Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(51): e2212723119, 2022 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-36508659

RESUMEN

The design of selective metal-binding sites is a challenge in both small-molecule and macromolecular chemistry. Selective recognition of manganese (II)-the first-row transition metal ion that tends to bind with the lowest affinity to ligands, as described by the Irving-Williams series-is particularly difficult. As a result, there is a dearth of chemical biology tools with which to study manganese physiology in live cells, which would advance understanding of photosynthesis, host-pathogen interactions, and neurobiology. Here we report the rational re-engineering of the lanthanide-binding protein, lanmodulin, into genetically encoded fluorescent sensors for MnII, MnLaMP1 and MnLaMP2. These sensors with effective Kd(MnII) of 29 and 7 µM, respectively, defy the Irving-Williams series to selectively detect MnII in vitro and in vivo. We apply both sensors to visualize kinetics of bacterial labile manganese pools. Biophysical studies indicate the importance of coordinated solvent and hydrophobic interactions in the sensors' selectivity. Our results establish lanmodulin as a versatile scaffold for design of selective protein-based biosensors and chelators for metals beyond the f-block.


Asunto(s)
Manganeso , Metales , Manganeso/metabolismo , Metales/metabolismo , Cinética , Ligandos
2.
Kidney Int ; 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38901603

RESUMEN

Imaging tools for kidney inflammation could improve care for patients suffering inflammatory kidney diseases by lessening reliance on percutaneous biopsy or biochemical tests alone. During kidney inflammation, infiltration of myeloid immune cells generates a kidney microenvironment that is oxidizing relative to normal kidney. Here, we evaluated whether magnetic resonance imaging (MRI) using the redox-active iron (Fe) complex Fe-PyC3A as an oxidatively activated probe could serve as a marker of kidney inflammation using mouse models of unilateral ischemia-reperfusion injury (IRI) and lupus nephritis (MRL-lpr mice). We imaged unilateral IRI in gp91phox knockout mice, which are deficient in the nicotinamide oxidase II (NOX2) enzyme required for myeloid oxidative burst, as loss of function control, and imaged MRL/MpJ mice as non-kidney involved lupus control. Gadoterate meglumine was used as a non-oxidatively activated control MRI probe. Fe-PyC3A safety was preliminarily examined following a single acute dose. FePyC3A generated significantly greater MRI signal enhancement in the IRI kidney compared to the contralateral kidney in wild-type mice, but the effect was not observed in the NOX2-deficient control. Fe-PyC3A also generated significantly greater kidney enhancement in MRL-lpr mice compared to MRL/MpJ control. Gadoterate meglumine did not differentially enhance the IRI kidney over the contralateral kidney and did not differentially enhance the kidneys of MRL-lpr over MRL/MpJ mice. Fe-PyC3A was well tolerated at the highest dose evaluated, which was a 40-fold greater than required for imaging. Thus, our data indicate that MRI using Fe-PyC3A is specific to an oxidizing kidney environment shaped by activity of myeloid immune cells and support further evaluation of Fe-PyC3A for imaging kidney inflammation.

3.
J Am Chem Soc ; 145(12): 6871-6879, 2023 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-36920018

RESUMEN

Many forms of anemia are caused or complicated by pathologic restriction of iron (Fe). Chronic inflammation and certain genetic mutations decrease the activity of ferroportin, the only Fe-exporter protein, so that endogenously recycled or nutritionally absorbed Fe cannot be exported to the extracellular Fe carrier protein transferrin for delivery to the bone marrow. Diminished ferroportin activity renders anemia correction challenging as Fe administered intravenously or through nutritional supplementation is trafficked through the ferroportin-transferrin axis. Utilizing judicious application of coordination chemistry principles, we designed an Fe complex (Fe-BBG) with solution thermodynamics and Fe dissociation kinetics optimized to replenish the transferrin-Fe pool rapidly, directly, and with precision. Fe-BBG is unreactive under conditions designed to force redox cycling and production of reactive oxygen species. The BBG ligand has a low affinity for divalent metal ions and does not compete for binding of other endogenously present ions including Cu and Zn. Treatment with Fe-BBG confers anemia correction in a mouse model of iron-refractory iron-deficiency anemia. Repeated exposure to Fe-BBG did not cause adverse clinical chemistry changes or trigger the expression of genes related to oxidative stress or inflammation. Fe-BBG represents the first entry in a promising new class of transferrin-targeted Fe replacement drugs.


Asunto(s)
Anemia Ferropénica , Anemia , Animales , Ratones , Hierro/metabolismo , Transferrina , Inflamación
4.
Angew Chem Int Ed Engl ; 61(3): e202114019, 2022 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-34814231

RESUMEN

Fe3+ complexes in aqueous solution can exist as discrete mononuclear species or multinuclear magnetically coupled species. Stimuli-driven change to Fe3+ speciation represents a powerful mechanistic basis for magnetic resonance sensor technology, but ligand design strategies to exert precision control of aqueous Fe3+ magnetostructural properties are entirely underexplored. In pursuit of this objective, we rationally designed a ligand to strongly favor a dinuclear µ-oxo-bridged and antiferromagnetically coupled complex, but which undergoes carboxylesterase mediated transformation to a mononuclear high-spin Fe3+ chelate resulting in substantial T1 -relaxivity increase. The data communicated demonstrate proof of concept for a novel and effective strategy to exert biochemical control over aqueous Fe3+ magnetic, structural, and relaxometric properties.


Asunto(s)
Carboxilesterasa/metabolismo , Compuestos Férricos/metabolismo , Compuestos Férricos/química , Estructura Molecular
5.
J Am Chem Soc ; 143(38): 15769-15783, 2021 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-34542285

RESUMEN

Anthropogenic radionuclides, including long-lived heavy actinides such as americium and curium, represent the primary long-term challenge for management of nuclear waste. The potential release of these wastes into the environment necessitates understanding their interactions with biogeochemical compounds present in nature. Here, we characterize the interactions between the heavy actinides, Am3+ and Cm3+, and the natural lanthanide-binding protein, lanmodulin (LanM). LanM is produced abundantly by methylotrophic bacteria, including Methylorubrum extorquens, that are widespread in the environment. We determine the first stability constant for an Am3+-protein complex (Am3LanM) and confirm the results with Cm3LanM, indicating a ∼5-fold higher affinity than that for lanthanides with most similar ionic radius, Nd3+ and Sm3+, and making LanM the strongest known heavy actinide-binding protein. The protein's high selectivity over 243Am's daughter nuclide 239Np enables lab-scale actinide-actinide separations as well as provides insight into potential protein-driven mobilization for these actinides in the environment. The luminescence properties of the Cm3+-LanM complex, and NMR studies of Gd3+-LanM, reveal that lanmodulin-bound f-elements possess two coordinated solvent molecules across a range of metal ionic radii. Finally, we show under a wide range of environmentally relevant conditions that lanmodulin effectively outcompetes desferrioxamine B, a hydroxamate siderophore previously proposed to be important in trivalent actinide mobility. These results suggest that natural lanthanide-binding proteins such as lanmodulin may play important roles in speciation and mobility of actinides in the environment; it also suggests that protein-based biotechnologies may provide a new frontier in actinide remediation, detection, and separations.


Asunto(s)
Americio/química , Proteínas Bacterianas/química , Complejos de Coordinación/química , Curio/química , Iones/química , Elementos de la Serie de los Lantanoides/química , Mediciones Luminiscentes , Sustancias Macromoleculares , Methylobacterium extorquens/química , Conformación Molecular , Unión Proteica , Relación Estructura-Actividad
6.
Chem Rev ; 119(2): 957-1057, 2019 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-30350585

RESUMEN

Tens of millions of contrast-enhanced magnetic resonance imaging (MRI) exams are performed annually around the world. The contrast agents, which improve diagnostic accuracy, are almost exclusively small, hydrophilic gadolinium(III) based chelates. In recent years concerns have arisen surrounding the long-term safety of these compounds, and this has spurred research into alternatives. There has also been a push to develop new molecularly targeted contrast agents or agents that can sense pathological changes in the local environment. This comprehensive review describes the state of the art of clinically approved contrast agents, their mechanism of action, and factors influencing their safety. From there we describe different mechanisms of generating MR image contrast such as relaxation, chemical exchange saturation transfer, and direct detection and the types of molecules that are effective for these purposes. Next we describe efforts to make safer contrast agents either by increasing relaxivity, increasing resistance to metal ion release, or by moving to gadolinium(III)-free alternatives. Finally we survey approaches to make contrast agents more specific for pathology either by direct biochemical targeting or by the design of responsive or activatable contrast agents.


Asunto(s)
Medios de Contraste/química , Imagen por Resonancia Magnética , Abdomen/diagnóstico por imagen , Encéfalo/diagnóstico por imagen , Sistema Nervioso Central/diagnóstico por imagen , Quelantes/química , Gadolinio/química , Humanos , Magnetismo
7.
Inorg Chem ; 59(10): 6648-6678, 2020 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-32367714

RESUMEN

Contrast-enhanced magnetic resonance imaging (MRI) is an indispensable tool for diagnostic medicine. However, safety concerns related to gadolinium in commercial MRI contrast agents have emerged in recent years. For patients suffering from severe renal impairment, there is an important unmet medical need to perform contrast-enhanced MRI without gadolinium. There are also concerns over the long-term effects of retained gadolinium within the general patient population. Demand for gadolinium-free MRI contrast agents is driving a new wave of inorganic chemistry innovation as researchers explore paramagnetic transition-metal complexes as potential alternatives. Furthermore, advances in personalized care making use of molecular-level information have motivated inorganic chemists to develop MRI contrast agents that can detect pathologic changes at the molecular level. Recent studies have highlighted how reaction-based modulation of transition-metal paramagnetism offers a highly effective mechanism to achieve MRI contrast enhancement that is specific to biochemical processes. This Viewpoint highlights how recent advances in transition-metal chemistry are leading the way for a new generation of MRI contrast agents.


Asunto(s)
Medios de Contraste/química , Complejos de Coordinación/química , Imagen por Resonancia Magnética , Animales , Humanos , Estructura Molecular , Elementos de Transición/química
8.
Inorg Chem ; 59(23): 17712-17721, 2020 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-33216537

RESUMEN

Complexes of Fe3+ engage in rich aqueous solution speciation chemistry in which discrete molecules can react with solvent water to form multinuclear µ-oxo and µ-hydroxide bridged species. Here we demonstrate how pH- and concentration-dependent equilibration between monomeric and µ-oxo-bridged dimeric Fe3+ complexes can be controlled through judicious ligand design. We purposed this chemistry to develop a first-in-class Fe3+-based MR imaging probe, Fe-PyCy2AI, that undergoes relaxivity change via pH-mediated control of monomer vs dimer speciation. The monomeric complex exists in a S = 5/2 configuration capable of inducing efficient T1-relaxation, whereas the antiferromagnetically coupled dimeric complex is a much weaker relaxation agent. The mechanisms underpinning the pH dependence on relaxivity were interrogated by using a combination of pH potentiometry, 1H and 17O relaxometry, electronic absorption spectroscopy, bulk magnetic susceptibility, electron paramagnetic resonance spectroscopy, and X-ray crystallography measurements. Taken together, the data demonstrate that PyCy2AI forms a ternary complex with high-spin Fe3+ and a rapidly exchanging water coligand, [Fe(PyCy2AI)(H2O)]+ (ML), which can deprotonate to form the high-spin complex [Fe(PyCy2AI)(OH)] (ML(OH)). Under titration conditions of 7 mM Fe complex, water coligand deprotonation occurs with an apparent pKa 6.46. Complex ML(OH) dimerizes to form the antiferromagnetically coupled dimeric complex [(Fe(PyCy2AI))2O] ((ML)2O) with an association constant (Ka) of 5.3 ± 2.2 mM-1. The relaxivity of the monomeric complexes are between 7- and 18-fold greater than the antiferromagnetically coupled dimer at applied field strengths ranging between 1.4 and 11.7 T. ML(OH) and (ML)2O interconvert rapidly within the pH 6.0-7.4 range that is relevant to human pathophysiology, resulting in substantial observed relaxivity change. Controlling Fe3+ µ-oxo bridging interactions through rational ligand design and in response to local chemical environment offers a robust mechanism for biochemically responsive MR signal modulation.

9.
J Am Chem Soc ; 141(14): 5916-5925, 2019 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-30874437

RESUMEN

We introduce a redox-active iron complex, Fe-PyC3A, as a biochemically responsive MRI contrast agent. Switching between Fe3+-PyC3A and Fe2+-PyC3A yields a full order of magnitude relaxivity change that is field-independent between 1.4 and 11.7 T. The oxidation of Fe2+-PyC3A to Fe3+-PyC3A by hydrogen peroxide is very rapid, and we capitalized on this behavior for the molecular imaging of acute inflammation, which is characterized by elevated levels of reactive oxygen species.  Injection of Fe2+-PyC3A generates strong, selective contrast enhancement of inflamed pancreatic tissue in a mouse model (caerulein/LPS model). No significant signal enhancement is observed in normal pancreatic tissue (saline-treated mice). Importantly, signal enhancement of the inflamed pancreas correlates strongly and significantly with ex vivo quantitation of the pro-inflammatory biomarker myeloperoxidase. This is the first example of using metal ion redox for the MR imaging of pathologic change in vivo. Redox-active Fe3+/2+ complexes represent a new design paradigm for biochemically responsive MRI contrast agents.


Asunto(s)
Complejos de Coordinación/química , Hierro/química , Imagen por Resonancia Magnética/métodos , Animales , Medios de Contraste/química , Ligandos , Ratones , Oxidación-Reducción , Pancreatitis/diagnóstico por imagen , Agua/química
10.
Radiology ; 286(3): 865-872, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29117483

RESUMEN

Purpose To compare intravascular contrast enhancement produced by the manganese-based magnetic resonance (MR) imaging contrast agent manganese-N-picolyl-N,N',N'-trans-1,2-cyclohexenediaminetriacetate (Mn-PyC3A) to gadopentetate dimeglumine (Gd-DTPA) and to evaluate the excretion, pharmacokinetics, and metabolism of Mn-PyC3A. Materials and Methods Contrast material-enhanced MR angiography was performed in baboons (Papio anubis; n = 4) by using Mn-PyC3A and Gd-DTPA. Dynamic imaging was performed for 60 minutes following Mn-PyC3A injection to monitor distribution and elimination. Serial blood sampling was performed to quantify manganese and gadolinium plasma clearance by using inductively coupled plasma mass spectrometry and to characterize Mn-PyC3A metabolism by using high-performance liquid chromatography. Intravascular contrast enhancement in the abdominal aorta and brachiocephalic artery was quantified by measuring contrast-to-noise ratios (CNRs) versus muscle at 9 seconds following Mn-PyC3A or Gd-DTPA injection. Plasma pharmacokinetics were modeled with a biexponential function, and data were compared with a paired t test. Results Aorta versus muscle CNR (mean ± standard deviation) with Mn-PyC3A and Gd-DTPA was 476 ± 77 and 538 ± 120, respectively (P = .11). Brachiocephalic artery versus muscle CNR was 524 ± 55 versus 518 ± 140, respectively (P = .95). Mn-PyC3A was eliminated via renal and hepatobiliary excretion with similar pharmacokinetics to Gd-DTPA (area under the curve between 0 and 30 minutes, 20.2 ± 3.1 and 17.0 ± 2.4, respectively; P = .23). High-performance liquid chromatography revealed no evidence of Mn-PyC3A biotransformation. Conclusion Mn-PyC3A enables contrast-enhanced MR angiography with comparable contrast enhancement to gadolinium-based agents and may overcome concerns regarding gadolinium-associated toxicity and retention. © RSNA, 2017 Online supplemental material is available for this article.


Asunto(s)
Medios de Contraste/farmacocinética , Gadolinio DTPA/farmacocinética , Angiografía por Resonancia Magnética/métodos , Manganeso/farmacocinética , Compuestos Organometálicos/farmacocinética , Animales , Aorta Abdominal/diagnóstico por imagen , Femenino , Semivida , Eliminación Hepatobiliar , Procesamiento de Imagen Asistido por Computador/métodos , Riñón/diagnóstico por imagen , Riñón/metabolismo , Papio , Arteria Renal/diagnóstico por imagen
11.
Radiology ; 287(2): 581-589, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29156148

RESUMEN

Purpose To evaluate the biodistribution, metabolism, and pharmacokinetics of a new type I collagen-targeted magnetic resonance (MR) probe, CM-101, and to assess its ability to help quantify liver fibrosis in animal models. Materials and Methods Biodistribution, pharmacokinetics, and stability of CM-101 in rats were measured with mass spectrometry. Bile duct-ligated (BDL) and sham-treated rats were imaged 19 days after the procedure by using a 1.5-T clinical MR imaging unit. Mice were treated with carbon tetrachloride (CCl4) or with vehicle two times a week for 10 weeks and were imaged with a 7.0-T preclinical MR imaging unit at baseline and 1 week after the last CCl4 treatment. Animals were imaged before and after injection of 10 µmol/kg CM-101. Change in contrast-to-noise ratio (ΔCNR) between liver and muscle tissue after CM-101 injection was used to quantify liver fibrosis. Liver tissue was analyzed for Sirius Red staining and hydroxyproline content. The institutional subcommittee for research animal care approved all in vivo procedures. Results CM-101 demonstrated rapid blood clearance (half-life = 6.8 minutes ± 2.4) and predominately renal elimination in rats. Biodistribution showed low tissue gadolinium levels at 24 hours (<3.9% injected dose [ID]/g ± 0.6) and 10-fold lower levels at 14 days (<0.33% ID/g ± 12) after CM-101 injection with negligible accumulation in bone (0.07% ID/g ± 0.02 and 0.010% ID/g ± 0.004 at 1 and 14 days, respectively). ΔCNR was significantly (P < .001) higher in BDL rats (13.6 ± 3.2) than in sham-treated rats (5.7 ± 4.2) and in the CCl4-treated mice (18.3 ± 6.5) compared with baseline values (5.2 ± 1.0). Conclusion CM-101 demonstrated fast blood clearance and whole-body elimination, negligible accumulation of gadolinium in bone or tissue, and robust detection of fibrosis in rat BDL and mouse CCl4 models of liver fibrosis. © RSNA, 2017 Online supplemental material is available for this article.


Asunto(s)
Fibrosis/patología , Gadolinio/farmacocinética , Cirrosis Hepática/diagnóstico por imagen , Hígado/patología , Imagen por Resonancia Magnética , Polisacáridos Bacterianos/farmacocinética , Animales , Tetracloruro de Carbono/farmacocinética , Modelos Animales de Enfermedad , Fibrosis/diagnóstico por imagen , Semivida , Hígado/diagnóstico por imagen , Espectrometría de Masas , Ratones , Ratas , Distribución Tisular
13.
Inorg Chem ; 56(14): 7761-7780, 2017 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-28459242

RESUMEN

Ni-containing superoxide dismutase (NiSOD) represents an unusual member of the SOD family due to the presence of oxygen-sensitive Ni-SCys bonds at its active site. Reported in this account is the synthesis and properties of the NiII complex of the N3S2 ligand [N3S2Me2]3- ([N3S2Me2]3- = deprotonated form of 2-((2-mercapto-2-methylpropyl)(pyridin-2-ylmethyl)amino)-N-(2-mercaptoethyl)acetamide), namely Na[Ni(N3S2Me2)] (2), as a NiSOD model that features sterically robust gem-(CH3)2 groups on the thiolate α-C positioned trans to the carboxamide. The crystal structure of 2, coupled with spectroscopic measurements from 1H NMR, X-ray absorption, IR, UV-vis, and mass spectrometry (MS), reveal a planar NiII (S = 0) ion coordinated by only the N2S2 basal donors of the N3S2 ligand. While the structure and spectroscopic properties of 2 resemble those of NiSODred and other models, the asymmetric S ligands open up new reaction paths upon chemical oxidation. One unusual oxidation product is the planar NiII-N3S complex [Ni(Lox)] (5; Lox = 2-(5,5-dimethyl-2-(pyridin-2-yl)thiazolidin-3-yl)-N-(2-mercaptoethyl)acetamide), where two-electron oxidation takes place at the substituted thiolate and py-CH2 carbon to generate a thiazolidine heterocycle. Electrochemical measurements of 2 reveal irreversible events wholly consistent with thiolate redox, which were identified by comparison to the ZnII complex Na[Zn(N3S2Me2)] (3). Although no reaction is observed between 2 and azide, reaction of 2 with superoxide produces multiple products on the basis of UV-vis and MS data, one of which is 5. Density functional theory (DFT) computations suggest that the HOMO in 2 is π* with primary contributions from Ni-dπ/S-pπ orbitals. These contributions can be modulated and biased toward Ni when electron-withdrawing groups are placed on the thiolate α-C. Analysis of the oxidized five-coordinate species 2ox* by DFT reveal a singly occupied spin-up (α) MO that is largely thiolate based, which supports the proposed NiIII-thiolate/NiII-thiyl radical intermediates that ultimately yield 5 and other products.

14.
Pediatr Radiol ; 47(5): 507-521, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28409250

RESUMEN

Gadolinium-based contrast agents can increase the accuracy and expediency of an MRI examination. However the benefits of a contrast-enhanced scan must be carefully weighed against the well-documented risks associated with administration of exogenous contrast media. The purpose of this review is to discuss commercially available gadolinium-based contrast agents (GBCAs) in the context of pediatric radiology. We discuss the chemistry, regulatory status, safety and clinical applications, with particular emphasis on imaging of the blood vessels, heart, hepatobiliary tree and central nervous system. We also discuss non-GBCA MRI contrast agents that are less frequently used or not commercially available.


Asunto(s)
Medios de Contraste , Gadolinio , Aumento de la Imagen/métodos , Imagen por Resonancia Magnética/métodos , Niño , Humanos
15.
J Am Chem Soc ; 138(49): 15861-15864, 2016 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-27960350

RESUMEN

We introduce a new biochemically responsive Mn-based MRI contrast agent that provides a 9-fold change in relaxivity via switching between the Mn3+ and Mn2+ oxidation states. Interchange between oxidation states is promoted by a "Janus" ligand that isomerizes between binding modes that favor Mn3+ or Mn2+. It is the only ligand that supports stable complexes of Mn3+ and Mn2+ in biological milieu. Rapid interconversion between oxidation states is mediated by peroxidase activity (oxidation) and l-cysteine (reduction). This Janus system provides a new paradigm for the design of biochemically responsive MRI contrast agents.


Asunto(s)
Quelantes/química , Medios de Contraste/química , Cisteína/química , Imagen por Resonancia Magnética , Manganeso/química , Peroxidasa/química , Quelantes/metabolismo , Medios de Contraste/metabolismo , Cisteína/metabolismo , Humanos , Manganeso/metabolismo , Estructura Molecular , Oxidación-Reducción , Peroxidasa/metabolismo
16.
J Am Chem Soc ; 137(49): 15548-57, 2015 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-26588204

RESUMEN

Contrast-enhanced computed tomography (CT) and magnetic resonance imaging (MRI) are routinely used to diagnose soft tissue and vascular abnormalities. However, safety concerns limit the use of iodinated and gadolinium (Gd)-based CT and MRI contrast media in renally compromised patients. With an estimated 14% of the US population suffering from chronic kidney disease (CKD), contrast media compatible with renal impairment is sorely needed. We present the new manganese(II) complex [Mn(PyC3A)(H2O)](-) as a Gd alternative. [Mn(PyC3A)(H2O)](-) is among the most stable Mn(II) complexes at pH 7.4 (log KML = 11.40). In the presence of 25 mol equiv of Zn at pH 6.0, 37 °C, [Mn(PyC3A)(H2O)](-) is 20-fold more resistant to dissociation than [Gd(DTPA)(H2O)](2-). Relaxivity of [Mn(PyC3A)(H2O)](-) in blood plasma is comparable to commercial Gd contrast agents. Biodistribution analysis confirms that [Mn(PyC3A)(H2O)](-) clears via a mixed renal/hepatobiliary pathway with >99% elimination by 24 h. [Mn(PyC3A)(H2O)](-) was modified to form a bifunctional chelator and 4 chelates were conjugated to a fibrin-specific peptide to give Mn-FBP. Mn-FBP binds the soluble fibrin fragment DD(E) with Kd = 110 nM. Per Mn relaxivity of Mn-FBP is 4-fold greater than [Mn(PyC3A)(H2O)](-) and increases 60% in the presence of fibrin, consistent with binding. Mn-FBP provided equivalent thrombus enhancement to the state of the art Gd analogue, EP-2104R, in a rat model of arterial thrombosis. Mn metabolite analysis reveals no evidence of dechelation and the probe was >99% eliminated after 24 h. [Mn(PyC3A)(H2O)](-) is a lead development candidate for an imaging probe that is compatible with renally compromised patients.


Asunto(s)
Medios de Contraste/química , Complejos de Coordinación/síntesis química , Imagen por Resonancia Magnética , Manganeso/química , Complejos de Coordinación/química , Gadolinio/química , Estructura Molecular
17.
Inorg Chem ; 54(8): 3815-28, 2015 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-25835183

RESUMEN

Superoxide dismutase (SOD) catalyzes the disproportionation of superoxide (O2(• -)) into H2O2 and O2(g) by toggling through different oxidation states of a first-row transition metal ion at its active site. Ni-containing SODs (NiSODs) are a distinct class of this family of metalloenzymes due to the unusual coordination sphere that is comprised of mixed N/S-ligands from peptide-N and cysteine-S donor atoms. A central goal of our research is to understand the factors that govern reactive oxygen species (ROS) stability of the Ni-S(Cys) bond in NiSOD utilizing a synthetic model approach. In light of the reactivity of metal-coordinated thiolates to ROS, several hypotheses have been proffered and include the coordination of His1-Nδ to the Ni(II) and Ni(III) forms of NiSOD, as well as hydrogen bonding or full protonation of a coordinated S(Cys). In this work, we present NiSOD analogues of the general formula [Ni(N2S)(SR')](-), providing a variable location (SR' = aryl thiolate) in the N2S2 basal plane coordination sphere where we have introduced o-amino and/or electron-withdrawing groups to intercept an oxidized Ni species. The synthesis, structure, and properties of the NiSOD model complexes (Et4N)[Ni(nmp)(SPh-o-NH2)] (2), (Et4N)[Ni(nmp)(SPh-o-NH2-p-CF3)] (3), (Et4N)[Ni(nmp)(SPh-p-NH2)] (4), and (Et4N)[Ni(nmp)(SPh-p-CF3)] (5) (nmp(2-) = dianion of N-(2-mercaptoethyl)picolinamide) are reported. NiSOD model complexes with amino groups positioned ortho to the aryl-S in SR' (2 and 3) afford oxidized species (2(ox) and 3(ox)) that are best described as a resonance hybrid between Ni(III)-SR and Ni(II)-(•)SR based on ultraviolet-visible (UV-vis), magnetic circular dichroism (MCD), and electron paramagnetic resonance (EPR) spectroscopies, as well as density functional theory (DFT) calculations. The results presented here, demonstrating the high percentage of S(3p) character in the highest occupied molecular orbital (HOMO) of the four-coordinate reduced form of NiSOD (NiSODred), suggest that the transition from NiSODred to the five-coordinate oxidized form of NiSOD (NiSODox) may go through a four-coordinate Ni-(•)S(Cys) (NiSODox-Hisoff) that is stabilized by coordination to Ni(II).


Asunto(s)
Níquel/metabolismo , Compuestos Organometálicos/metabolismo , Compuestos de Sulfhidrilo/metabolismo , Superóxido Dismutasa/metabolismo , Modelos Moleculares , Estructura Molecular , Níquel/química , Compuestos Organometálicos/química , Compuestos de Sulfhidrilo/química , Superóxido Dismutasa/química
18.
Chemistry ; 20(44): 14507-13, 2014 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-25224391

RESUMEN

A Mn(II) chelating dendrimer was prepared as a contrast agent for MRI applications. The dendrimer comprises six tyrosine-derived [Mn(EDTA)(H2 O)](2-) moieties coupled to a cyclotriphosphazene core. Variable temperature (17) O NMR spectroscopy revealed a single water co-ligand per Mn(II) that undergoes fast water exchange (kex =(3.0±0.1)×10(8) s(-1) at 37 °C). The 37 °C per Mn(II) relaxivity ranged from 8.2 to 3.8 mM(-1) s(-1) from 0.47 to 11.7 T, and is sixfold higher on a per molecule basis. From this field dependence a rotational correlation time was estimated as 0.45(±0.02) ns. The imaging and pharmacokinetic properties of the dendrimer were compared to clinically used [Gd(DTPA)(H2 O)](2-) in mice at 4.7 T. On first pass, the higher per ion relaxivity of the dendrimer resulted in twofold greater blood signal than for [Gd(DTPA)(H2 O)](2-) . Blood clearance was fast and elimination occurred through both the renal and hepatobiliary routes. This Mn(II) containing dendrimer represents a potential alternative to Gd-based contrast agents, especially in patients with chronic kidney disease where the use of current Gd-based agents may be contraindicated.


Asunto(s)
Medios de Contraste/química , Imagen por Resonancia Magnética/métodos , Compuestos de Manganeso/química , Animales , Quelantes/química , Medios de Contraste/farmacocinética , Dendrímeros/química , Dendrímeros/farmacocinética , Ácido Edético/análogos & derivados , Ácido Edético/química , Femenino , Compuestos de Manganeso/farmacocinética , Ratones , Ratones Endogámicos A , Tirosina/análogos & derivados , Tirosina/química
19.
Inorg Chem ; 53(19): 10748-61, 2014 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-25226090

RESUMEN

A library of 10 Mn-containing complexes capable of switching reversibly between the Mn(II) and Mn(III) oxidation states was prepared and evaluated for potential usage as MRI reporters of tissue redox activity. We synthesized N-(2-hydroxybenzyl)-N,N',N'-ethylenediaminetriacetic acid (HBET) and N-(2-hydroxybenzyl-N,N',N'-trans-1,2-cyclohexylenediaminetriacetic acid (CyHBET) ligands functionalized (-H, -OMe, -NO2) at the 5-position of the aromatic ring. The Mn(II) complexes of all ligands and the Mn(III) complexes of the 5-H and 5-NO2 functionalized ligands were synthesized and isolated, but the Mn(III) complexes with the 5-OMe functionalized ligands were unstable. (1)H relaxivity of the 10 isolable complexes was measured at pH 7.4 and 37 °C, 1.4 T. Thermodynamic stability, pH-dependent complex speciation, hydration state, water exchange kinetics of the Mn(II) complexes, and pseudo-first order reduction kinetics of the Mn(III) complexes were studied using a combination of pH-potentiometry, UV-vis spectroscopy, and (1)H and (17)O NMR measurements. The effects of ligand structural and electronic modifications on the Mn(II/III) redox couple were studied by cyclic voltammetry. The Mn(II) complexes are potent relaxation agents as compared to the corresponding Mn(III) species with [Mn(II)(CyHBET)(H2O)](2-) exhibiting a 7.5-fold higher relaxivity (3.3 mM(-1) s(-1)) than the oxidized form (0.4 mM(-1) s(-1)). At pH 7.4, Mn(II) exists as a mixture of fully deprotonated (ML) and monoprotonated (HML) complexes and Mn(II) complex stability decreases as the ligands become more electron-releasing (pMn for 10 µM [Mn(II)(CyHBET-R')(H2O)](2-) decreases from 7.6 to 6.2 as R' goes from -NO2 to -OMe, respectively). HML speciation increases as the electron-releasing nature of the phenolato-O donor increases. The presence of a water coligand is maintained upon conversion from HML to ML, but the water exchange rate of ML is faster by up to 2 orders of magnitude (k(ex)(310) for H[Mn(II)(CyHBET)(H2O)](-) and [Mn(II)(CyHBET)(H2O)](2-) are 1.2 × 10(8) and 1.0 × 10(10) s(-1), respectively). The Mn(II/III) redox potential can be tuned over a range of 0.30 V (E(1/2) = 0.27-0.57 V) through electronic modifications to the 5-substituent of the aromatic ligand component. However, care must be taken in tuning the ligand electronics to avoid Mn(III)-ligand autoredox. Taken together, these results serve to establish criteria for optimizing Mn(III) versus Mn(II) relaxivity differentials, complex stability, and Mn(II/III) redox potential.


Asunto(s)
Medios de Contraste/química , Imagen por Resonancia Magnética , Manganeso/química , Compuestos Organometálicos/química , Medios de Contraste/síntesis química , Estructura Molecular , Compuestos Organometálicos/síntesis química , Oxidación-Reducción
20.
Biochemistry ; 52(1): 4-18, 2013 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-23240653

RESUMEN

Nickel-containing superoxide dismutases (NiSODs) represent a novel approach to the detoxification of superoxide in biology and thus contribute to the biodiversity of mechanisms for the removal of reactive oxygen species (ROS). While Ni ions play critical roles in anaerobic microbial redox (hydrogenases and CO dehydrogenase/acetyl coenzyme A synthase), they have never been associated with oxygen metabolism. Several SODs have been characterized from numerous sources and are classified by their catalytic metal as Cu/ZnSOD, MnSOD, or FeSOD. Whereas aqueous solutions of Cu(II), Mn(II), and Fe(II) ions are capable of catalyzing the dismutation of superoxide, solutions of Ni(II) are not. Nonetheless, NiSOD catalyzes the reaction at the diffusion-controlled limit (~10(9) M(-1) s(-1)). To do this, nature has created a Ni coordination unit with the appropriate Ni(III/II) redox potential (~0.090 V vs Ag/AgCl). This potential is achieved by a unique ligand set comprised of residues from the N-terminus of the protein: Cys2 and Cys6 thiolates, the amino terminus and imidazole side chain of His1, and a peptide N-donor from Cys2. Over the past several years, synthetic modeling efforts by several groups have provided insight into understanding the intrinsic properties of this unusual Ni coordination site. Such analogues have revealed information regarding the (i) electrochemical properties that support Ni-based redox, (ii) oxidative protection and/or stability of the coordinated CysS ligands, (iii) probable H(+) sources for H(2)O(2) formation, and (iv) nature of the Ni coordination geometry throughout catalysis. This review includes the results and implications of such biomimetic work as it pertains to the structure and function of NiSOD.


Asunto(s)
Materiales Biomiméticos/química , Complejos de Coordinación/química , Níquel/química , Superóxido Dismutasa/química , Animales , Materiales Biomiméticos/metabolismo , Complejos de Coordinación/metabolismo , Humanos , Modelos Moleculares , Níquel/metabolismo , Péptidos/química , Péptidos/metabolismo , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/metabolismo , Streptomyces coelicolor/química , Streptomyces coelicolor/enzimología , Superóxido Dismutasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA