Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
PLoS Biol ; 22(4): e3002447, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38687779

RESUMEN

Powerful, workflow-agnostic and interactive visualisation is essential for the ad hoc, human-in-the-loop workflows typical of cryo-electron tomography (cryo-ET). While several tools exist for visualisation and annotation of cryo-ET data, they are often integrated as part of monolithic processing pipelines, or focused on a specific task and offering limited reusability and extensibility. With each software suite presenting its own pros and cons and tools tailored to address specific challenges, seamless integration between available pipelines is often a difficult task. As part of the effort to enable such flexibility and move the software ecosystem towards a more collaborative and modular approach, we developed blik, an open-source napari plugin for visualisation and annotation of cryo-ET data (source code: https://github.com/brisvag/blik). blik offers fast, interactive, and user-friendly 3D visualisation thanks to napari, and is built with extensibility and modularity at the core. Data is handled and exposed through well-established scientific Python libraries such as numpy arrays and pandas dataframes. Reusable components (such as data structures, file read/write, and annotation tools) are developed as independent Python libraries to encourage reuse and community contribution. By easily integrating with established image analysis tools-even outside of the cryo-ET world-blik provides a versatile platform for interacting with cryo-ET data. On top of core visualisation features-interactive and simultaneous visualisation of tomograms, particle picks, and segmentations-blik provides an interface for interactive tools such as manual, surface-based and filament-based particle picking, and image segmentation, as well as simple filtering tools. Additional self-contained napari plugins developed as part of this work also implement interactive plotting and selection based on particle features, and label interpolation for easier segmentation. Finally, we highlight the differences with existing software and showcase blik's applicability in biological research.


Asunto(s)
Microscopía por Crioelectrón , Tomografía con Microscopio Electrónico , Imagenología Tridimensional , Programas Informáticos , Tomografía con Microscopio Electrónico/métodos , Microscopía por Crioelectrón/métodos , Imagenología Tridimensional/métodos , Humanos , Procesamiento de Imagen Asistido por Computador/métodos
2.
PLoS Biol ; 19(8): e3001319, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34437530

RESUMEN

Cryo-electron tomography (cryo-ET) and subtomogram averaging (STA) are increasingly used for macromolecular structure determination in situ. Here, we introduce a set of computational tools and resources designed to enable flexible approaches to STA through increased automation and simplified metadata handling. We create a bidirectional interface between the Dynamo software package and the Warp-Relion-M pipeline, providing a framework for ab initio and geometrical approaches to multiparticle refinement in M. We illustrate the power of working within this framework by applying it to EMPIAR-10164, a publicly available dataset containing immature HIV-1 virus-like particles (VLPs), and a challenging in situ dataset containing chemosensory arrays in bacterial minicells. Additionally, we provide a comprehensive, step-by-step guide to obtaining a 3.4-Å reconstruction from EMPIAR-10164. The guide is hosted on https://teamtomo.org/, a collaborative online platform we establish for sharing knowledge about cryo-ET.


Asunto(s)
Microscopía por Crioelectrón , Tomografía con Microscopio Electrónico , Procesamiento de Imagen Asistido por Computador/métodos , Programas Informáticos , Escherichia coli , Metadatos
3.
Biomolecules ; 13(3)2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36979390

RESUMEN

The protein C is a small viral protein encoded in an overlapping frame of the P gene in the subfamily Orthoparamyxovirinae. This protein, expressed by alternative translation initiation, is a virulence factor that regulates viral transcription, replication, and production of defective interfering RNA, interferes with the host-cell innate immunity systems and supports the assembly of viral particles and budding. We expressed and purified full-length and an N-terminally truncated C protein from Tupaia paramyxovirus (TupV) C protein (genus Narmovirus). We solved the crystal structure of the C-terminal part of TupV C protein at a resolution of 2.4 Å and found that it is structurally similar to Sendai virus C protein, suggesting that despite undetectable sequence conservation, these proteins are homologous. We characterized both truncated and full-length proteins by SEC-MALLS and SEC-SAXS and described their solution structures by ensemble models. We established a mini-replicon assay for the related Nipah virus (NiV) and showed that TupV C inhibited the expression of NiV minigenome in a concentration-dependent manner as efficiently as the NiV C protein. A previous study found that the Orthoparamyxovirinae C proteins form two clusters without detectable sequence similarity, raising the question of whether they were homologous or instead had originated independently. Since TupV C and SeV C are representatives of these two clusters, our discovery that they have a similar structure indicates that all Orthoparamyxovirine C proteins are homologous. Our results also imply that, strikingly, a STAT1-binding site is encoded by exactly the same RNA region of the P/C gene across Paramyxovirinae, but in different reading frames (P or C), depending on which cluster they belong to.


Asunto(s)
Virus Nipah , Dispersión del Ángulo Pequeño , Difracción de Rayos X , Virus Nipah/genética , Virus Nipah/metabolismo , Inmunidad Innata , ARN/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA