Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
PLoS Biol ; 8(1): e1000286, 2010 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-20126259

RESUMEN

The Saccharomyces cerevisiae polo-like kinase Cdc5 promotes adaptation to the DNA damage checkpoint, in addition to its numerous roles in mitotic progression. The process of adaptation occurs when cells are presented with persistent or irreparable DNA damage and escape the cell-cycle arrest imposed by the DNA damage checkpoint. However, the precise mechanism of adaptation remains unknown. We report here that CDC5 is dose-dependent for adaptation and that its overexpression promotes faster adaptation, indicating that high levels of Cdc5 modulate the ability of the checkpoint to inhibit the downstream cell-cycle machinery. To pinpoint the step in the checkpoint pathway at which Cdc5 acts, we overexpressed CDC5 from the GAL1 promoter in damaged cells and examined key steps in checkpoint activation individually. Cdc5 overproduction appeared to have little effect on the early steps leading to Rad53 activation. The checkpoint sensors, Ddc1 (a member of the 9-1-1 complex) and Ddc2 (a member of the Ddc2/Mec1 complex), properly localized to damage sites. Mec1 appeared to be active, since the Rad9 adaptor retained its Mec1 phosphorylation. Moreover, the damage-induced interaction between phosphorylated Rad9 and Rad53 remained intact. In contrast, Rad53 hyperphosphorylation was significantly reduced, consistent with the observation that cell-cycle arrest is lost during adaptation. Thus, we conclude Cdc5 acts to attenuate the DNA damage checkpoint through loss of Rad53 hyperphosphorylation to allow cells to adapt to DNA damage. Polo-like kinase homologs have been shown to inhibit the ability of Claspin to facilitate the activation of downstream checkpoint kinases, suggesting that this function is conserved in vertebrates.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/fisiología , Ciclo Celular/fisiología , Proteínas Quinasas/fisiología , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiología , Saccharomyces cerevisiae/citología , Adaptación Biológica , Proteínas de Ciclo Celular/genética , Quinasa de Punto de Control 2 , Daño del ADN , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Modelos Biológicos , Fosforilación , Proteínas Quinasas/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
2.
Nature ; 439(7075): 497-501, 2006 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-16299494

RESUMEN

One of the earliest marks of a double-strand break (DSB) in eukaryotes is serine phosphorylation of the histone variant H2AX at the carboxy-terminal SQE motif to create gammaH2AX-containing nucleosomes. Budding-yeast histone H2A is phosphorylated in a similar manner by the checkpoint kinases Tel1 and Mec1 (ref. 2; orthologous to mammalian ATM and ATR, respectively) over a 50-kilobase region surrounding the DSB. This modification is important for recruiting numerous DSB-recognition and repair factors to the break site, including DNA damage checkpoint proteins, chromatin remodellers and cohesins. Multiple mechanisms for eliminating gammaH2AX as DNA repair completes are possible, including removal by histone exchange followed potentially by degradation, or, alternatively, dephosphorylation. Here we describe a three-protein complex (HTP-C, for histone H2A phosphatase complex) containing the phosphatase Pph3 that regulates the phosphorylation status of gammaH2AX in vivo and efficiently dephosphorylates gammaH2AX in vitro. gammaH2AX is lost from chromatin surrounding a DSB independently of the HTP-C, indicating that the phosphatase targets gammaH2AX after its displacement from DNA. The dephosphorylation of gammaH2AX by the HTP-C is necessary for efficient recovery from the DNA damage checkpoint.


Asunto(s)
Daño del ADN , Reparación del ADN , Histonas/metabolismo , Fosfoproteínas Fosfatasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Ciclo Celular , Cromatina/genética , Cromatina/metabolismo , Daño del ADN/efectos de la radiación , Complejos Multiproteicos/química , Complejos Multiproteicos/genética , Complejos Multiproteicos/metabolismo , Fosfoproteínas Fosfatasas/deficiencia , Fosfoproteínas Fosfatasas/genética , Fosforilación , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/enzimología , Proteínas de Saccharomyces cerevisiae/genética
3.
PLoS Genet ; 3(8): e134, 2007 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-17696614

RESUMEN

Genome instability is a hallmark of cancer cells. One class of genome aberrations prevalent in tumor cells is termed gross chromosomal rearrangements (GCRs). GCRs comprise chromosome translocations, amplifications, inversions, deletion of whole chromosome arms, and interstitial deletions. Here, we report the results of a genome-wide screen in Saccharomyces cerevisiae aimed at identifying novel suppressors of GCR formation. The most potent novel GCR suppressor identified is BUD16, the gene coding for yeast pyridoxal kinase (Pdxk), a key enzyme in the metabolism of pyridoxal 5' phosphate (PLP), the biologically active form of vitamin B6. We show that Pdxk potently suppresses GCR events by curtailing the appearance of DNA lesions during the cell cycle. We also show that pharmacological inhibition of Pdxk in human cells leads to the production of DSBs and activation of the DNA damage checkpoint. Finally, our evidence suggests that PLP deficiency threatens genome integrity, most likely via its role in dTMP biosynthesis, as Pdxk-deficient cells accumulate uracil in their nuclear DNA and are sensitive to inhibition of ribonucleotide reductase. Since Pdxk links diet to genome stability, our work supports the hypothesis that dietary micronutrients reduce cancer risk by curtailing the accumulation of DNA damage and suggests that micronutrient depletion could be part of a defense mechanism against hyperproliferation.


Asunto(s)
Aberraciones Cromosómicas , Cromosomas Fúngicos , Daño del ADN , Genes Supresores , Fosfato de Piridoxal/fisiología , Saccharomyces cerevisiae/genética , Roturas del ADN de Doble Cadena , Genes Supresores/fisiología , Genes cdc , Técnicas Genéticas , Genoma Fúngico , Inestabilidad Genómica , Células HeLa , Humanos , Modelos Biológicos , Piridoxal Quinasa/genética , Piridoxal Quinasa/fisiología , Fosfato de Piridoxal/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/fisiología , Supresión Genética
4.
Nat Struct Mol Biol ; 17(3): 299-305, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20139982

RESUMEN

Phosphorylation of histone H2AX is an early response to DNA damage in eukaryotes. In Saccharomyces cerevisiae, DNA damage or replication-fork stalling results in phosphorylation of histone H2A yielding gamma-H2A (yeast gamma-H2AX) in a Mec1 (ATR)- and Tel1 (ATM)-dependent manner. Here, we describe the genome-wide location analysis of gamma-H2A as a strategy to identify loci prone to engaging the Mec1 and Tel1 pathways. Notably, gamma-H2A enrichment overlaps with loci prone to replication-fork stalling and is caused by the action of Mec1 and Tel1, indicating that these loci are prone to breakage. Moreover, about half the sites enriched for gamma-H2A map to repressed protein-coding genes, and histone deacetylases are necessary for formation of gamma-H2A at these loci. Finally, our work indicates that high-resolution mapping of gamma-H2AX is a fruitful route to map fragile sites in eukaryotic genomes.


Asunto(s)
Genoma Fúngico/genética , Histonas/genética , Saccharomyces cerevisiae/metabolismo , Ciclo Celular , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/fisiología , Inmunoprecipitación de Cromatina , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Fosforilación , Reacción en Cadena de la Polimerasa , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
5.
Cell ; 124(6): 1155-68, 2006 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-16564010

RESUMEN

Telomere capping is the essential function of telomeres. To identify new genes involved in telomere capping, we carried out a genome-wide screen in Saccharomyces cerevisiae for suppressors of cdc13-1, an allele of the telomere-capping protein Cdc13. We report the identification of five novel suppressors, including the previously uncharacterized gene YML036W, which we name CGI121. Cgi121 is part of a conserved protein complex -- the KEOPS complex -- containing the protein kinase Bud32, the putative peptidase Kae1, and the uncharacterized protein Gon7. Deletion of CGI121 suppresses cdc13-1 via the dramatic reduction in ssDNA levels that accumulate in cdc13-1 cgi121 mutants. Deletion of BUD32 or other KEOPS components leads to short telomeres and a failure to add telomeres de novo to DNA double-strand breaks. Our results therefore indicate that the KEOPS complex promotes both telomere uncapping and telomere elongation.


Asunto(s)
Evolución Molecular , Regulación Enzimológica de la Expresión Génica , Biblioteca Genómica , Proteínas de Saccharomyces cerevisiae/fisiología , Telómero/fisiología , Complejos Multiproteicos/química , Complejos Multiproteicos/genética , Complejos Multiproteicos/metabolismo , Mutación , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/fisiología , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Telomerasa/metabolismo , Proteínas de Unión a Telómeros/genética , Proteínas de Unión a Telómeros/metabolismo
6.
Mol Cell ; 17(5): 657-70, 2005 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-15749016

RESUMEN

Mammalian polynucleotide kinase (PNK) is a key component of both the base excision repair (BER) and nonhomologous end-joining (NHEJ) DNA repair pathways. PNK acts as a 5'-kinase/3'-phosphatase to create 5'-phosphate/3'-hydroxyl termini, which are a necessary prerequisite for ligation during repair. PNK is recruited to repair complexes through interactions between its N-terminal FHA domain and phosphorylated components of either pathway. Here, we describe the crystal structure of intact mammalian PNK and a structure of the PNK FHA bound to a cognate phosphopeptide. The kinase domain has a broad substrate binding pocket, which preferentially recognizes double-stranded substrates with recessed 5' termini. In contrast, the phosphatase domain efficiently dephosphorylates single-stranded 3'-phospho termini as well as double-stranded substrates. The FHA domain is linked to the kinase/phosphatase catalytic domain by a flexible tether, and it exhibits a mode of target selection based on electrostatic complementarity between the binding surface and the phosphothreonine peptide.


