Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Int J Mol Sci ; 23(21)2022 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-36361956

RESUMEN

In vitro models of corticogenesis from pluripotent stem cells (PSCs) have greatly improved our understanding of human brain development and disease. Among these, 3D cortical organoid systems are able to recapitulate some aspects of in vivo cytoarchitecture of the developing cortex. Here, we tested three cortical organoid protocols for brain regional identity, cell type specificity and neuronal maturation. Overall, all protocols gave rise to organoids that displayed a time-dependent expression of neuronal maturation genes such as those involved in the establishment of synapses and neuronal function. Comparatively, guided differentiation methods without WNT activation generated the highest degree of cortical regional identity, whereas default conditions produced the broadest range of cell types such as neurons, astrocytes and hematopoietic-lineage-derived microglia cells. These results suggest that cortical organoid models produce diverse outcomes of brain regional identity and cell type specificity and emphasize the importance of selecting the correct model for the right application.


Asunto(s)
Organoides , Células Madre Pluripotentes , Humanos , Células Madre Pluripotentes/metabolismo , Diferenciación Celular , Neuronas/metabolismo , Encéfalo
2.
Neurobiol Dis ; 146: 105140, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33065279

RESUMEN

RUES2 cell lines represent the first collection of isogenic human embryonic stem cells (hESCs) carrying different pathological CAG lengths in the HTT gene. However, their neuronal differentiation potential has yet to be thoroughly evaluated. Here, we report that RUES2 during ventral telencephalic differentiation is biased towards medial ganglionic eminence (MGE). We also show that HD-RUES2 cells exhibit an altered MGE transcriptional signature in addition to recapitulating known HD phenotypes, with reduced expression of the neurodevelopmental regulators NEUROD1 and BDNF and increased cleavage of synaptically enriched N-cadherin. Finally, we identified the transcription factor SP1 as a common potential detrimental co-partner of muHTT by de novo motif discovery analysis on the LGE, MGE, and cortical genes differentially expressed in HD human pluripotent stem cells in our and additional datasets. Taken together, these observations suggest a broad deleterious effect of muHTT in the early phases of neuronal development that may unfold through its altered interaction with SP1.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Diferenciación Celular/fisiología , Células Madre Embrionarias Humanas/metabolismo , Células Madre Pluripotentes/citología , Receptores Inmunológicos/metabolismo , Diferenciación Celular/efectos de los fármacos , Células Madre Embrionarias Humanas/patología , Humanos , Enfermedad de Huntington/genética , Enfermedad de Huntington/metabolismo , Neurogénesis/fisiología , Neuronas/metabolismo
3.
Proc Natl Acad Sci U S A ; 114(7): E1234-E1242, 2017 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-28137879

RESUMEN

Medium spiny neurons (MSNs) are a key population in the basal ganglia network, and their degeneration causes a severe neurodegenerative disorder, Huntington's disease. Understanding how ventral neuroepithelial progenitors differentiate into MSNs is critical for regenerative medicine to develop specific differentiation protocols using human pluripotent stem cells. Studies performed in murine models have identified some transcriptional determinants, including GS Homeobox 2 (Gsx2) and Early B-cell factor 1 (Ebf1). Here, we have generated human embryonic stem (hES) cell lines inducible for these transcription factors, with the aims of (i) studying their biological role in human neural progenitors and (ii) incorporating TF conditional expression in a developmental-based protocol for generating MSNs from hES cells. Using this approach, we found that Gsx2 delays cell-cycle exit and reduces Pax6 expression, whereas Ebf1 promotes neuronal differentiation. Moreover, we found that Gsx2 and Ebf1 combined overexpression in hES cells achieves high yields of MSNs, expressing Darpp32 and Ctip2, in vitro as well in vivo after transplantation. We show that hES-derived striatal progenitors can be transplanted in animal models and can differentiate and integrate into the host, extending fibers over a long distance.


Asunto(s)
Diferenciación Celular/genética , Proteínas de Homeodominio/genética , Células Madre Embrionarias Humanas/metabolismo , Neuronas/metabolismo , Transactivadores/genética , Animales , Ciclo Celular/genética , Línea Celular , Fosfoproteína 32 Regulada por Dopamina y AMPc/genética , Fosfoproteína 32 Regulada por Dopamina y AMPc/metabolismo , Expresión Génica , Proteínas de Homeodominio/metabolismo , Células Madre Embrionarias Humanas/trasplante , Humanos , Ratones Desnudos , Neuronas/citología , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Trasplante de Células Madre/métodos , Telencéfalo/citología , Transactivadores/metabolismo , Trasplante Heterólogo , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo
4.
Cell Rep ; 43(4): 114031, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38583153

RESUMEN

Outer radial glia (oRG) emerge as cortical progenitor cells that support the development of an enlarged outer subventricular zone (oSVZ) and the expansion of the neocortex. The in vitro generation of oRG is essential to investigate the underlying mechanisms of human neocortical development and expansion. By activating the STAT3 signaling pathway using leukemia inhibitory factor (LIF), which is not expressed in guided cortical organoids, we define a cortical organoid differentiation method from human pluripotent stem cells (hPSCs) that recapitulates the expansion of a progenitor pool into the oSVZ. The oSVZ comprises progenitor cells expressing specific oRG markers such as GFAP, LIFR, and HOPX, closely matching human fetal oRG. Finally, incorporating neural crest-derived LIF-producing cortical pericytes into cortical organoids recapitulates the effects of LIF treatment. These data indicate that increasing the cellular complexity of the organoid microenvironment promotes the emergence of oRG and supports a platform to study oRG in hPSC-derived brain organoids routinely.


Asunto(s)
Diferenciación Celular , Ventrículos Laterales , Factor Inhibidor de Leucemia , Organoides , Células Madre Pluripotentes , Humanos , Organoides/metabolismo , Organoides/citología , Factor Inhibidor de Leucemia/metabolismo , Factor Inhibidor de Leucemia/farmacología , Células Madre Pluripotentes/metabolismo , Células Madre Pluripotentes/citología , Ventrículos Laterales/citología , Ventrículos Laterales/metabolismo , Factor de Transcripción STAT3/metabolismo , Neuroglía/metabolismo , Neuroglía/citología , Transducción de Señal
5.
bioRxiv ; 2023 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-36824730

RESUMEN

Mammalian outer radial glia (oRG) emerge as cortical progenitor cells that directly support the development of an enlarged outer subventricular zone (oSVZ) and, in turn, the expansion of the neocortex. The in vitro generation of oRG is essential to model and investigate the underlying mechanisms of human neocortical development and expansion. By activating the STAT3 pathway using LIF, which is not produced in guided cortical organoids, we developed a cerebral organoid differentiation method from human pluripotent stem cells (hPSCs) that recapitulates the expansion of a progenitor pool into the oSVZ. The structured oSVZ is composed of progenitor cells expressing specific oRG markers such as GFAP, LIFR, HOPX , which closely matches human oRG in vivo . In this microenvironment, cortical neurons showed faster maturation with enhanced metabolic and functional activity. Incorporation of hPSC-derived brain vascular LIF- producing pericytes in cerebral organoids mimicked the effects of LIF treatment. These data indicate that the cellular complexity of the cortical microenvironment, including cell-types of the brain vasculature, favors the appearance of oRG and provides a platform to routinely study oRG in hPSC-derived brain organoids.

6.
Elife ; 122023 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-37272619

RESUMEN

WDR62 is a spindle pole-associated scaffold protein with pleiotropic functions. Recessive mutations in WDR62 cause structural brain abnormalities and account for the second most common cause of autosomal recessive primary microcephaly (MCPH), indicating WDR62 as a critical hub for human brain development. Here, we investigated WDR62 function in corticogenesis through the analysis of a C-terminal truncating mutation (D955AfsX112). Using induced Pluripotent Stem Cells (iPSCs) obtained from a patient and his unaffected parent, as well as isogenic corrected lines, we generated 2D and 3D models of human neurodevelopment, including neuroepithelial stem cells, cerebro-cortical progenitors, terminally differentiated neurons, and cerebral organoids. We report that WDR62 localizes to the Golgi apparatus during interphase in cultured cells and human fetal brain tissue, and translocates to the mitotic spindle poles in a microtubule-dependent manner. Moreover, we demonstrate that WDR62 dysfunction impairs mitotic progression and results in alterations of the neurogenic trajectories of iPSC neuroderivatives. In summary, impairment of WDR62 localization and function results in severe neurodevelopmental abnormalities, thus delineating new mechanisms in the etiology of MCPH.


Asunto(s)
Proteínas de Ciclo Celular , Aparato de Golgi , Microcefalia , Proteínas del Tejido Nervioso , Polos del Huso , Humanos , Microcefalia/genética , Proteínas del Tejido Nervioso/metabolismo , Proteínas de Ciclo Celular/metabolismo , Masculino , Células Madre Pluripotentes Inducidas , Mitosis , Niño , Adolescente
7.
Cell Rep Methods ; 2(12): 100367, 2022 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-36590694

RESUMEN

Stem cell engineering of striatal medium spiny neurons (MSNs) is a promising strategy to understand diseases affecting the striatum and for cell-replacement therapies in different neurological diseases. Protocols to generate cells from human pluripotent stem cells (PSCs) are scarce and how well they recapitulate the endogenous fetal cells remains poorly understood. We have developed a protocol that modulates cell seeding density and exposure to specific morphogens that generates authentic and functional D1- and D2-MSNs with a high degree of reproducibility in 25 days of differentiation. Single-cell RNA sequencing (scRNA-seq) shows that our cells can mimic the cell-fate acquisition steps observed in vivo in terms of cell type composition, gene expression, and signaling pathways. Finally, by modulating the midkine pathway we show that we can increase the yield of MSNs. We expect that this protocol will help decode pathogenesis factors in striatal diseases and eventually facilitate cell-replacement therapies for Huntington's disease (HD).


Asunto(s)
Neuronas Espinosas Medianas , Células Madre Pluripotentes , Humanos , Reproducibilidad de los Resultados , Neurogénesis , Cuerpo Estriado , Células Madre Pluripotentes/metabolismo
8.
Science ; 372(6542)2021 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-33958447

RESUMEN

Deciphering how the human striatum develops is necessary for understanding the diseases that affect this region. To decode the transcriptional modules that regulate this structure during development, we compiled a catalog of 1116 long intergenic noncoding RNAs (lincRNAs) identified de novo and then profiled 96,789 single cells from the early human fetal striatum. We found that D1 and D2 medium spiny neurons (D1- and D2-MSNs) arise from a common progenitor and that lineage commitment is established during the postmitotic transition, across a pre-MSN phase that exhibits a continuous spectrum of fate determinants. We then uncovered cell type-specific gene regulatory networks that we validated through in silico perturbation. Finally, we identified human-specific lincRNAs that contribute to the phylogenetic divergence of this structure in humans. This work delineates the cellular hierarchies governing MSN lineage commitment.


Asunto(s)
Atlas como Asunto , Cuerpo Estriado/citología , Cuerpo Estriado/embriología , Neurogénesis/genética , ARN Largo no Codificante/genética , Análisis de la Célula Individual , Factores de Transcripción/genética , Feto , Neuronas GABAérgicas/metabolismo , Humanos , RNA-Seq , Transcripción Genética
9.
Stem Cell Res ; 49: 102016, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33039807

RESUMEN

GSX2 is a homeobox transcription factor (TF) controlling the specification of the ventral lateral ganglionic eminence and its major derivative, the corpus striatum. Medium spiny neurons (MSNs) represent the largest cell component of the striatum and they are primarily affected in Huntington disease (HD). Here, we used CRISPR technology to generate a pluripotent GSX2-reporter human embryonic stem cell (hESC) line that can be leveraged to monitor striatal differentiation in real-time and to enrich for MSN-committed progenitors.


Asunto(s)
Células Madre Embrionarias Humanas , Diferenciación Celular , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Cuerpo Estriado , Células Madre Embrionarias , Humanos , Neuronas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA