RESUMEN
A one-pot, two-step process was developed for the preparation of pyrrole compounds from 2,5-dimethylfuran. The first step was the acid-catalyzed ring-opening reaction of 2,5-dimethylfuran (DF), leading to the formation of 2,5-hexanedione (HD). A stoichiometric amount of water and a sub-stoichiometric amount of sulfuric acid were used by heating at 50 °C for 24 h. Chemically pure HD was isolated, with a quantitative yield (up to 95%), as revealed by 1H-NMR, 13C-NMR, and GC-MS analyses. In the second step, HD was used as the starting material for the synthesis of pyrrole compounds via the Paal-Knorr reaction. Various primary amines were used in stoichiometric amounts. 1H-NMR, 13C-NMR, ESI-Mass, and GC-Mass analyses confirmed that pyrrole compounds were prepared with very good/excellent yields (80-95%), with water as the only co-product. A further purification step was not necessary. The process was characterized by a very high carbon efficiency, up to 80%, and an E-factor down to 0.128, whereas the typical E-factor for fine chemicals is between 5 and 50. Water, a co-product of the second step, can trigger the first step and therefore make the whole process circular. Thus, this synthetic pathway appears to be in line with the requirements of a sustainable chemical process. A pyrrole compound bearing an SH group (SHP) was used for the functionalization of a furnace carbon black (CB). The functionalized CB (CB/SHP) was utilized in place of silica, resulting in a 15% mass reduction of reinforcing filler, in an elastomeric composite based on poly(styrene-co-butadiene) from solution anionic polymerization and poly(1,4-cis-isoprene) from Hevea Brasiliensis. Compared to the silica-based composite, a reduction in the Payne effect of about 25% and an increase in the dynamic rigidity (E' at 70 °C) of about 25% were obtained with CB/SHP.
RESUMEN
The adsorption of organic molecules on graphene surfaces is a crucial process in many different research areas. Nano-sized carbon allotropes, such as graphene and carbon nanotubes, have shown promise as fillers due to their exceptional properties, including their large surface area, thermal and electrical conductivity, and potential for weight reduction. Surface modification methods, such as the "pyrrole methodology", have been explored to tailor the properties of carbon allotropes. In this theoretical work, an ab initio study based on Density Functional Theory is performed to investigate the adsorption process of small volatile organic molecules (such as pyrrole derivatives) on graphene surface. The effects of substituents, and different molecular species are examined to determine the influence of the aromatic ring or the substituent of pyrrole's aromatic ring on the adsorption energy. The number of atoms and presence of π electrons significantly influence the corresponding adsorption energy. Interestingly, pyrroles and cyclopentadienes are 10 kJ mol-1 more stable than the corresponding unsaturated ones. Pyrrole oxidized derivatives display more favorable supramolecular interactions with graphene surface. Intermolecular interactions affect the first step of the adsorption process and are important to better understand possible surface modifications for carbon allotropes and to design novel nanofillers in polymer composites.
RESUMEN
The confinement of organic synthesis within waterborne nanoreactors is regarded with increasing attention to improve its yield and reduce the environmental impact. However, many catalysts, such as graphene, are barely dispersible in aqueous media and many chemical reactions cannot be performed in the presence of water due to thermodynamic limitations. Therefore, there is an urgent need to develop novel strategies to carry out these processes in more sustainable conditions. To pursue this goal, in this work, a waterborne supramolecular nanoreactor is developed. The system comprises a polymeric micelle obtained from the self-assembly of pyrrole-based amphiphilic block copolymers. The active catalytic component is represented by few graphene layers, functionalized with pyrrole to enhance their interaction with the micelle core and hence their nanoencapsulation. Using this nanoreactor, it is possible to synthesize imines starting from primary amines and aldehydes or ketones with high yield and in short time (Y = 90% after 5 min) at room temperature. Moreover, an efficient strategy to recycle the reactor is proposed, thus increasing the potential of this technology.
RESUMEN
In this work, carbon papers and aerogels based on graphene layers and chitosan were prepared. They were obtained by mixing chitosan (CS) and a high surface area nanosized graphite (HSAG) in water in the presence of acetic acid. HSAG/CS water dispersions were stable for months. High resolution transmission electron microscopy revealed the presence of few graphene layers in water suspensions. Casting or lyophilization of such suspensions led to the preparation of carbon paper and aerogel, respectively. In X-ray spectra of both aerogels and carbon paper, peaks due to regular stacks of graphene layers were not detected: graphene with unaltered sp2 structure was obtained directly from graphite without the use of any chemical reaction. The composites were demonstrated to be electrically conductive thanks to the graphene. Chitosan thus makes it possible to obtain monolithic carbon aerogels and flexible and free-standing graphene papers directly from a nanosized graphite by avoiding oxidation to graphite oxide and successive reduction. Strong interaction between polycationic chitosan and the aromatic substrate appears to be at the origin of the stability of HSAG/CS adducts. Cation-π interaction is hypothesized, also on the basis of X-ray photoelectron spectroscopy findings. This work paves the way for the easy large-scale preparation of carbon papers through a method that has a low environmental impact and is based on a biosourced polymer, graphene, and water.
Asunto(s)
Carbono/química , Quitosano/química , Grafito/química , Acetatos/química , Liofilización/métodos , Microscopía Electrónica de Rastreo/métodos , Microscopía Electrónica de Transmisión/métodos , Nanocompuestos/química , Oxidación-Reducción , Óxidos/química , Papel , Tamaño de la Partícula , Espectroscopía de Fotoelectrones/métodos , Polímeros/química , Agua/químicaRESUMEN
Drug provocation tests (DPTs) are the gold standard in diagnosing nonsteroidal anti-inflammatory drug (NSAID) hypersensitivity; however, only few data about follow-up of patients with negative DPTs are actually available. The aim of this study was to assess patients' behavior in taking NSAIDs again and to evaluate NSAID tolerability after negative allergological workup. This is a follow-up study involving patients evaluated for history of cutaneous reactions (urticaria and or angioedema) after NSAID intake and with negative DPTs with the suspected NSAID. Patients were asked during a phone interview about the intake of NSAIDs, tolerance, or reasons of avoidance. The negative predictive value (NPV) of NSAIDs DPTs was calculated. One hundred eleven of 142 patients were successfully contacted; 46/111 (41.44%) took the same NSAID previously tested with two adverse reactions reported (4.34%). Fifty-three of 111 (47.74%) patients did not take the same NSAID, but 34 of them took at least another strong cyclooxygenase (COX) 1 inhibitor, with 1 adverse reaction (2.94%) and 19 of them took only weak COX-1 inhibitors. Twelve of 111 patients (10.8%) did not take any NSAID. Reasons for drug avoidance were mainly fear of reactions (70.8%) and no need (29.2%). NPV, overall, was 96.97% (95% confidence interval, 91-99%). Although NSAID hypersensitivity diagnosis was ruled out by oral provocation test, the majority of patients with a history of urticaria/angioedema avoided the intake of the tested NSAIDs for fear of new reactions, particularly when strong COX-1 inhibitor NSAIDs were involved. The high NPV value of DPT resulting from this study should reassure NSAID intake.
Asunto(s)
Angioedema/diagnóstico , Angioedema/prevención & control , Urticaria/diagnóstico , Urticaria/prevención & control , Angioedema/etiología , Antiinflamatorios no Esteroideos/efectos adversos , Pruebas de Provocación Bronquial , Hipersensibilidad a las Drogas/complicaciones , Femenino , Estudios de Seguimiento , Humanos , Masculino , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Encuestas y Cuestionarios , Urticaria/etiologíaRESUMEN
Driving a car at extreme speeds, road holding, and sustainability do not go together well. Formula 1 racing is exciting but is not an example of sustainability. The aim of this work was to use materials, suitable for the treads of high-performance racing tyres, that can favour both high performance and sustainability. In particular, the objective was to achieve high dynamic rigidity at high temperatures (>100 °C) and a stable crosslinking network. A copolymer from an industrial waste such as sulphur and a comonomer from a circular biosourced material were used as the crosslinking agent of an elastomer composite based on poly(styrene-co-butadiene) from solution anionic polymerization and a carbon black with a high surface area. The biosourced circular material was 1,6-bis(2,5-dimethyl-1H-pyrrol-1-yl)hexane (HMDP), the di-pyrrole derivative of hexamethylenediamine. Two poly(S-co-HMDP) copolymers, with different S/HMDP ratios (6 and 8.9, Copolymer 1 and Copolymer 2) were carefully characterized by means of 1H-, 13C-, 2D1H-1H-COSY and 2D 1H-13C HSQC NMR. The comparison of the spectra highlighted the substitution with sulphur of the ß-position of the pyrrole ring: mono-substitution largely prevailed in Copolymer 1 and also bi-substitution in Copolymer 2. The copolymers were used as additives in the vulcanization system. Compared with a reference composite, they allowed us to achieve more efficient vulcanization, a higher density of the crosslinking network, higher dynamic rigidity, better ultimate tensile properties, and better stability of the crosslinking network at high temperatures. Compared with a traditional oil-based crosslinking agent for elastomer composites with high rigidity and a stable structure at high temperatures, such as the perthiocarbamate 6-((dibenzylcarbamothioyl)disulfaneyl)hexyl 1,3-diphenylpropane-2-sulfinodithioate, the poly(S-co-HMDP) copolymers led to higher dynamic rigidity and better ultimate tensile properties. These improvements occurring simultaneously are definitely unusual. This work paves the way for the upcycling of circular materials in a large-scale application such as in tyres.
RESUMEN
Elastomer composites for dynamic mechanical applications with a low dissipation of energy are of great importance in view of their application in tire compounds. In this work, furnace carbon black functionalized with 2-2,5-dimethyl-1H-pyrrol-1-yl-1,3-propanediol (SP) was used in place of silica in an elastomer composite based on poly(styrene-co-butadiene) from solution anionic polymerization and poly(1,4-cis-isoprene) from Hevea Brasiliensis. The traditional coupling agent used for silica was also used for the CB/SP adduct: 3,3'-bis(triethoxysilylpropyl)tetrasulfide (TESPT). The composite with the CB/SP + TESPT system revealed a lower Payne effect, higher dynamic rigidity, and lower hysteresis, compared to the composite with CB + TESPT, although the latter composite had a higher crosslinking density. The properties of the silica and the CB/SP + TESPT-based composites appear similar, though in the presence of slightly higher hysteresis and lower ultimate properties for the CB/SP-based composite. The use of CB in place of silica allows us to prepare lighter compounds and paves the way for the preparation of tire compounds with lower environmental impacts.
RESUMEN
A novel synthetic pathway for synthesizing isocyanate-free polyurethanes is reported here. ß-Amino alcohols were efficiently synthesized from the aminolysis of the epoxide ring of (R)-(+)-limonene oxide with different primary amines as nucleophiles and hot water as catalysts. The regio- and diastereoselectivities of the reactions were investigated and supported by computational studies. DFT calculations were performed to understand the experimental results more deeply. It confirmed the crucial roles of water molecules and the nature of the nucleophile in forming the products. The formation of the product is entirely driven by the free energy of activation that affects the reaction rate. Cyclic carbamates were prepared from ß-amino alcohols using the dialkyl carbonate (DAC) chemistry. An oligourethane was obtained from Anionic Ring-Opening Polymerization (AROP) of a cyclic carbamate derived from (R)-(+)-limonene-oxide. All the products were characterized by employing 1H and 13C NMR spectroscopies. The assignments of the signals in 1H and 13C NMR spectra were also supported by 2D NMR spectroscopy.
RESUMEN
Cross-coupling reactions are of great importance in chemistry due to their ability to facilitate the construction of complex organic molecules. Among these reactions, the Ullmann-type C-O coupling between phenols and aryl halides is particularly noteworthy and useful for preparing diarylethers. However, this reaction typically relies on homogeneous catalysts that rapidly deactivate under harsh reaction conditions. In this study, we introduce a novel heterogeneous catalyst for the Ullmann-type C-O coupling reaction, comprised of isolated Cu atoms chelated to a tetraethylenepentamine-pyrrole ligand that is immobilized on graphite nanoplatelets. The catalytic study reveals the recyclability of the material, and demonstrates the crucial role of the pyrrole linker in stabilizing the Cu sites. The work expands the potential of single-atom catalyst nanoarchitectures and underscores the significance of ligands in stabilizing metals in cationic forms, providing a novel, tailored catalyst for cross-coupling chemistries.
RESUMEN
Invited for this month's cover is the group of Gianvito Vilé at the Politecnico di Milano. The ChemSusChem cover image depicts in an artistic manner the concept of ligand entrapping of isolated metals to design single-atom catalysts. The Research Article itself is available at 10.1002/cssc.202301529.
RESUMEN
In this work, the hysteresis of elastomer composites suitable for tire compounds was reduced by using CB functionalized with pyrrole compounds containing sulfur-based functional groups reactive with the elastomer chains. CB was functionalized with bio-based pyrrole compounds: 2-(2,5-dimethyl-1H-pyrrol-1-yl)ethane-1-thiol (SHP) and 1,2-bis(2-(2,5-dimethyl-1H-pyr-rol-1-yl)ethyl)disulfide (SSP), bearing an -SH and an -SS- functional group, respectively. SHP and SSP were synthesized via a one-pot two-step synthesis, with yields higher than 70%, starting from biosourced chemicals as follows: 2,5-hexanedione from 2,5-dimethylfuran, cysteine and cysteamine. The functionalization of CB was carried out by mixing the CB with PyC and heating, with quantitative yields ranging from 92 to 97%. Thus, the whole functionalization process was characterized by a high carbon efficiency. The formation of the covalent bond between SHP, SSP and CB, in line with the prior art of such a functionalization technology, was proven by means of extraction and TGA analyses. The reactivity of the sulfur-based functional groups with unsaturated polymer chains was demonstrated by using squalene as the model compound. Poly(styrene-co-butadiene) from solution anionic polymerization and poly(1,4-cis-isoprene) from Hevea Brasiliensis were the elastomers employed for the preparation of the composites, which were crosslinked with a sulfur-based system. Pristine CB was partially replaced with CB/SHP (33%) and CB/SSP (33% and 66%). The PyC resulted in better curing efficiency, an increase in the dynamic rigidity of approximately 20% and a reduction in the hysteresis of approximately 10% at 70 °C, as well as similar/better ultimate tensile properties. The best results were achieved with a 66% replacement of CB with CB/SSP. This new family of reactive carbon blacks paves the way for a new generation of 'green tires', reinforced by a CB reactive with the polymer chains, which provides high mechanical properties and low rolling resistance. Such a reactive CB eliminates the use of silica, and thus the ethanol emission resulting from the condensation of silane is used as a coupling agent. In addition, CB-based tires are characterized by a higher mileage, at a moment in which the reduction in tire wear has become a primary concern.
RESUMEN
Two-dimensional hexagonal boron nitride (hBN) has attracted tremendous attention over the last few years, thanks to its stable structure and its outstanding properties, such as mechanical strength, thermal conductivity, electrical insulation, and lubricant behavior. This work demonstrates that hBN can also improve the rheological and mechanical properties of elastomer composites when used to partially replace silica. In this work, commercially available pristine hBN (hBN-p) was exfoliated and ball-mill treated in air for different durations (2.5, 5, and 10 h milling). Functionalization occurred with the -NH and -OH groups (hBN-OH). The functional groups were detected using Fourier-Transform Infrared pectroscopy (FT-IR) and were estimated to be up to about 7% through thermogravimetric analysis. The presence of an increased amount of oxygen in hBN-OH was confirmed using Scanning Electron Microscopy coupled with Energy-Dispersive X-ray Spectroscopy. (SEM-EDS). The number of stacked layers, estimated using WAXD analysis, decreased to 8-9 in hBN-OH (10 h milling) from about 130 in hBN-p. High-resolution transmission electron microscopy (HR-TEM) and SEM-EDS revealed the increase in disorder in hBN-OH. hBN-p and hBN-OH were used to partially replace silica by 15% and 30%, respectively, by volume, in elastomer composites based on poly(styrene-co-butadiene) from solution anionic polymerization (S-SBR) and poly(1,4-cis-isoprene) from Hevea Brasiliensis (natural rubber, NR) as the elastomers (volume (mm3) of composites released by the instrument). The use of both hBNs in substitution of 30% of silica led to a lower Payne effect, a higher dynamic rigidity, and an increase in E' of up to about 15% at 70 °C, with similar/lower hysteresis. Indeed, the composites with hBN-OH revealed a better balance of tan delta (higher at low temperatures and lower at high temperatures) and better ultimate properties. The functional groups reasonably promote the interaction of hBN with silica and with the silica's coupling agent, sulfur-based silane, and thus promoted the interaction with the elastomer chains. The volume of the composite, measured using a high-pressure capillary viscometer, increased by about 500% and 400% after one week of storage in the presence of hBN-p and hBN-OH. Hence, both hBNs improved the processability and the shelf life of the composites. Composites obtained using hBN-OH had even filler dispersion without the detachments of the filler from the elastomer matrix, as shown through TEM micrographs. These results pave the way for substantial improvements in the important properties of silica-based composites for tire compounds, used to reduce rolling resistance and thus the improve environmental impacts.
RESUMEN
Elastomer composites with low hysteresis are of great importance for sustainable development, as they find application in billions of tires. For these composites, a filler such as silica, able to establish a chemical bond with the elastomer chains, is used, in spite of its technical drawbacks. In this work, a furnace carbon black (CB) functionalized with polar groups was used in replacement of silica, obtaining lower hysteresis. CBN326 was functionalized with 2-(2,5-dimethyl-1H-pyrrol-1-yl)-1,3-propanediol (serinol pyrrole, SP), and samples of CB/SP adducts were prepared with different SP content, ranging from four to seven parts per hundred carbon (phc). The entire process, from the synthesis of SP to the preparation of the CB/SP adduct, was characterized by a yield close to 80%. The functionalization did not alter the bulk structure of CB. Composites were prepared, based on diene rubbers-poly(1,4-cis-isoprene) from Hevea Brasiliensis and poly(1,4-cis-butadiene) in a first study and synthetic poly(1,4-cis-isoprene) in a second study-and were crosslinked with a sulfur-based system. A CB/silica hybrid filler system (30/35 parts) was used and the partial replacement (66% by volume) of silica with CB/SP was performed. The composites with CB/SP exhibited more efficient crosslinking, a lower Payne effect and higher dynamic rigidity, for all the SP content, with the effect of the functionalized CB consistently increasing the amount of SP. Lower hysteresis was obtained for the composites with CB/SP. A CB/SP adduct with approximately 6 phc of SP, used in place of silica, resulted in a reduction in ΔG'/G' of more than 10% and an increase in E' at 70 °C and in σ300 in tensile measurements of about 35% and 30%, respectively. The results of this work increase the degrees of freedom for preparing elastomer composites with low hysteresis, allowing for the use of either silica or CB as filler, with a potentially great impact on an industrial scale.
RESUMEN
The provocation test (PT) with the suspected drug represents the gold standard in the diagnosis of non-IgE hypersensitivity reactions to nonsteroidal anti-inflammatory drugs (NSAIDs). Nevertheless, there is no consensus regarding the clinical management of suspected NSAID-sensitive patients. This study assessed if a PT with the suspected drug is a reliable and safe proceeding to confirm NSAID hypersensitivity in patients with a clinical history of urticaria/angioedema (Urt/AE). It also analyzed different patient characteristics (such as gender, age, atopy, dermographism, time interval between the last drug reaction, and number of previous NSAID reactions) in relation to PT positivity. One hundred fifty-nine patients with Urt/AE apparently related to assumption of one or more NSAIDs underwent PT with the suspected drugs. Moreover, to distinguish single/multiple NSAID reactivity in patients who did not tolerate the offending NSAID, another strong cyclooxygenase-1 inhibitor PT was performed. PT was negative in 142/159 patients (89.31%), ruling out a diagnosis of NSAIDs hypersensitivity; 17/159 patients (10.69%) experienced a reaction of Urt/AE during the PT: 8 patients were diagnosed as single reactors to NSAIDs and 4 as multiple reactors to NSAIDs. Those with a history of multiple NSAID reactions and male patients were both more likely to have a positive PT. Our results suggest that in all patients with history of NSAID cutaneous reactions, the NSAID hypersensitivity should be confirmed by an oral PT and that the diagnostic proceeding can safely start with the offending NSAID.
Asunto(s)
Angioedema/inducido químicamente , Antiinflamatorios no Esteroideos/administración & dosificación , Antiinflamatorios no Esteroideos/efectos adversos , Hipersensibilidad a las Drogas/diagnóstico , Hipersensibilidad Inmediata/diagnóstico , Urticaria/inducido químicamente , Administración Oral , Adolescente , Adulto , Angioedema/diagnóstico , Niño , Preescolar , Hipersensibilidad a las Drogas/etiología , Femenino , Humanos , Hipersensibilidad Inmediata/etiología , Masculino , Persona de Mediana Edad , Urticaria/diagnóstico , Adulto JovenRESUMEN
Polyurethane nanocomposites were prepared with a nanosized high surface area graphite (HSAG) functionalized on its edges with hydroxyl groups as a building block. Edge functionalization of HSAG was obtained through reaction with KOH. The addition of OH groups was demonstrated by means of infrared (FTIR) and thermogravimetric analysis (TGA), and the Boehm titration allowed estimation of a level of about 5.0 mmolOH/gHSAG. Results from wide-angle X-ray diffraction (WAXD) and Raman spectroscopy suggested that functionalization of the graphene layers occurred on the edges. The evaluation of the Hansen solubility parameters of G-OH revealed a substantial increase of δP and δH parameters with respect to HSAG. In line with these findings, homogeneous and stable dispersions of G-OH in a polyol were obtained. PU were prepared by mixing a dispersion of G-OH in cis-1,4-butenediol with hexamethylene diisocyanate. A model reaction between catechol, 1,4-butanediol, and hexamethylene diisocyanate demonstrated the reactivity of hydroxylated aromatic rings with isocyanate groups. PU-based G-OH, characterized with WAXD and differential scanning calorimetry (DSC), revealed lower Tg, higher Tc, Tm, and crystallinity than PU without G-OH. These results could be due to the higher flexibility of the polymer chains, likely a consequence of the dilution of the urethane bonds by the carbon substrate. Hence, G-OH allowed the preparation of PU with a larger temperature range between Tg and Tm, with potential positive impact on material applications. The model reaction between butylisocyanate and 1-butanol revealed that HSAG and G-OH promote efficient formation of the urethane bond, even in the absence of a catalyst. The effect of high surface area carbon on the nucleophilic oxygen attack to the isocyanate group can be hypothesized. The results here reported lead us to comment that a reactive nanosized sp2 carbon allotrope, such as G-OH, can be used as a multifunctional building block of PU. Indeed, G-OH is a comonomer of PU, a promoter of the polymerization reaction, and can definitely act as reinforcing filler by tuning its amount in the final nanocomposite leading to highly versatile materials. The larger temperature range between Tg and Tm, together with the presence of G-OH acting as a reinforcing agent, could allow the production of piezoresistive sensing, shape-memory PU with good mechanical features.
RESUMEN
In this study, carbon papers and aerogels were prepared from chitosan and graphene layers with aldehydic edge functional groups (G-CHO) able to form chemical bonds with chitosan and thus to form a crosslinked network. A high surface area graphite was edge functionalized with hydroxyl groups (G-OH) through the reaction with KOH. G-CHO, with 4.5 mmol/g of functional group, was prepared from G-OH by means of the Reimer-Tieman reaction. Characterization of the graphitic materials was performed with elemental analysis, titration, X-ray analysis, Raman spectroscopy and by estimating their Hansen solubility parameters. CS and G-CHO were mixed with mortar and pestle and carbon papers and aerogels were obtained from a stable acidic water suspension through casting and liophilization, respectively. Free standing and foldable carbon papers and monolithic aerogels based on a continuous covalent network between G-CHO and CS were prepared. G-CHO, which had about 22 stacked layers, was extensively exfoliated in the carbon paper, as confirmed by the absence of the 002 reflection of the graphitic crystallites in the XRD pattern. Carbon paper was found to be resistant to solvents and to be stable for pH ⩾ 7. Composites revealed electrical conductivity. The covalent network between the graphene layers and CS, suggested by the IR findings, accounts for these results. This work demonstrates the effectiveness of a continuous covalent network between chitosan and graphene layers edge functionalized with tailor made functional groups for the preparation of carbon papers and aerogels and paves the way for the scale up of such a type of composites.
Asunto(s)
Quitosano , Grafito , Papel , Solubilidad , AguaRESUMEN
The ultimate properties and resistance to fracture of nanocomposites based on poly(1,4-cis-isoprene) from Hevea Brasiliensis (natural rubber, NR) and a high surface area nanosized graphite (HSAG) were improved by using HSAG functionalized with 2-(2,5-dimethyl-1H-pyrrol-1-yl)propane-1,3-diol (serinol pyrrole) (HSAG-SP). The functionalization reaction occurred through a domino process, by simply mixing HSAG and serinol pyrrole and heating at 180 °C. The polarity of HSAG-SP allowed its dispersion in NR latex and the isolation of NR/HSAG-SP masterbatches via coagulation. Nanocomposites, based either on pristine HSAG or on HSAG-SP, were prepared through traditional melt blending and cured with a sulphur-based system. The samples containing HSAG-SP revealed ultimate dispersion of the graphitic filler with smaller aggregates and higher amounts of few layers stacks and isolated layers, as revealed by transmission electron microscopy. With HSAG-SP, better stress and elongation at break and higher fracture resistance were obtained. Indeed, in the case of HSAG-SP-based composites, fracture occurred at larger deformation and with higher values of load and, at the highest filler content (24 phr), deviation of fracture propagation was observed. These results have been obtained with a moderate functionalization of the graphene layers (about 5%) and normal lab facilities. This work reveals a simple and scalable way to prepare tougher NR-based nanocomposites and indicates that the dispersion of a graphitic material in a rubber matrix can be improved without using an extra-amount of mechanical energy, just by modifying the chemical nature of the graphitic material through a sustainable process, avoiding the traditional complex approach, which implies oxidation to graphite oxide and subsequent partial reduction.
RESUMEN
The solubility parameters of multiwalled carbon nanotubes (CNTs) was tuned via their chemical modification with pyrrole compounds (PyCs), by means of a simple and sustainable methodology. PyCs were synthesized with high atom efficiency through the Paal-Knorr reaction of primary amines with 2,5-hexanedione, in the absence of solvents and catalysts. Methylamine, 1-dodecylamine, 2-amino-1,3-propanediol, and 3-(triethoxysilyl)propan-1-amine were selected. PyCs are characterized by two moieties, the pyrrole ring and the substituent of the nitrogen atom, and can be considered as Janus molecules. The functionalization of CNTs occurred with a high yield by simply heating CNTs and PyC. The whole reaction pathway did not produce any waste and was characterized by a carbon efficiency up to almost 100%. Thanks to the variety of PyC chemical structures, the CNT solubility parameter was modified in a pretty broad range of values, in the expected direction. Stable CNT dispersions were prepared in different solvents. From the aqueous dispersion, coating layers were prepared with high electrical conductivity, larger with respect to a top commercial product. The "pyrrole methodology" reported here is based on one reaction and allows almost infinite variations of the CNT solubility parameter, thus promoting their compatibility with target matrices and allowing the preparation of nanocomposite materials with improved properties. This work thus paves the way for a highly efficient exploitation of CNTs.
RESUMEN
A recently reported functionalization of single and multi-walled carbon nanotubes, based on a cycloaddition reaction between carbon nanotubes and a pyrrole derived compound, was exploited for the formation of a doxorubicin (DOX) stacked drug delivery system. The obtained supramolecular nano-conveyors were characterized by wide-angle X-ray diffraction (WAXD), thermogravimetric analysis (TGA), high-resolution transmission electron microscopy (HR-TEM), and Fourier transform infrared (FT-IR) spectroscopy. The supramolecular interactions were studied by molecular dynamics simulations and by monitoring the emission and the absorption spectra of DOX. Biological studies revealed that two of the synthesized nano-vectors are effectively able to get the drug into the studied cell lines and also to enhance the cell mortality of DOX at a much lower effective dose. This work reports the facile functionalization of carbon nanotubes exploiting the "pyrrole methodology" for the development of novel technological carbon-based drug delivery systems.
RESUMEN
Ultra-high exfoliation in water of a nanosized graphite (HSAG) was obtained thanks to the synergy between a graphene layer edge functionalized with hydroxy groups and a polymer such as chitosan (CS). The edge functionalization of graphene layers was performed with a serinol derivative containing a pyrrole ring, serinol pyrrole (SP). The adduct between CS and HSAG functionalized with SP was formed simply with a mortar and pestle, then preparing water dispersions stable for months in the presence of acetic acid. Simple casting of such dispersions on a glass support led to carbon papers. Aerogels were prepared through the freeze-dry procedure. Exfoliation was observed in both these families of composites and ultra-high exfoliation was documented in aerogels swollen in water. Carbon papers and aerogels were stable for months in solvents in a wide range of solubility parameter and in a pretty wide range of pH. By considering that a moderately functionalized nanographite was straightforwardly exfoliated in water in the presence of one of the most abundant biobased polymers, the obtained results pave the way for the simple and sustainable preparation of graphene-based nanocomposites. HSAG-SP/CS adducts were characterized by wide angle X-ray diffraction (WAXD), scanning and transmission electron microscopy (SEM, TEM and HRTEM), Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy. Thermal stability of the composites was studied by thermogravimetric analysis (TGA) and their direct electrical conductivity with the four-point probe method.