Asunto(s)
Reparación del ADN , Polinucleótido 5'-Hidroxil-Quinasa/fisiología , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Animales , Sitios de Unión , Dominio Catalítico , Clonación Molecular , Cristalografía por Rayos X , ADN Complementario/metabolismo , Relación Dosis-Respuesta a Droga , Glutatión Transferasa/metabolismo , Cinética , Ratones , Modelos Moleculares , Datos de Secuencia Molecular , Oligonucleótidos/química , Monoéster Fosfórico Hidrolasas/química , Fosforilación , Polinucleótido 5'-Hidroxil-Quinasa/química , Unión Proteica , Conformación Proteica , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Homología de Secuencia de Aminoácido , Espectrometría de Fluorescencia , Electricidad Estática , Especificidad por Sustrato , Tripsina/química
7.
EMBO J ; 23(19): 3874-85, 2004 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-15385968

RESUMEN

Nonhomologous end joining (NHEJ) is the major DNA double-strand break (DSB) repair pathway in mammalian cells. A critical step in this process is DNA ligation, involving the Xrcc4-DNA ligase IV complex. DNA end processing is often a prerequisite for ligation, but the coordination of these events is poorly understood. We show that polynucleotide kinase (PNK), with its ability to process ionizing radiation-induced 5'-OH and 3'-phosphate DNA termini, functions in NHEJ via an FHA-dependent interaction with CK2-phosphorylated Xrcc4. Analysis of the PNK FHA-Xrcc4 interaction revealed that the PNK FHA domain binds phosphopeptides with a unique selectivity among FHA domains. Disruption of the Xrcc4-PNK interaction in vivo is associated with increased radiosensitivity and slower repair kinetics of DSBs, in conjunction with a diminished efficiency of DNA end joining in vitro. Therefore, these results suggest a new role for Xrcc4 in the coordination of DNA end processing with DNA ligation.


Asunto(s)
Daño del ADN , ADN Ligasas/metabolismo , Reparación del ADN , Proteínas de Unión al ADN/metabolismo , ADN/metabolismo , Polinucleótido 5'-Hidroxil-Quinasa/metabolismo , Animales , Células CHO/metabolismo , Cricetinae , ADN Ligasa (ATP) , Humanos , Riñón/metabolismo , Fosfopéptidos/metabolismo , Fosforilación , Radiación Ionizante , Proteínas de Saccharomyces cerevisiae/metabolismo
8.
J Biol Chem ; 279(26): 27584-90, 2004 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-15100213

RESUMEN

The thyroid hormone receptor regulates a diverse set of genes that control processes from embryonic development to adult homeostasis. Upon binding of thyroid hormone, the thyroid receptor releases corepressor proteins and undergoes a conformational change that allows for the interaction of coactivating proteins necessary for gene transcription. This interaction is mediated by a conserved motif, termed the NR box, found in many coregulators. Recent work has demonstrated that differentially assembled coregulator complexes can elicit specific biological responses. However, the mechanism for the selective assembly of these coregulator complexes has yet to be elucidated. To further understand the principles underlying thyroid receptor-coregulator selectivity, we designed a high-throughput in vitro binding assay to measure the equilibrium affinity of thyroid receptor to a library of potential coregulators in the presence of different ligands including the endogenous thyroid hormone T3, synthetic thyroid receptor beta-selective agonist GC-1, and antagonist NH-3. Using this homogenous method several coregulator NR boxes capable of associating with thyroid receptor at physiologically relevant concentrations were identified including ones found in traditional coactivating proteins such as SRC1, SRC2, TRAP220, TRBP, p300, and ARA70; and those in coregulators known to repress gene activation including RIP140 and DAX-1. In addition, it was discovered that the thyroid receptor-coregulator binding patterns vary with ligand and that this differential binding can be used to predict biological responses. Finally, it is demonstrated that this is a general method that can be applied to other nuclear receptors and can be used to establish rules for nuclear receptor-coregulator selectivity.


Asunto(s)
Péptidos/metabolismo , Proteómica/métodos , Receptores de Hormona Tiroidea/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Estradiol/metabolismo , Receptor beta de Estrógeno , Polarización de Fluorescencia , Humanos , Datos de Secuencia Molecular , Biblioteca de Péptidos , Péptidos/química , Péptidos/genética , Unión Proteica , Receptores de Estrógenos/genética , Receptores de Estrógenos/metabolismo , Receptores de Esteroides/genética , Receptores de Esteroides/metabolismo , Receptores de Hormona Tiroidea/agonistas , Receptores de Hormona Tiroidea/genética , Receptores beta de Hormona Tiroidea , Triyodotironina/antagonistas & inhibidores
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA