RESUMEN
BACKGROUND: Subcutaneous administration of the monoclonal antibody L9LS protected adults against controlled Plasmodium falciparum infection in a phase 1 trial. Whether a monoclonal antibody administered subcutaneously can protect children from P. falciparum infection in a region where this organism is endemic is unclear. METHODS: We conducted a phase 2 trial in Mali to assess the safety and efficacy of subcutaneous administration of L9LS in children 6 to 10 years of age over a 6-month malaria season. In part A of the trial, safety was assessed at three dose levels in adults, followed by assessment at two dose levels in children. In part B of the trial, children were randomly assigned, in a 1:1:1 ratio, to receive 150 mg of L9LS, 300 mg of L9LS, or placebo. The primary efficacy end point, assessed in a time-to-event analysis, was the first P. falciparum infection, as detected on blood smear performed at least every 2 weeks for 24 weeks. A secondary efficacy end point was the first episode of clinical malaria, as assessed in a time-to-event analysis. RESULTS: No safety concerns were identified in the dose-escalation part of the trial (part A). In part B, 225 children underwent randomization, with 75 children assigned to each group. No safety concerns were identified in part B. P. falciparum infection occurred in 36 participants (48%) in the 150-mg group, in 30 (40%) in the 300-mg group, and in 61 (81%) in the placebo group. The efficacy of L9LS against P. falciparum infection, as compared with placebo, was 66% (adjusted confidence interval [95% CI], 45 to 79) with the 150-mg dose and 70% (adjusted 95% CI, 50 to 82) with the 300-mg dose (P<0.001 for both comparisons). Efficacy against clinical malaria was 67% (adjusted 95% CI, 39 to 82) with the 150-mg dose and 77% (adjusted 95% CI, 55 to 89) with the 300-mg dose (P<0.001 for both comparisons). CONCLUSIONS: Subcutaneous administration of L9LS to children was protective against P. falciparum infection and clinical malaria over a period of 6 months. (Funded by the National Institute of Allergy and Infectious Diseases; ClinicalTrials.gov number, NCT05304611.).
Asunto(s)
Anticuerpos Monoclonales Humanizados , Malaria Falciparum , Adulto , Niño , Femenino , Humanos , Masculino , Relación Dosis-Respuesta a Droga , Método Doble Ciego , Enfermedades Endémicas/prevención & control , Inyecciones Subcutáneas , Estimación de Kaplan-Meier , Malaria Falciparum/tratamiento farmacológico , Malaria Falciparum/epidemiología , Malaria Falciparum/prevención & control , Malí/epidemiología , Plasmodium falciparum , Resultado del Tratamiento , Anticuerpos Monoclonales Humanizados/administración & dosificación , Anticuerpos Monoclonales Humanizados/efectos adversos , Anticuerpos Monoclonales Humanizados/uso terapéutico , Terapia por Observación Directa , Combinación Arteméter y Lumefantrina/administración & dosificación , Combinación Arteméter y Lumefantrina/uso terapéutico , Adulto Joven , Persona de Mediana EdadRESUMEN
BACKGROUND: New approaches for the prevention and elimination of malaria, a leading cause of illness and death among infants and young children globally, are needed. METHODS: We conducted a phase 1 clinical trial to assess the safety and pharmacokinetics of L9LS, a next-generation antimalarial monoclonal antibody, and its protective efficacy against controlled human malaria infection in healthy adults who had never had malaria or received a vaccine for malaria. The participants received L9LS either intravenously or subcutaneously at a dose of 1 mg, 5 mg, or 20 mg per kilogram of body weight. Within 2 to 6 weeks after the administration of L9LS, both the participants who received L9LS and the control participants underwent controlled human malaria infection in which they were exposed to mosquitoes carrying Plasmodium falciparum (3D7 strain). RESULTS: No safety concerns were identified. L9LS had an estimated half-life of 56 days, and it had dose linearity, with the highest mean (±SD) maximum serum concentration (Cmax) of 914.2±146.5 µg per milliliter observed in participants who had received 20 mg per kilogram intravenously and the lowest mean Cmax of 41.5±4.7 µg per milliliter observed in those who had received 1 mg per kilogram intravenously; the mean Cmax was 164.8±31.1 in the participants who had received 5 mg per kilogram intravenously and 68.9±22.3 in those who had received 5 mg per kilogram subcutaneously. A total of 17 L9LS recipients and 6 control participants underwent controlled human malaria infection. Of the 17 participants who received a single dose of L9LS, 15 (88%) were protected after controlled human malaria infection. Parasitemia did not develop in any of the participants who received 5 or 20 mg per kilogram of intravenous L9LS. Parasitemia developed in 1 of 5 participants who received 1 mg per kilogram intravenously, 1 of 5 participants who received 5 mg per kilogram subcutaneously, and all 6 control participants through 21 days after the controlled human malaria infection. Protection conferred by L9LS was seen at serum concentrations as low as 9.2 µg per milliliter. CONCLUSIONS: In this small trial, L9LS administered intravenously or subcutaneously protected recipients against malaria after controlled infection, without evident safety concerns. (Funded by the National Institute of Allergy and Infectious Diseases; VRC 614 ClinicalTrials.gov number, NCT05019729.).
Asunto(s)
Anticuerpos Monoclonales , Malaria , Administración Cutánea , Administración Intravenosa , Adulto , Animales , Anticuerpos Monoclonales/administración & dosificación , Anticuerpos Monoclonales/efectos adversos , Anticuerpos Monoclonales/farmacocinética , Niño , Preescolar , Humanos , Malaria/prevención & control , Malaria Falciparum/tratamiento farmacológico , Malaria Falciparum/prevención & control , Parasitemia/parasitología , Plasmodium falciparumRESUMEN
BACKGROUND: WHO has identified Marburg virus as an emerging virus requiring urgent vaccine research and development, particularly due to its recent emergence in Ghana. We report results from a first-in-human clinical trial evaluating a replication-deficient recombinant chimpanzee adenovirus type 3 (cAd3)-vectored vaccine encoding a wild-type Marburg virus Angola glycoprotein (cAd3-Marburg) in healthy adults. METHODS: We did a first-in-human, phase 1, open-label, dose-escalation trial of the cAd3-Marburg vaccine at the Walter Reed Army Institute of Research Clinical Trials Center in the USA. Healthy adults aged 18-50 years were assigned to receive a single intramuscular dose of cAd3-Marburg vaccine at either 1â×â1010 or 1â×â1011 particle units (pu). Primary safety endpoints included reactogenicity assessed for the first 7 days and all adverse events assessed for 28 days after vaccination. Secondary immunogenicity endpoints were assessment of binding antibody responses and T-cell responses against the Marburg virus glycoprotein insert, and assessment of neutralising antibody responses against the cAd3 vector 4 weeks after vaccination. This study is registered with ClinicalTrials.gov, NCT03475056. FINDINGS: Between Oct 9, 2018, and Jan 31, 2019, 40 healthy adults were enrolled and assigned to receive a single intramuscular dose of cAd3-Marburg vaccine at either 1â×â1010 pu (n=20) or 1â×â1011 pu (n=20). The cAd3-Marburg vaccine was safe, well tolerated, and immunogenic. All enrolled participants received cAd3-Marburg vaccine, with 37 (93%) participants completing follow-up visits; two (5%) participants moved from the area and one (3%) was lost to follow-up. No serious adverse events related to vaccination occurred. Mild to moderate reactogenicity was observed after vaccination, with symptoms of injection site pain and tenderness (27 [68%] of 40 participants), malaise (18 [45%] of 40 participants), headache (17 [43%] of 40 participants), and myalgia (14 [35%] of 40 participants) most commonly reported. Glycoprotein-specific antibodies were induced in 38 (95%) of 40 participants 4 weeks after vaccination, with geometric mean titres of 421 [95% CI 209-846] in the 1â×â1010 pu group and 545 [276-1078] in the 1â×â1011 pu group, and remained significantly elevated at 48 weeks compared with baseline titres (39 [95% CI 13-119] in the 1â×1010 pu group and 27 [95-156] in the 1â×1011 pu group; both p<0·0001). T-cell responses to the glycoprotein insert and neutralising responses against the cAd3 vector were also increased at 4 weeks after vaccination. INTERPRETATION: This first-in-human trial of this cAd3-Marburg vaccine showed the agent is safe and immunogenic, with a safety profile similar to previously tested cAd3-vectored filovirus vaccines. 95% of participants produced a glycoprotein-specific antibody response at 4 weeks after a single vaccination, which remained in 70% of participants at 48 weeks. These findings represent a crucial step in the development of a vaccine for emergency deployment against a re-emerging pathogen that has recently expanded its reach to new regions. FUNDING: National Institutes of Health.
Asunto(s)
Adenovirus de los Simios , Marburgvirus , Animales , Adulto , Humanos , Pan troglodytes , Anticuerpos Antivirales , Vacunas Sintéticas/efectos adversos , Adenoviridae , Glicoproteínas , Método Doble CiegoRESUMEN
BACKGROUND: Additional interventions are needed to reduce the morbidity and mortality caused by malaria. METHODS: We conducted a two-part, phase 1 clinical trial to assess the safety and pharmacokinetics of CIS43LS, an antimalarial monoclonal antibody with an extended half-life, and its efficacy against infection with Plasmodium falciparum. Part A of the trial assessed the safety, initial side-effect profile, and pharmacokinetics of CIS43LS in healthy adults who had never had malaria. Participants received CIS43LS subcutaneously or intravenously at one of three escalating dose levels. A subgroup of participants from Part A continued to Part B, and some received a second CIS43LS infusion. Additional participants were enrolled in Part B and received CIS43LS intravenously. To assess the protective efficacy of CIS43LS, some participants underwent controlled human malaria infection in which they were exposed to mosquitoes carrying P. falciparum sporozoites 4 to 36 weeks after administration of CIS43LS. RESULTS: A total of 25 participants received CIS43LS at a dose of 5 mg per kilogram of body weight, 20 mg per kilogram, or 40 mg per kilogram, and 4 of the 25 participants received a second dose (20 mg per kilogram regardless of initial dose). No safety concerns were identified. We observed dose-dependent increases in CIS43LS serum concentrations, with a half-life of 56 days. None of the 9 participants who received CIS43LS, as compared with 5 of 6 control participants who did not receive CIS43LS, had parasitemia according to polymerase-chain-reaction testing through 21 days after controlled human malaria infection. Two participants who received 40 mg per kilogram of CIS43LS and underwent controlled human malaria infection approximately 36 weeks later had no parasitemia, with serum concentrations of CIS43LS of 46 and 57 µg per milliliter at the time of controlled human malaria infection. CONCLUSIONS: Among adults who had never had malaria infection or vaccination, administration of the long-acting monoclonal antibody CIS43LS prevented malaria after controlled infection. (Funded by the National Institute of Allergy and Infectious Diseases; VRC 612 ClinicalTrials.gov number, NCT04206332.).
Asunto(s)
Anticuerpos Monoclonales Humanizados/uso terapéutico , Anticuerpos Monoclonales/uso terapéutico , Antimaláricos/uso terapéutico , Malaria Falciparum/prevención & control , Adulto , Anticuerpos Monoclonales/administración & dosificación , Anticuerpos Monoclonales/efectos adversos , Anticuerpos Monoclonales/farmacocinética , Anticuerpos Monoclonales Humanizados/administración & dosificación , Anticuerpos Monoclonales Humanizados/efectos adversos , Anticuerpos Monoclonales Humanizados/farmacocinética , Anticuerpos Antiprotozoarios/sangre , Antimaláricos/administración & dosificación , Antimaláricos/efectos adversos , Antimaláricos/farmacocinética , Relación Dosis-Respuesta a Droga , Voluntarios Sanos , Humanos , Infusiones Intravenosas/efectos adversos , Inyecciones Subcutáneas/efectos adversos , Persona de Mediana Edad , Plasmodium falciparum/inmunología , Plasmodium falciparum/aislamiento & purificaciónRESUMEN
Recombinant adenoviral vectors (rAds) are the most potent recombinant vaccines for eliciting CD8(+) T cell-mediated immunity in humans; however, prior exposure from natural adenoviral infection can decrease such responses. In this study we show low seroreactivity in humans against simian- (sAd11, sAd16) or chimpanzee-derived (chAd3, chAd63) compared with human-derived (rAd5, rAd28, rAd35) vectors across multiple geographic regions. We then compared the magnitude, quality, phenotype, and protective capacity of CD8(+) T cell responses in mice vaccinated with rAds encoding SIV Gag. Using a dose range (1 × 10(7)-10(9) particle units), we defined a hierarchy among rAd vectors based on the magnitude and protective capacity of CD8(+) T cell responses, from most to least, as: rAd5 and chAd3, rAd28 and sAd11, chAd63, sAd16, and rAd35. Selection of rAd vector or dose could modulate the proportion and/or frequency of IFN-γ(+)TNF-α(+)IL-2(+) and KLRG1(+)CD127(-)CD8(+) T cells, but strikingly â¼30-80% of memory CD8(+) T cells coexpressed CD127 and KLRG1. To further optimize CD8(+) T cell responses, we assessed rAds as part of prime-boost regimens. Mice primed with rAds and boosted with NYVAC generated Gag-specific responses that approached â¼60% of total CD8(+) T cells at peak. Alternatively, priming with DNA or rAd28 and boosting with rAd5 or chAd3 induced robust and equivalent CD8(+) T cell responses compared with prime or boost alone. Collectively, these data provide the immunologic basis for using specific rAd vectors alone or as part of prime-boost regimens to induce CD8(+) T cells for rapid effector function or robust long-term memory, respectively.
Asunto(s)
Adenoviridae/inmunología , Linfocitos T CD8-positivos/inmunología , Epítopos de Linfocito T/inmunología , Productos del Gen gag/inmunología , Vectores Genéticos/administración & dosificación , VIH-1/inmunología , Garantía de la Calidad de Atención de Salud , Virus de la Inmunodeficiencia de los Simios/inmunología , Adenoviridae/genética , Animales , Linfocitos T CD8-positivos/metabolismo , Linfocitos T CD8-positivos/virología , Modelos Animales de Enfermedad , Epítopos de Linfocito T/administración & dosificación , Epítopos de Linfocito T/uso terapéutico , Productos del Gen gag/administración & dosificación , Productos del Gen gag/uso terapéutico , Vectores Genéticos/inmunología , Vectores Genéticos/uso terapéutico , Células HEK293 , VIH-1/genética , Humanos , Inmunofenotipificación/métodos , Inmunofenotipificación/normas , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Pan troglodytes , Garantía de la Calidad de Atención de Salud/normas , Proteínas Recombinantes/administración & dosificación , Proteínas Recombinantes/inmunología , Proteínas Recombinantes/uso terapéutico , Virus de la Inmunodeficiencia de los Simios/genéticaRESUMEN
Respiratory syncytial virus (RSV) is a major cause of infectious lower respiratory disease in infants and the elderly. As there is no vaccine for RSV, we developed a genetic vaccine approach that induced protection of the entire respiratory tract from a single parenteral administration. The approach was based on adenovirus vectors derived from newly isolated nonhuman primate viruses with low seroprevalence. We show for the first time that a single intramuscular (IM) injection of the replication-deficient adenovirus vectors expressing the RSV fusion (F0) glycoprotein induced immune responses that protected both the lungs and noses of cotton rats and mice even at low doses and for several months postimmunization. The immune response included high titers of neutralizing antibody that were maintained ≥ 24 weeks and RSV-specific CD8+ and CD4+ T cells. The vectors were as potently immunogenic as a human adenovirus 5 vector in these two key respiratory pathogen animal models. Importantly, there was minimal alveolitis and granulocytic infiltrates in the lung, and type 2 cytokines were not produced after RSV challenge even under conditions of partial protection. Overall, this genetic vaccine is highly effective without potentiating immunopathology, and the results support development of the vaccine candidate for human testing.
Asunto(s)
Infecciones por Virus Sincitial Respiratorio/prevención & control , Vacunas contra Virus Sincitial Respiratorio/genética , Vacunas contra Virus Sincitial Respiratorio/inmunología , Virus Sincitial Respiratorio Humano/genética , Virus Sincitial Respiratorio Humano/inmunología , Animales , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Línea Celular , Modelos Animales de Enfermedad , Humanos , Pulmón/inmunología , Pulmón/virología , Ratones , Nariz/inmunología , Nariz/virología , Vacunas contra Virus Sincitial Respiratorio/administración & dosificación , Sigmodontinae , Linfocitos T/inmunología , Linfocitos T/metabolismo , Vacunas SintéticasRESUMEN
We have generated hexon-modified adenovirus serotype 5 (Ad5) vectors that are not neutralized by Ad5-specific neutralizing antibodies in mice. These vectors are attractive for the advancement of vaccine products because of their potential for inducing robust antigen-specific immune responses in people with prior exposure to Ad5. However, hexon-modified Ad5 vectors displayed an approximate 10-fold growth defect in complementing cells, making potential vaccine costs unacceptably high. Replacing hypervariable regions (HVRs) 1, 2, 4, and 5 with the equivalent HVRs from Ad43 was sufficient to avoid Ad5 preexisting immunity and retain full vaccine potential. However, the resulting vector displayed the same growth defect as the hexon-modified vector carrying all 9 HVRs from Ad43. The growth defect is likely due to a defect in capsid assembly, since DNA replication and late protein accumulation were normal in these vectors. We determined that the hexon-modified vectors have a 32°C cold-sensitive phenotype and selected revertants that restored vector productivity. Genome sequencing identified a single base change resulting in a threonine-to-methionine amino acid substitution at the position equivalent to residue 342 of the wild-type protein. This mutation has a suppressor phenotype (SP), since cloning it into our Ad5 vector containing all nine hypervariable regions from Ad43, Ad5.H(43m-43), increased yields over the version without the SP mutation. This growth improvement was also shown for an Ad5-based hexon-modified vector that carried the hexon hypervariable regions of Ad48, indicating that the SP mutation may have broad applicability for improving the productivity of different hexon-modified vectors.
Asunto(s)
Adenovirus Humanos/genética , Proteínas de la Cápside/genética , Vectores Genéticos , Adenovirus Humanos/inmunología , Adenovirus Humanos/fisiología , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Animales , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Proteínas de la Cápside/inmunología , Citocinas/biosíntesis , Femenino , Genes Virales , Células HEK293 , Humanos , Ratones , Ratones Endogámicos BALB C , Datos de Secuencia Molecular , Homología de Secuencia de Aminoácido , Supresión Genética , Vacunas Virales/genética , Vacunas Virales/inmunología , Replicación Viral/genéticaRESUMEN
Recombinant adenovirus (rAd) vectors are being investigated as vaccine delivery vehicles in preclinical and clinical studies. rAds constructed from different serotypes differ in receptor usage, tropism, and ability to activate cells, aspects of which likely contribute to their different immunogenicity profiles. In this study, we compared the infectivity and cell stimulatory capacity of recombinant adenovirus serotype 5 (rAd5), recombinant adenovirus serotype 28 (rAd28), and recombinant adenovirus serotype 35 (rAd35) in association with their respective immunogenicity profiles. We found that rAd28 and rAd35 infected and led to the in vitro maturation and activation of both human and mouse dendritic cells more efficiently compared with rAd5. In stark contrast to rAd5, rAd28 and rAd35 induced production of IFN-α and stimulated IFN-related intracellular pathways. However, the in vivo immunogenicity of rAd28 and rAd35 was significantly lower than that of rAd5. Deletion of IFN-α signaling during vaccination with rAd28 and rAd35 vectors increased the magnitude of the insert-specific T cell response to levels induced by vaccination with rAd5 vector. The negative impact of IFN-α signaling on the magnitude of the T cell response could be overcome by increasing the vaccine dose, which was also associated with greater polyfunctionality and a more favorable long-term memory phenotype of the CD8 T cell response in the presence of IFN-α signaling. Taken together, our results demonstrate that rAd-induced IFN-α production has multiple effects on T cell immunogenicity, the understanding of which should be considered in the design of rAd vaccine vectors.
Asunto(s)
Adenoviridae/inmunología , Células Dendríticas/inmunología , Células Dendríticas/virología , Interferón Tipo I/inmunología , Linfocitos T/inmunología , Vacunas Sintéticas/inmunología , Adenoviridae/genética , Animales , Separación Celular , Células Dendríticas/metabolismo , Citometría de Flujo , Perfilación de la Expresión Génica , Vectores Genéticos , Humanos , Interferón Tipo I/biosíntesis , Ratones , Ratones Endogámicos C57BL , Análisis por MicromatricesRESUMEN
Recombinant adenoviruses (rAds) based on types 5 (rAd5) and 35 (rAd35) have emerged as important vaccine delivery vectors in clinical testing for a variety of pathogens. A major difference between these vectors is their binding to cellular receptors used for infection. Whereas rAd5 binds coxsackie-adenovirus receptor (CAR), rAd35 binds the complement regulatory protein CD46. Although rAd35 infected and phenotypically matured human blood dendritic cells (DCs) more efficiently than rAd5, we show here that rAd35 markedly suppressed DC-induced activation of naive CD4(+) T cells. rAd35 specifically blocked both DCs and anti-CD3/CD28 mAb-induced naive T-cell proliferation and IL-2 production. This effect was also observed in CD4(+) memory T cells but to a lesser extent. The suppression occurred by rAd35 binding to CD46 on T cells and was independent of infection. CD46 engagement with mAb mimicked the effects of rAd35 and also led to deficient NF-κB nuclear translocation. In contrast, rAd5 and rAd35 vectors with ablated CD46 binding did not inhibit T-cell activation. Our findings provide insights into the basic biology of adenoviruses and indicate that CD46 binding may have an impact on the generation of primary CD4(+) T-cell responses by Ad35.
Asunto(s)
Adenoviridae/metabolismo , Linfocitos T CD4-Positivos/metabolismo , Vectores Genéticos/metabolismo , Activación de Linfocitos/fisiología , Proteína Cofactora de Membrana/metabolismo , Receptores Virales/metabolismo , Adenoviridae/genética , Western Blotting , Linfocitos T CD4-Positivos/inmunología , Proteína de la Membrana Similar al Receptor de Coxsackie y Adenovirus , Células Dendríticas/metabolismo , Citometría de Flujo , HumanosRESUMEN
Bi-functional N-Hydroxysuccinimide (NHS) linkers are widely used in the conjugation processes linking an immunogen with a carrier protein capable of boosting immunity. A potential vaccine candidate against HIV-1, called fusion peptide (FP), is covalently linked to the recombinant tetanus toxoid heavy-chain fragment C (rTTHC) via this type of linker. A reversed-phase liquid chromatography (RPLC-UV) method was used to monitor the linker's degradation kinetics in various buffers, mimicking the steps in the conjugation process. The kinetics of the reactivities of the linkers are revealed in this study and can provide a good guidance to help effective conjugation process before these linkers are completely hydrolyze to the inactive degradants. Three cross-linkers degradation pathways were evaluated: Sulfosuccinimidyl (4-iodoacetyl) aminobenzoate (Sulfo-SIAB), PEGylated SMCC (SM(PEG)2), and N-γ-maleimidobutyryl-oxysulfosuccinimide ester (Sulfo-GMBS). We have reported kinetics for Sulfo-SIAB.
Asunto(s)
Cromatografía de Fase Inversa , Polietilenglicoles , Succinimidas , Cromatografía de Fase Inversa/métodos , Succinimidas/química , Polietilenglicoles/química , Cinética , Reactivos de Enlaces Cruzados/química , Toxoide Tetánico/química , Proteínas Recombinantes de Fusión/químicaRESUMEN
Recent work by our laboratory and others indicates that co-display of multiple antigens on protein-based nanoparticles may be key to induce cross-reactive antibodies that provide broad protection against disease. To reach the ultimate goal of a universal vaccine for seasonal influenza, a mosaic influenza nanoparticle vaccine (FluMos-v1) was developed for clinical trial (NCT04896086). FluMos-v1 is unique in that it is designed to co-display four recently circulating haemagglutinin (HA) strains; however, current vaccine analysis techniques are limited to nanoparticle population analysis, thus, are unable to determine the valency of an individual nanoparticle. For the first time, we demonstrate by total internal reflection fluorescence microscopy and supportive physical-chemical methods that the co-display of four antigens is indeed achieved in single nanoparticles. Additionally, we have determined percentages of multivalent (mosaic) nanoparticles with four, three, or two HA proteins. The integrated imaging and physicochemical methods we have developed for single nanoparticle multivalency will serve to further understand immunogenicity data from our current FluMos-v1 clinical trial.
Asunto(s)
Vacunas contra la Influenza , Gripe Humana , Nanopartículas , Humanos , Anticuerpos Antivirales , Glicoproteínas Hemaglutininas del Virus de la Influenza , Hemaglutininas , Inmunogenicidad Vacunal , Gripe Humana/prevención & control , Nanopartículas/química , Ensayos Clínicos como AsuntoRESUMEN
Despite effective countermeasures, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) persists worldwide because of its ability to diversify and evade human immunity. This evasion stems from amino acid substitutions, particularly in the receptor binding domain (RBD) of the spike protein that confers resistance to vaccine-induced antibodies and antibody therapeutics. To constrain viral escape through resistance mutations, we combined antibody variable regions that recognize different RBD sites into multispecific antibodies. Here, we describe multispecific antibodies, including a trivalent trispecific antibody that potently neutralized diverse SARS-CoV-2 variants and prevented virus escape more effectively than single antibodies or mixtures of the parental antibodies. Despite being generated before the appearance of Omicron, this trispecific antibody neutralized all major Omicron variants through BA.4/BA.5 at nanomolar concentrations. Negative stain electron microscopy suggested that synergistic neutralization was achieved by engaging different epitopes in specific orientations that facilitated binding across more than one spike protein. Moreover, a tetravalent trispecific antibody containing the same variable regions as the trivalent trispecific antibody also protected Syrian hamsters against Omicron variants BA.1, BA.2, and BA.5 challenge, each of which uses different amino acid substitutions to mediate escape from therapeutic antibodies. These results demonstrated that multispecific antibodies have the potential to provide broad SARS-CoV-2 coverage, decrease the likelihood of escape, simplify treatment, and provide a strategy for antibody therapies that could help eliminate pandemic spread for this and other pathogens.
Asunto(s)
Anticuerpos Neutralizantes , Anticuerpos Antivirales , COVID-19 , Evasión Inmune , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , SARS-CoV-2/inmunología , Animales , COVID-19/inmunología , COVID-19/prevención & control , COVID-19/virología , Humanos , Anticuerpos Neutralizantes/inmunología , Anticuerpos Neutralizantes/uso terapéutico , Glicoproteína de la Espiga del Coronavirus/inmunología , Glicoproteína de la Espiga del Coronavirus/química , Anticuerpos Antivirales/inmunología , Ratones , Epítopos/inmunología , Mesocricetus , Cricetinae , Anticuerpos Biespecíficos/inmunología , Anticuerpos Biespecíficos/farmacologíaRESUMEN
BACKGROUNDBroadly neutralizing monoclonal antibodies (bNAbs) represent a promising strategy for HIV-1 immunoprophylaxis and treatment. 10E8VLS and VRC07-523LS are bNAbs that target the highly conserved membrane-proximal external region (MPER) and the CD4-binding site of the HIV-1 viral envelope glycoprotein, respectively.METHODSIn this phase 1, open-label trial, we evaluated the safety and pharmacokinetics of 5 mg/kg 10E8VLS administered alone, or concurrently with 5 mg/kg VRC07-523LS, via s.c. injection to healthy non-HIV-infected individuals.RESULTSEight participants received either 10E8VLS alone (n = 6) or 10E8VLS and VRC07-523LS in combination (n = 2). Five (n = 5 of 8, 62.5%) participants who received 10E8VLS experienced moderate local reactogenicity, and 1 participant (n = 1/8, 12.5%) experienced severe local reactogenicity. Further trial enrollment was stopped, and no participant received repeat dosing. All local reactogenicity resolved without sequelae. 10E8VLS retained its neutralizing capacity, and no functional anti-drug antibodies were detected; however, a serum t1/2 of 8.1 days was shorter than expected. Therefore, the trial was voluntarily stopped per sponsor decision (Vaccine Research Center, National Institute of Allergy and Infectious Diseases [NIAID], NIH). Mechanistic studies performed to investigate the underlying reason for the reactogenicity suggest that multiple mechanisms may have contributed, including antibody aggregation and upregulation of local inflammatory markers.CONCLUSION10E8VLS resulted in unexpected reactogenicity and a shorter t1/2 in comparison with previously tested bNAbs. These studies may facilitate identification of nonreactogenic second-generation MPER-targeting bNAbs, which could be an effective strategy for HIV-1 immunoprophylaxis and treatment.TRIAL REGISTRATIONClinicaltrials.gov, accession no. NCT03565315.FUNDINGDivision of Intramural Research, National Institute of Allergy and Infectious Diseases, NIH.
Asunto(s)
Infecciones por VIH , Seropositividad para VIH , VIH-1 , Humanos , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/prevención & control , Anticuerpos Anti-VIH , Anticuerpos ampliamente neutralizantes/farmacología , Anticuerpos Monoclonales/farmacologíaRESUMEN
The relative conservation of the influenza hemagglutinin (HA) stem compared to that of the immunodominant HA head makes the HA stem an attractive target for broadly protective influenza vaccines. Here we report the first-in-human, dose-escalation, open-label trial (NCT04579250) evaluating an unadjuvanted group 2 stabilized stem ferritin nanoparticle vaccine based on the H10 A/Jiangxi-Donghu/346/2013 influenza HA, H10ssF, in healthy adults. Participants received a single 20 mcg dose (n = 3) or two 60 mcg doses 16 weeks apart (n = 22). Vaccination with H10ssF was safe and well tolerated with only mild systemic and local reactogenicity reported. No serious adverse events occurred. Vaccination significantly increased homologous H10 HA stem binding and neutralizing antibodies at 2 weeks after both first and second vaccinations, and these responses remained above baseline at 40 weeks. Heterologous H3 and H7 binding antibodies also significantly increased after each vaccination and remained elevated throughout the study. These data indicate that the group 2 HA stem nanoparticle vaccine is safe and induces stem-directed binding and neutralizing antibodies.
RESUMEN
The RV144 trial demonstrated that an experimental AIDS vaccine can prevent human immunodeficiency virus type 1 (HIV-1) infection in humans. Because of its limited efficacy, further understanding of the mechanisms of preventive AIDS vaccines remains a priority, and nonhuman primate (NHP) models of lentiviral infection provide an opportunity to define immunogens, vectors, and correlates of immunity. In this study, we show that prime-boost vaccination with a mismatched SIV envelope (Env) gene, derived from simian immunodeficiency virus SIVmac239, prevents infection by SIVsmE660 intrarectally. Analysis of different gene-based prime-boost immunization regimens revealed that recombinant adenovirus type 5 (rAd5) prime followed by replication-defective lymphocytic choriomeningitis virus (rLCMV) boost elicited robust CD4 and CD8 T-cell and humoral immune responses. This vaccine protected against infection after repetitive mucosal challenge with efficacies of 82% per exposure and 62% cumulatively. No effect was seen on viremia in infected vaccinated monkeys compared to controls. Protection correlated with the presence of neutralizing antibodies to the challenge viruses tested in peripheral blood mononuclear cells. These data indicate that a vaccine expressing a mismatched Env gene alone can prevent SIV infection in NHPs and identifies an immune correlate that may guide immunogen selection and immune monitoring for clinical efficacy trials.
Asunto(s)
Adenoviridae , Productos del Gen env/inmunología , Virus de la Coriomeningitis Linfocítica , Vacunas contra el SIDAS/inmunología , Síndrome de Inmunodeficiencia Adquirida del Simio/inmunología , Virus de la Inmunodeficiencia de los Simios/inmunología , Vacunas de ADN/inmunología , Vacunas contra el SIDA/genética , Vacunas contra el SIDA/inmunología , Animales , Femenino , Productos del Gen env/genética , VIH-1/genética , VIH-1/inmunología , Inmunización Secundaria/métodos , Macaca mulatta , Masculino , Ratones , Vacunas contra el SIDAS/genética , Síndrome de Inmunodeficiencia Adquirida del Simio/genética , Síndrome de Inmunodeficiencia Adquirida del Simio/prevención & control , Transducción Genética , Vacunas de ADN/genéticaRESUMEN
An enzyme linked immunosorbent assay (ELISA) method was developed to analyze the assembly of a tetravalent mosaic influenza nanoparticle (NP) vaccine, Flumos-v1, consisting of hemagglutinin trimers (HAT) from H1 (A/Idaho/07/2018), H3 (A/Perth/1008/2019), HBV (Vic-B/Colorado/06/2017) and HBY (Yam-B/Phuket/3073/2013) strains. The sandwich ELISA assay used lectin from Galanthus nivalis as a universal capture reagent for all HAT strains and specific monoclonal antibody (mAb) to detect corresponding hemagglutinin antigen. The mAb binding of HATs incorporated into NPs diverged from those for single HAT solutions, resulting in inaccurate quantitation of assembled HATs. An optimized zwittergent treatment was used to fully dissociate the influenza NP and aligned binding activities in each pair of single HAT and dissociated HAT from NP. The dissociated HATs were then quantified against their corresponding HAT standard solutions for three development lots of FluMos-v1 vaccine and the assembly ratio of all four HATs was calculated. The molar ratio of different HATs incorporated into this quadrivalent NP vaccine was consistent and determined as H3:H1: HBV: HBY â¼ 1.00:0.92:0.96:0.87, which was close the expected 1:1:1:1 ratio and confirmed a proper assembling of multivalent NP.
Asunto(s)
Vacunas contra la Influenza , Gripe Humana , Nanopartículas , Humanos , Gripe Humana/prevención & control , Hemaglutininas , Glicoproteínas Hemaglutininas del Virus de la Influenza , Ensayo de Inmunoadsorción Enzimática/métodos , Anticuerpos Monoclonales , Vacunas Combinadas , Anticuerpos AntiviralesRESUMEN
A quadrivalent influenza nanoparticle vaccine (FluMos-v1) offers long-lasting protection against multiple influenza virus strains and is composed of four strains of hemagglutinin trimer (HAT) assembled around a pentamer core. Here we report an LC-MS/MS analytical development and validation method to measure the percentage of each HAT component in FluMos-v1.
Asunto(s)
Vacunas contra la Influenza , Gripe Humana , Nanopartículas , Humanos , Vacunas contra la Influenza/química , Hemaglutininas , Gripe Humana/prevención & control , Cromatografía Liquida , Anticuerpos Antivirales , Glicoproteínas Hemaglutininas del Virus de la Influenza/química , Espectrometría de Masas en TándemRESUMEN
This report describes an application of analytical high performance size exclusion chromatography with UV and Fluorescent detection (HPSEC-UV/FLR) method that enabled a bridging from research vaccine candidate discovery (His-tagged model) to clinical product development (Non-His-tagged molecules). HPSEC measurement can accurately determine the total trimer-to-pentamer molar ratio by either titration evaluation during the nanoparticle being assembled or dissociation during a well-formed nanoparticle being dis-assembled. Through experimental design with small sample consumptions, HPSEC can provide a quick determination on the nanoparticle assembling efficiency which can therefore guide the buffer optimization for an assembly, from His-tagged model nanoparticle, to non-His-tagged clinical development product. HPSEC has also discovered a difference in assembling efficiencies for various strains of HAx-dn5B with Pentamer-dn5A components, and different efficiencies for monovalent assembly vs. multivalent assembly. The present study demonstrates HPSEC as a pivotal tool to support the Flu Mosaic nanoparticle vaccine development from research to clinical production.
Asunto(s)
Vacunas contra la Influenza , Nanopartículas , Cromatografía en Gel , Factores de TiempoRESUMEN
To capture the structure of assembled hemagglutinin (HA) nanoparticles at single-particle resolution, HA-specific antigen binding fragments (Fabs) were labeled by fluorescent (FLR) dyes as probes to highlight the HA trimers displayed on the assembled tetravalent HA nanoparticles for a qualitative localization microscopic study. The FLR dyes were conjugated to the Fabs through N-hydroxysuccinimide (NHS) ester mediated amine coupling chemistry. The labeling profile, including labeling ratio, distribution, and site-specific labeling occupancy, can affect the imaging results and introduce inconsistency. To evaluate the labeling profile so as to evaluate the labeling efficiency, a combination of intact mass measurement by MALDI-MS and peptide mapping through LC-MS/MS was implemented. At the intact molecular level, the labeling ratio and distribution were determined. Through peptide mapping, the labeled residues were identified and the corresponding site-specific labeling occupancy was measured. A systematic comparative investigation of four different FLR-labeled 1H01-Fabs (generated from H1 strain HA specific mAb 1H01) allowed accurate profiling of the labeling pattern. The data indicate that the labeling was site-specific and semiquantitative. This warrants the consistency of single-particle fluorescent imaging experiments and allows a further imaging characterization of the single nanoparticles.
Asunto(s)
Aminas , Hemaglutininas , Cromatografía Liquida , Espectrometría de Masas en Tándem , ColorantesRESUMEN
Mpox virus (MPXV) caused a global outbreak in 2022. Although smallpox vaccines were rapidly deployed to curb spread and disease among those at highest risk, breakthrough disease was noted after complete immunization. Given the threat of additional zoonotic events and the virus's evolving ability to drive human-to-human transmission, there is an urgent need for an MPXV-specific vaccine that confers protection against evolving MPXV strains and related orthopoxviruses. Here, we demonstrate that an mRNA-lipid nanoparticle vaccine encoding a set of four highly conserved MPXV surface proteins involved in virus attachment, entry, and transmission can induce MPXV-specific immunity and heterologous protection against a lethal vaccinia virus (VACV) challenge. Compared with modified vaccinia virus Ankara (MVA), which forms the basis for the current MPXV vaccine, immunization with an mRNA-based MPXV vaccine generated superior neutralizing activity against MPXV and VACV and more efficiently inhibited spread between cells. We also observed greater Fc effector TH1-biased humoral immunity to the four MPXV antigens encoded by the vaccine, as well as to the four VACV homologs. Single MPXV antigen-encoding mRNA vaccines provided partial protection against VACV challenge, whereas multivalent vaccines combining mRNAs encoding two, three, or four MPXV antigens protected against disease-related weight loss and death equal or superior to MVA vaccination. These data demonstrate that an mRNA-based MPXV vaccine confers robust protection against VACV.