Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
Plant Physiol ; 170(2): 807-20, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26676255

RESUMEN

Cuticle function is closely related to the structure of the cutin polymer. However, the structure and formation of this hydrophobic polyester of glycerol and hydroxy/epoxy fatty acids has not been fully resolved. An apoplastic GDSL-lipase known as CUTIN SYNTHASE1 (CUS1) is required for cutin deposition in tomato (Solanum lycopersicum) fruit exocarp. In vitro, CUS1 catalyzes the self-transesterification of 2-monoacylglycerol of 9(10),16-dihydroxyhexadecanoic acid, the major tomato cutin monomer. This reaction releases glycerol and leads to the formation of oligomers with the secondary hydroxyl group remaining nonesterified. To check this mechanism in planta, a benzyl etherification of nonesterified hydroxyl groups of glycerol and hydroxy fatty acids was performed within cutin. Remarkably, in addition to a significant decrease in cutin deposition, mid-chain hydroxyl esterification of the dihydroxyhexadecanoic acid was affected in tomato RNA interference and ethyl methanesulfonate-cus1 mutants. Furthermore, in these mutants, the esterification of both sn-1,3 and sn-2 positions of glycerol was impacted, and their cutin contained a higher molar glycerol-to-dihydroxyhexadecanoic acid ratio. Therefore, in planta, CUS1 can catalyze the esterification of both primary and secondary alcohol groups of cutin monomers, and another enzymatic or nonenzymatic mechanism of polymerization may coexist with CUS1-catalyzed polymerization. This mechanism is poorly efficient with secondary alcohol groups and produces polyesters with lower molecular size. Confocal Raman imaging of benzyl etherified cutins showed that the polymerization is heterogenous at the fruit surface. Finally, by comparing tomato mutants either affected or not in cutin polymerization, we concluded that the level of cutin cross-linking had no significant impact on water permeance.


Asunto(s)
Lipasa/metabolismo , Lípidos de la Membrana/química , Solanum lycopersicum/enzimología , Esterificación , Ésteres/química , Metanosulfonato de Etilo/metabolismo , Ácidos Grasos/química , Frutas/enzimología , Frutas/genética , Glicerol/química , Lipasa/genética , Solanum lycopersicum/genética , Lípidos de la Membrana/metabolismo , Mutación , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Poliésteres/química , Polimerizacion , Polímeros/química
2.
Langmuir ; 33(21): 5117-5126, 2017 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-28475345

RESUMEN

In many liposome applications, the nanomechanical properties of the membrane envelope are essential to ensure, e.g., physical stability, protection, or penetration into tissues. Of all factors, the lipid composition and its phase behavior are susceptible to tune the mechanical properties of membranes. To investigate this, small unilamellar vesicles (SUV; diameter < 200 nm), referred to as liposomes, were produced using either unsaturated 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) or saturated 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) in aqueous buffer at pH 6.7. The respective melting temperatures of these phospholipids were -20 and 41 °C. X-ray diffraction analysis confirmed that at 20 °C DOPC was in the fluid phase and DPPC was in the gel phase. After adsorption of the liposomes onto flat silicon substrates, atomic force microscopy (AFM) was used to image and probe the mechanical properties of the liposome membrane. The resulting force-distance curves were treated using an analytical model based on the shell theory to yield the Young's modulus (E) and the bending rigidity (kC) of the curved membranes. The mechanical investigation showed that DPPC membranes were much stiffer (E = 116 ± 45 MPa) than those of DOPC (E = 13 ± 9 MPa) at 20 °C. The study demonstrates that the employed methodology allows discrimination of the respective properties of gel- or fluid-phase membranes when in the shape of liposomes. It opens perspectives to map the mechanical properties of liposomes containing both fluid and gel phases or of biological systems.


Asunto(s)
Fosfolípidos/química , Membrana Dobles de Lípidos , Liposomas , Fenómenos Mecánicos , Microscopía de Fuerza Atómica , Fosfatidilcolinas , Análisis Espectral
3.
Langmuir ; 33(13): 3223-3233, 2017 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-28291357

RESUMEN

The self-assembling properties of glycerol esters in water are well known. Still, few data on glycerol monoesters of undecylenic acid are available. The aim of this study was to highlight the behavior of glycerol monoundecenoate (GM-C11:1) in different diluted and concentrated states. Its self-assembling properties in water and upon solid inorganic surfaces were investigated in the diluted state using surface tension experiments, atomic force microscopy, and cryogenic transmission electron microscopy studies. In the concentrated state, the gelling properties in the presence of water were investigated using polarized light microscopy, differential scanning calorimetry (DSC), and small-angle X-ray scattering (SAXS) experiments. GM-C11:1 at 100 mg/L self-assembles at the liquid/air interfaces as aggregates of approximately 20 nm in diameter, organized into concentric forms. These aggregates are spherical globules composed of several molecules of GM-C11:1. At higher concentrations (1000 and 104 mg/L), GM-C11:1 is able to uniformly coat liquid/air and liquid/solid interfaces. In bulk, GM-C11:1 forms spontaneously aggregates and vesicles. In a more concentrated state, GM-C11:1 assembles into lamellar Lß and Lα forms in water. By cross-referencing SAXS and DSC findings, we were able to distinguish between interlamellar water molecules strongly bound to GM-C11:1 and other molecules remaining unbound and considered to be "mobile" water. The percentage of water strongly bound was proportional to the percentage of GM-C11:1 in the system. In this case, GM-C11:1 appears to be an effective molecule for surface treatments for which water retention is important.


Asunto(s)
Ácidos Grasos Monoinsaturados/química , Glicerol/química , Agua/química , Ácidos Grasos Monoinsaturados/síntesis química , Glicerol/síntesis química , Estructura Molecular
4.
Angew Chem Int Ed Engl ; 56(44): 13689-13693, 2017 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-28901673

RESUMEN

We report on the formation of surfactant-based complex catanionic coacervate droplets in mixtures of decanoic acid and cetylpyridinium chloride or cetyltrimethylammonium bromide. We show that coacervation occurs over a broad range of composition, pH, and ionic strength. The catanionic coacervates consist of elongated micelles, sequester a wide range of solutes including water-soluble organic dyes, polysaccharides, proteins, enzymes, and DNA, and can be structurally stabilized by sodium alginate or gelatin-based hydrogelation. These results suggest that catanionic coacervates could be exploited as a novel surfactant-based membrane-free protocell model.

5.
Chemistry ; 22(46): 16522-16530, 2016 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-27689774

RESUMEN

We have investigated the effect of non-thermal atmospheric plasma (NTAP) on the structure of microcrystalline cellulose. In particular, by means of different characterization methods, we demonstrate that NTAP promotes the partial cleavage of the ß-1,4 glycosidic bond of cellulose leading to the release of short-chain cellodextrins that are reassembled in situ, preferentially at the C6 position, to form branched glucans with either a glucosyl or anhydroglucosyl terminal residue. The ramification of cellulosic chain induced by NTAP yields branched glucans that are soluble in DMSO or in water, thus opening a straightforward access to processable glucans from cellulose. Importantly, the absence of solvent and catalyst considerably facilitates downstream processing as compared to (bio)catalytic processes which typically occur in diluted conditions.


Asunto(s)
Celulosa/análogos & derivados , Celulosa/química , Dextrinas/química , Glucanos/química , Gases em Plasma/química , Solubilidad
6.
Langmuir ; 32(2): 401-10, 2016 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-26700689

RESUMEN

Saturated long chain fatty acids (sLCFA, e.g., C14:0, C16:0, and C18:0) are potentially the greenest and cheapest surfactants naturally available. However, because aqueous sodium soaps of sLCFA are known to crystallize, the self-assembly of stable bilayer vesicles has not been reported yet. Here, by using such soaps in combination with guanidine hydrochloride (GuHCl), which has been shown recently to prevent crystallization, we were capable of producing stable bilayer vesicles made of sLCFA. The phase diagrams were established for a variety of systems showing that vesicles can form in a broad range of composition and pH. Both solid state NMR and small-angle neutron scattering allowed demonstrating that in such vesicles sLCFA are arranged in a bilayer structure which exhibits similar dynamic and structural properties as those of phospholipid membranes. We expect these vesicles to be of interest as model systems of protocells and minimal cells but also for various applications since fatty acids are potentially substitutes to phospholipids, synthetic surfactants, and polymers.


Asunto(s)
Células Artificiales/química , Ácidos Grasos/química , Membrana Dobles de Lípidos/química , Células Artificiales/ultraestructura , Guanidina/química , Concentración de Iones de Hidrógeno , Microscopía Electrónica de Transmisión , Transición de Fase
7.
Plant Cell ; 24(7): 3119-34, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22805434

RESUMEN

The plant cuticle consists of cutin, a polyester of glycerol, hydroxyl, and epoxy fatty acids, covered and filled by waxes. While the biosynthesis of cutin building blocks is well documented, the mechanisms underlining their extracellular deposition remain unknown. Among the proteins extracted from dewaxed tomato (Solanum lycopersicum) peels, we identified GDSL1, a member of the GDSL esterase/acylhydrolase family of plant proteins. GDSL1 is strongly expressed in the epidermis of growing fruit. In GDSL1-silenced tomato lines, we observed a significant reduction in fruit cuticle thickness and a decrease in cutin monomer content proportional to the level of GDSL1 silencing. A significant decrease of wax load was observed only for cuticles of the severely silenced transgenic line. Fourier transform infrared (FTIR) analysis of isolated cutins revealed a reduction in cutin density in silenced lines. Indeed, FTIR-attenuated total reflectance spectroscopy and atomic force microscopy imaging showed that drastic GDSL1 silencing leads to a reduction in ester bond cross-links and to the appearance of nanopores in tomato cutins. Furthermore, immunolabeling experiments attested that GDSL1 is essentially entrapped in the cuticle proper and cuticle layer. These results suggest that GDSL1 is specifically involved in the extracellular deposition of the cutin polyester in the tomato fruit cuticle.


Asunto(s)
Hidrolasas de Éster Carboxílico/metabolismo , Frutas/enzimología , Lípidos de la Membrana/metabolismo , Solanum lycopersicum/enzimología , Hidrolasas de Éster Carboxílico/genética , Hidrolasas de Éster Carboxílico/aislamiento & purificación , Regulación hacia Abajo/genética , Frutas/química , Frutas/genética , Frutas/ultraestructura , Regulación de la Expresión Génica de las Plantas/genética , Silenciador del Gen , Solanum lycopersicum/química , Solanum lycopersicum/genética , Solanum lycopersicum/ultraestructura , Lípidos de la Membrana/química , Microscopía de Fuerza Atómica , Epidermis de la Planta/química , Epidermis de la Planta/enzimología , Epidermis de la Planta/genética , Epidermis de la Planta/ultraestructura , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Proteómica , Interferencia de ARN , Ceras/química , Ceras/metabolismo
8.
Langmuir ; 31(50): 13501-10, 2015 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-26606128

RESUMEN

Oil foams are composed of gas bubbles dispersed in an oil phase. These systems are scarcely studied despite their great potential in diverse fields such as the food and cosmetic industries. Contrary to aqueous foams, the production of oil foams is difficult to achieve due to the inefficiency of surfactant adsorption at oil-air interfaces. Herein, we report a simple way to produce oil foams from oleogels, whose liquid phase is a mixture of sunflower oil and fatty alcohols. The temperature at which the oleogel formed was found to depend on both fatty alcohol chain length and concentration. The air bubbles in the oleogel foam were stabilized by fatty alcohol crystals. Below the melting temperature of the crystals, oleogel foams were stable for months. Upon heating, these ultrastable foams collapsed within a few minutes due to the melting of the crystal particles. The transition between crystal formation and melting was reversible, leading to thermoresponsive nonaqueous foams. The reversible switching between ultrastable and unstable foam depended solely on the temperature of the system. We demonstrate that these oleogel foams can be made to be photoresponsive by using internal heat sources such as carbon black particles, which can absorb UV light and dissipate the absorbed energy as heat. This simple approach for the formulation of responsive oil foams could be easily extended to other oleogel systems and could find a broad range of applications due to the availability of the components in large quantities and at low cost.


Asunto(s)
Alcoholes Grasos/química , Lípidos/química , Aceites de Plantas/química , Compuestos Orgánicos/química , Tamaño de la Partícula , Aceite de Girasol , Propiedades de Superficie , Temperatura
9.
Soft Matter ; 11(26): 5365-73, 2015 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-26058354

RESUMEN

Although the biochemical processes of lipid digestion are well-known, the biophysical ones, responsible for the assembly of molecules into functional structures, lack studies resolving both time and space scales. About 35 years ago, the seminal microscopy study of Patton and Carey constituted a major advance to reach this goal. Nowadays, new perspectives arise from the availability of large facilities scattering techniques, able to monitor the dynamics of multi-scale assemblies with unprecedented resolutions. The present small angle X-ray scattering (SAXS) study focused on the roles of the emulsifier and triglyceride in the formation of lipid assemblies during emulsion digestion in vitro. By developing several interpretations of the data in the whole space range (qualitative, shape-dependent and shape-independent models), the characteristic size of the assemblies and their transition times were obtained, which depended on the triglyceride, but not on the emulsifier. The major assembly formed was found to be a spherical mixed micelle, but vesicle was also found to coexist throughout the digestion, although in a lower proportion. The quantitative determination of the sizes and proportions of these assemblies, as well as the evolution of these characteristics during digestion are precious information for nutritional sciences, as these assemblies are the vehicles of lipophilic nutrients and micronutrients towards their absorption site.


Asunto(s)
Digestión , Emulsiones/química , Emulsiones/metabolismo , Dispersión del Ángulo Pequeño , Sincrotrones , Difracción de Rayos X , Mucosa Intestinal/metabolismo , Cinética , Modelos Biológicos , Análisis Espacio-Temporal , Triglicéridos/química , Triglicéridos/metabolismo
10.
Int J Hyperthermia ; 31(4): 349-58, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25677841

RESUMEN

Focused ultrasound (FUS) is a versatile technology for non-invasive thermal therapies in oncology. Indeed, this technology has great potential for local heat-mediated drug delivery from thermosensitive liposomes (TSLs), thus improving therapeutic efficacy and reducing toxicity profiles. In the present study we evaluated the influence of FUS parameters on the release of calcein from TSLs used to model a hydrophilic drug. Quantitative calcein release from TSLs (DPPC/CHOL/DSPE-PEG2000: 90/5/5) and non-thermosensitive liposomes (NTSLs) (DPPC/CHOL/DSPE-PEG2000: 65/30/5) was measured by spectrofluorimetry after both water bath and FUS-induced in vitro heating. The heating of TSLs at 42 °C in a water bath resulted in a maximum calcein release of 45%. No additional calcein release was observed at temperatures above 42 °C. A similar percentage of calcein release was achieved when TSLs were exposed to 1 MHz sinusoidal waves at peak negative pressure of 1.5 MPa, 40% duty cycle, for 10 min (i.e. above 42 °C). No release was detected when NTSLs were heated in a water bath. For both TSLs and NTSLs, the calcein release was increased by more than 10% for acoustic pressures ranging from 1.5 MPa to 2 MPa. This additional release was attributed to the mechanical stress generated by FUS, which was sufficient to disrupt the liposomal membrane. Furthermore, analysis of cryo-TEM images showed a significant decrease in liposome size (14%) induced by the thermal effect, whereas the liposome diameter remained unaffected by the FUS-triggered non-thermal effects.


Asunto(s)
Sistemas de Liberación de Medicamentos/métodos , Fluoresceínas/química , Colorantes Fluorescentes/química , Liposomas/química , Terapia por Ultrasonido/métodos , Interacciones Hidrofóbicas e Hidrofílicas , Espectrometría de Fluorescencia , Estrés Mecánico , Temperatura , Sensación Térmica
11.
Biopolymers ; 101(9): 975-84, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24912753

RESUMEN

The current study describes an approach to creation of catalytically active particles with increased stability from enzymes by N-homocysteinylation, a naturally presented protein modification. Enzymatic activities and properties of two globular tetrameric enzymes glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and lactate dehydrogenase (LDH) were studied before and after N-homocysteinylation. Modification of these proteins concerns the accessible lysine residues and introduces an average of 2-2,5 homocysteine residues per protein monomer. Formation of a range of aggregates was observed for both enzymes, which assemble via formation of intermolecular noncovalent bonds and by disulfide bonds. It was demonstrated that both studied enzymes retain their catalytic activities on modification and the subsequent formation of oligomeric forms. At low concentrations of homocysteine thiolactone, modification of GAPDH leads not only to prevention of spontaneous inactivation but also increases thermal stability of this enzyme on heating to 80°C. A moderate reduction of the activity of GAPDH observed in case of its crosslinking with 50-fold excess of homocysteine thiolactone per lysine is probably caused by hindered substrate diffusion. Spherical particles of 100 nm and larger diameters were observed by transmission electron microscopy and atomic force microscope techniques after modification of GAPDH with different homocysteine thiolactone concentrations. In case of LDH, branched fibril-like aggregates were observed under the same conditions. Interestingly, crosslinked samples of both proteins were found to have reversible thermal denaturation profiles, indicating that modification with homocysteine thiolactone stabilizes the spatial structure of these enzymes.


Asunto(s)
Reactivos de Enlaces Cruzados/metabolismo , Gliceraldehído-3-Fosfato Deshidrogenasa (Fosforilante)/metabolismo , Homocisteína/análogos & derivados , L-Lactato Deshidrogenasa/metabolismo , Animales , Rastreo Diferencial de Calorimetría , Catálisis , Electroforesis en Gel de Poliacrilamida , Gliceraldehído-3-Fosfato Deshidrogenasa (Fosforilante)/química , Homocisteína/metabolismo , Hidrodinámica , L-Lactato Deshidrogenasa/química , Lisina/metabolismo , Microscopía Electrónica de Transmisión , Modelos Moleculares , NAD/metabolismo , Conejos
12.
Langmuir ; 29(18): 5547-55, 2013 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-23565776

RESUMEN

Hybrid amphiphiles composed of a lipid covalently linked to biomolecules are attracting considerable attention, owing to their unique physicochemical and biological properties. Herein, we have synthesized novel amino acid-nucleotide-lipids (ANLs), presenting phenylalanine and thymidine residues and saturated or unsaturated diacyl glycerol lipid moieties to investigate the effect of the specific aminoacid moieties on both aggregation properties and interactions of ANLs with single strand polyA RNA. Physicochemical studies (DLS, cryo-TEM, and small angle X-ray scattering) indicate that phenylanaline amino acids inserted at the 5' position of the nucleotide-lipids stabilize multilamellar systems, whereas unilamellar vesicles are formed preferentially in the case of nucleotide-lipids (NLs). Both NLs and ANLs exhibit weak interactions with complementary polyA RNA as revealed by isothermal titration calorimetry investigations. The multilamellar vesicles obtained with ANLs could be used as a versatile carrier, suitable for both hydrophobic and hydrophilic therapeutic molecules.


Asunto(s)
Aminoácidos/química , Lípidos/química , Nucleótidos/química , Aminoácidos/síntesis química , Estructura Molecular , Tamaño de la Partícula , Propiedades de Superficie
13.
PLoS One ; 17(2): e0263276, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35130282

RESUMEN

In the context of studies on the effects of agricultural production diversity, there are debates in the scientific community as to the level of diversification appropriate for improving dietary diversity. In Tunisia, agriculture is a strategic sector for the economy and a critical pillar of its food sovereignty. Using instrumental variable methods to account for endogeneity, we have estimated the association between agricultural production diversity and women's dietary diversity among smallholder farming households in the Sidi Bouzid governorate (central Tunisia). Although we found a low level of agricultural production diversity and a fairly diversified diet among women, we observed a systematic weak positive association between five different indicators of agricultural production diversity and women's dietary diversity. We observed a stronger positive association between women's dietary diversity and women being more educated and households being wealthier. Neither diversity of food supplies in food markets nor market distance were associated with women's dietary diversity, whereas we observed a higher level of consumption of some products (dairy) when they were produced on the farm.


Asunto(s)
Agricultura , Productos Agrícolas , Dieta , Abastecimiento de Alimentos , Adulto , Agricultura/métodos , Animales , Animales Domésticos , Productos Agrícolas/clasificación , Productos Agrícolas/provisión & distribución , Productos Lácteos/provisión & distribución , Dieta/normas , Dieta/estadística & datos numéricos , Encuestas sobre Dietas , Ingestión de Alimentos/fisiología , Composición Familiar , Granjas , Femenino , Humanos , Persona de Mediana Edad , Modelos Teóricos , Evaluación Nutricional , Estado Nutricional , Población Rural/estadística & datos numéricos , Túnez/epidemiología , Salud de la Mujer , Adulto Joven
14.
Chemistry ; 17(48): 13495-501, 2011 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-22025327

RESUMEN

The Watson-Crick binding of DNA single strands is a powerful tool for the assembly of nanostructures. Our objective is to develop polymer nanoparticles equipped with DNA strands for surface-patterning applications, taking advantage of the DNA technology, in particular, recognition and reversibility. A hybrid DNA copolymer is synthesized through the conjugation of a ssDNA (22-mer) with a poly(ethylene oxide)-poly(caprolactone) diblock copolymer (PEO-b-PCl). It is shown that, in water, the PEO-b-PCl-ssDNA(22) polymer forms micelles with a PCl hydrophobic core and a hydrophilic corona made of PEO and DNA. The micelles are thoroughly characterized using electron microscopy (TEM and cryoTEM) and small-angle neutron scattering. The binding of these DNA micelles to a surface through DNA recognition is monitored using a quartz crystal microbalance and imaged by atomic force microscopy. The micelles can be released from the surface by a competitive displacement event.


Asunto(s)
ADN/química , Nanopartículas/química , Oligonucleótidos/química , Poliésteres/química , Polímeros/química , Micelas , Tamaño de la Partícula
15.
Langmuir ; 26(12): 9891-8, 2010 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-20222720

RESUMEN

With the aim of mimicking the plant cell wall, a layer by layer approach was used to build a thin film consisting of successive adsorption of pectin and extensin. Elaboration of the thin film was monitored by surface plasmon resonance, quartz crystal microbalance, and ellipsometry. All data indicate that formation of the film was successful and that growth occurred according to a nonuniform growth. It is likely that diffusion of the polymers occurred within the multilayer structure and that the final structure is not constituted by layered individual pectin and extensin films. Polymer rearrangements were also supported by the atomic force microscopy images that show a smoother surface after extensin adsorption than after pectin deposition.


Asunto(s)
Materiales Biomiméticos/química , Pared Celular/química , Glicoproteínas/química , Pectinas/química , Proteínas de Plantas/química , Plantas/química , Polímeros/química , Adsorción , Estructura Molecular , Plantas/ultraestructura
16.
Langmuir ; 26(8): 5329-34, 2010 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-20334439

RESUMEN

We report on dispersions of fatty acid-lysine salts in aqueous solutions which are further used to produce foams. The alkyl chain length is varied from dodecyl to stearic. In aqueous solutions, the lysine salt of the dodecyl chain yields an isotropic solution, probably micelles, whereas for longer alkyl chains, vesicles formed but crystallized upon resting at room temperature or when kept at 4 degrees C. Solid-state NMR showed that in vesicles fatty acids are embedded in a lamellar arrangement passing from a gel to a fluid state upon heating; the transition temperature at which it occurs was determined by DSC. Those results are confirmed by small-angle neutron scattering which also give additional information on the bilayer structure. Incredibly stable foams are obtained using the palmitic acid/Lys salt whereas for other alkyl chain length, poor or no foam is formed. We conclude that the foamability is related to the phase behavior in aqueous solution.


Asunto(s)
Ácidos Grasos/química , Lisina/química , Rastreo Diferencial de Calorimetría , Espectroscopía de Resonancia Magnética , Micelas , Microscopía Electrónica de Transmisión , Temperatura , Liposomas Unilamelares/química
17.
Nanomaterials (Basel) ; 10(1)2020 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-31941021

RESUMEN

Many investigations have pointed out widespread use of medical nanosystems in various domains of dentistry such as prevention, prognosis, care, tissue regeneration, and restoration. The progress of oral medicine nanosystems for individual prophylaxis is significant for ensuring bacterial symbiosis and high-quality oral health. Nanomaterials in oral cosmetics are used in toothpaste and other mouthwash to improve oral healthcare performance. These processes cover nanoparticles and nanoparticle-based materials, especially domains of application related to biofilm management in cariology and periodontology. Likewise, nanoparticles have been integrated in diverse cosmetic produces for the care of enamel remineralization and dental hypersensitivity. This review summarizes the indications and applications of several widely employed nanoparticles in oral cosmetics, and describes the potential clinical implementation of nanoparticles as anti-microbial, anti-inflammatory, and remineralizing agents in the prevention of dental caries, hypersensitivity, and periodontitis.

18.
Chemistry ; 15(42): 11151-9, 2009 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-19768714

RESUMEN

Di- and triblock non-ionic copolymers based on poly(ethylene oxide) and poly(propylene oxide) were studied for the stabilization of nanoparticles in water at high ionic strength. The effect of the molecular architecture (di- vs. triblock) of these amphiphilic copolymers was investigated by using gold nanoparticles (AuNPs) as probes for colloidal stability. The results demonstrate that both di- and triblock copolymers can provide long term stability, and that in both cases AuNPs are individually embedded within globules of polymers. However, in the case of diblock copolymers, the colloidal stability was related to the formation of micelles, in contrast with the case of triblock copolymers, which were previously shown to provide good stability even at concentrations at which micelles do not form. Quartz crystal microbalance (QCM) experiments showed that the presence of the hydrophobic block in the structure of the polymer is important to ensure quantitative adsorption upon a gold surface and to limit desorption. We demonstrate that with an appropriate choice of polymer, the polymer/AuNP hybrids can also undergo filtration and freeze-drying without noticeable aggregation, which can be very convenient for further applications. Finally, preliminary studies of the cytotoxicity effect on fibroblast cells show that the polymer/AuNP hybrids were not cytotoxic. TEM micrographs on ultrathin sections of cells after incubation with the colloidal solutions show that the nanoparticles were internalized into the cells, conserving their initial size and shape.


Asunto(s)
Oro/química , Nanopartículas del Metal/química , Polímeros/química , Animales , Células CHO , Cricetinae , Cricetulus , Nanopartículas del Metal/toxicidad , Micelas , Microscopía Electrónica de Transmisión , Polímeros/toxicidad
19.
Plant Sci ; 283: 51-59, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31128715

RESUMEN

Phenolic compounds in fruit are involved in responses to biotic and abiotic stresses and are responsible for organoleptic properties. To establish the distribution of these secondary metabolites at the tissue and sub-cellular scales, mapping of fluorescence in apple epidermis and outer cortex tissue in cryogenic condition was performed after deep-UV excitation at 275 nm. Douce Moën and Guillevic cider apple varieties were sampled and frozen after harvest, after 30 days at 4 °C and after 20 days at room temperature. Image analysis of fluorescence emission images acquired between 300 and 650 nm allowed the assignment of fluorescence signals to phenolic compound families based on reference molecules. Emission attributed to monomeric and/or condensed flavanol was localized in whole tissue with major fluorescence in the cuticle region. Hydroxycinnamic acids were found predominantly in the outer cortex and appeared in the cell wall. Fluorescent pigments were mostly found in the epidermis. The distribution of flavanols in the sub-cuticle and phenolic acids in the outer cortex distinguished apple varieties. Storage conditions had no impact on phenolic distribution. The proposed fluorescent imaging and analysis approach enables studies on phenolic distribution in relation to fruit development, biotic/abiotic stress resistance and quality.


Asunto(s)
Malus/metabolismo , Fenoles/metabolismo , Epidermis de la Planta/metabolismo , Microscopía por Crioelectrón , Flavonoides/metabolismo , Frutas/anatomía & histología , Frutas/metabolismo , Malus/anatomía & histología , Microscopía Confocal , Microscopía Fluorescente , Epidermis de la Planta/anatomía & histología , Espectrometría de Fluorescencia , Estilbenos/metabolismo , Rayos Ultravioleta
20.
Food Chem ; 274: 500-509, 2019 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-30372971

RESUMEN

Lycopene bioaccessibility is enhanced by processing, as explained by the destructuration of plant tissues, making diffusion easier. However, in tomato, the relationship between grinding intensity and lycopene release from purees suffers from uncertainty. In particular, hot break puree exhibited twice as much diffusible lycopene as compared to cold break, while both were processed with the same grinding intensity. To explain the difference, we systematically studied the diffusivity of particles according to their size and integrity, and used microscopic and physical analyses to reveal structural differences. Neither particle size distribution, nor cell destruction, nor plastid transformation exhibited any correlation to the differences in diffusivity. However, Raman microspectroscopy combined with a chemometric analysis revealed significant changes in lycopene spectra and a putative linkage to phospholipid transformation. Phospholipid profiling of five pairs of contrasted purees revealed that, during the cold break, a transition from complex phospholipids to more simple phosphatidic acid molecules systematically occurred.


Asunto(s)
Licopeno/química , Fosfolípidos/química , Solanum lycopersicum/química , Difusión , Emulsiones/química , Frutas/química , Frutas/metabolismo , Licopeno/metabolismo , Solanum lycopersicum/metabolismo , Aceites/química , Fosfolípidos/metabolismo , Análisis de Componente Principal , Reología , Temperatura , Agua/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA