

Using a single imaging modality to diagnose Alzheimer's disease (AD) or mild cognitive impairment (MCI) is a challenging task. FluoroDeoxyGlucose Positron Emission Tomography (FDG-PET) is an important and effective modality used for that purpose. In this paper, we develop a novel method by using single modality (FDG-PET) but multilevel feature, which considers both region properties and connectivities between regions to classify AD or MCI from normal control. First, three levels of features are extracted: statistical, connectivity, and graph-based features. Then, the connectivity features are decomposed into three different sets of features according to a proposed similarity-driven ranking method, which can not only reduce the feature dimension but also increase the classifier's diversity. Last, after feeding the three levels of features to different classifiers, a new classifier selection strategy, maximum Mean squared Error (mMsE), is developed to select a pair of classifiers with high diversity. In order to do the majority voting, a decision-making scheme, a nested cross validation technique is applied to choose another classifier according to the accuracy. Experiments on Alzheimer's Disease Neuroimaging Initiative database show that the proposed method outperforms most FDG-PET-based classification algorithms, especially for classifying progressive MCI (pMCI) from stable MCI (sMCI).


Asunto(s)
Enfermedad de Alzheimer/diagnóstico por imagen , Encéfalo/diagnóstico por imagen , Interpretación de Imagen Asistida por Computador/métodos , Aprendizaje Automático , Tomografía de Emisión de Positrones/métodos , Algoritmos , Disfunción Cognitiva/diagnóstico por imagen , Bases de Datos Factuales , Fluorodesoxiglucosa F18 , Humanos , Neuroimagen/métodos , Máquina de Vectores de Soporte
3.
Comput Methods Programs Biomed ; 180: 105027, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31430595

RESUMEN

BACKGROUND AND OBJECTIVE: 18F-FluoroDeoxyGlucose Positron Emission Tomography (18F-FDG PET) is one of the imaging biomarkers to diagnose Alzheimer's Disease (AD). In 18F-FDG PET images, the changes of voxels' intensities reflect the differences of glucose rates, therefore voxel intensity is usually used as a feature to distinguish AD from Normal Control (NC), or at earlier stage to distinguish between progressive and stable Mild Cognitive Impairment (pMCI and sMCI). In this paper, 18F-FDG PET images are characterized in an alternative way-the spatial gradient, which is motivated by the observation that the changes of 18F-FDG rates also cause gradient changes. METHODS: We improve Histogram of Oriented Gradient (HOG) descriptor to quantify spatial gradients, thereby achieving the goal of diagnosing AD. First, the spatial gradient of 18F-FDG PET image is computed, and then each subject is segmented into different regions by using an anatomical atlas. Second, two types of improved HOG features are extracted from each region, namely Small Scale HOG and Large Scale HOG, then some relevant regions are selected based on a classifier fed with spatial gradient features. Last, an ensemble classification framework is designed to make a decision, which considers the performance of both individual and concatenated selected regions. RESULTS: the evaluation is done on ADNI dataset. The proposed method outperforms other state-of-the-art 18F-FDG PET-based algorithms for AD vs. NC with an accuracy, a sensitivity and a specificity values of 93.65%, 91.22% and 96.25%, respectively. For the case of pMCI vs. sMCI, the three metrics are 75.38%, 74.84% and 77.11%, which is significantly better than most existing methods. Besides, promising results are also achieved for multiple classifications under 18F-FDG PET modality. CONCLUSIONS: 18F-FDG PET images can be characterized by spatial gradient features for diagnosing AD and its early stage, and the proposed ensemble framework can enhance the classification performance.


Asunto(s)
Enfermedad de Alzheimer/diagnóstico , Fluorodesoxiglucosa F18 , Tomografía de Emisión de Positrones/métodos , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Masculino
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA