Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Lab Chip ; 21(6): 1073-1083, 2021 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-33529300

RESUMEN

Single-molecule and single-cell analysis techniques have opened new opportunities for characterizing and analyzing heterogeneity within biological samples. These detection methods are often referred to as digital assays because the biological sample is partitioned into many small compartments and each compartment contains a discrete number of targets (e.g. cells). Using digital assays, researchers can precisely detect and quantify individual targets, and this capability has made digital techniques the basis for many modern bioanalytical tools (including digital PCR, single cell RNA sequencing, and digital ELISA). However, digital assays are dominated by optical analysis systems that typically utilize microscopy to analyze partitioned samples. The utility of digital assays may be dramatically enhanced by implementing cost-efficient and portable electrical detection capabilities. Herein, we describe a digital electrical impedance sensing platform that enables direct multiplexed measurement of single cell bacterial cells. We outline our solutions to the challenge of multiplexing impedance sensing across many culture compartments and demonstrate the potential for rapidly differentiating antimicrobial resistant versus susceptible strains of bacteria.


Asunto(s)
Antiinfecciosos , Bacterias , Bacterias/genética , Impedancia Eléctrica , Ensayo de Inmunoadsorción Enzimática , Reacción en Cadena de la Polimerasa
2.
SLAS Technol ; 23(4): 374-386, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29186669

RESUMEN

We present methods to fabricate high-capacity redox electrodes using thick membrane or fiber casting of conjugated polymer solutions. Unlike common solution casting or printing methods used in current organic electronics, the presented techniques enable production of PEDOT:PSS electrodes with high charge capacity and the capability to operate under applied voltages greater than 100 V without electrochemical overoxidation. The electrodes are shown integrated into several electrokinetic components commonly used in automated bioprocess or bioassay workflows, including electrophoretic DNA separation and extraction, cellular electroporation/lysis, and electroosmotic pumping. Unlike current metal electrodes used in these applications, the high-capacity polymer electrodes are shown to function without electrolysis of solvent (i.e., without production of excess H+, OH-, and H2O2 by-products). In addition, each component fabricated using the electrodes is shown to have superior capabilities compared with those fabricated with common metal electrodes. These innovations in electrokinetics include a low-voltage/high-pressure electroosmotic pump, and a "flow battery" (in which electrochemical discharge is used to generate electroosmotic flow in the absence of an applied potential). The novel electrodes (and electrokinetic demonstrations) enable new applications of organic electronics within the biology, health care, and pharmaceutical fields.


Asunto(s)
Fraccionamiento Celular/métodos , Electroquímica/métodos , Poliestirenos/química , Tiofenos/química , Animales , Células CHO , Cricetinae , Cricetulus , ADN/análisis , ADN/aislamiento & purificación , Suministros de Energía Eléctrica , Electrodos , Electrólisis , Electroósmosis , Diseño de Equipo , Microfluídica , Oxidación-Reducción , Presión , Reología
3.
ACS Biomater Sci Eng ; 4(5): 1900-1907, 2018 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-33445345

RESUMEN

Microelectrode arrays of carbon nanotube (CNT)/carbon composite posts with high aspect ratio and millimeter-length were fabricated using carbon-nanotube-templated microfabrication with a sacrificial "hedge". The high aspect ratio, mechanical robustness, and electrical conductivity of these electrodes make them a potential candidate for next-generation neural interfacing. Electrochemical measurements were also demonstrated using an individual CNT post microelectrode with a diameter of 25 µm and a length of 1 mm to perform cyclic voltammetry on both methyl viologen and dopamine in a phosphate-buffered saline solution. In addition to detection of the characteristic peaks, the CNT post microelectrodes show a fast electrochemical response, which may be enabling for in vivo and/or in vitro measurements. The CNT post electrode fabrication process was also integrated with other microfabrication techniques, resulting in individually addressable electrodes.

4.
J Magn Reson ; 295: 72-79, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30144687

RESUMEN

Test disk electrodes were fabricated from carbon nanotubes (CNT) using the Carbon Nanotube Templated Microfabrication (CNT-M) technique. The CNT-M process uses patterned growth of carbon nanotube forests from surfaces to form complex patterns, enabling electrode sizing and shaping. The additional carbon infiltration process stabilizes these structures for further processing and handling. At a macroscopic scale, the electrochemical, electrical and magnetic properties, and magnetic resonance imaging (MRI) characteristics of the disk electrodes were investigated; their microstructure was also assessed. CNT disk electrodes showed electrical resistivity around 1â€¯Ω·cm, charge storage capacity between 3.4 and 38.4 mC/cm2, low electrochemical impedance and magnetic susceptibility of -5.9 to -8.1 ppm, closely matched to that of tissue (∼-9 ppm). Phantom MR imaging experiments showed almost no distortion caused by these electrodes compared with Cu and Pt-Ir reference electrodes, indicating the potential for significant improvement in accurate tip visualization.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA