Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Proc Natl Acad Sci U S A ; 114(1): 142-147, 2017 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-27980034

RESUMEN

Hosts and their microbes have established a sophisticated communication system over many millennia. Within mammalian hosts, this dynamic cross-talk is essential for maintaining intestinal homeostasis. In a genetically susceptible host, dysbiosis of the gut microbiome and dysregulated immune responses are central to the development of inflammatory bowel disease (IBD). Previous surveys of stool from the T-bet-/-Rag2-/- IBD mouse model revealed microbial features that discriminate between health and disease states. Enterobacteriaceae expansion and increased gene abundances for benzoate degradation, two-component systems, and bacterial motility proteins pointed to the potential involvement of a catecholamine-mediated bacterial signaling axis in colitis pathogenesis. Enterobacteriaceae sense and respond to microbiota-generated signals and host-derived catecholamines through the two-component quorum-sensing Escherichia coli regulators B and C (QseBC) system. On signal detection, QseC activates a cascade to induce virulence gene expression. Although a single pathogen has not been identified as a causative agent in IBD, adherent-invasive Escherichia coli (AIEC) have been implicated. Flagellar expression is necessary for the IBD-associated AIEC strain LF82 to establish colonization. Thus, we hypothesized that qseC inactivation could reduce LF82's virulence, and found that an absence of qseC leads to down-regulated flagellar expression and motility in vitro and reduced colonization in vivo. We extend these findings on the potential of QseC-based IBD therapeutics to three preclinical IBD models, wherein we observe that QseC blockade can effectively modulate colitogenic microbiotas to reduce intestinal inflammation. Collectively, our data support a role for QseC-mediated bacterial signaling in IBD pathogenesis and indicate that QseC inhibition may be a useful microbiota-targeted approach for disease management.


Asunto(s)
Colitis/patología , Colitis/terapia , Proteínas de Escherichia coli/antagonistas & inhibidores , Proteínas de Escherichia coli/genética , Escherichia coli/metabolismo , Percepción de Quorum/efectos de los fármacos , Animales , Catecolaminas/metabolismo , Colitis/microbiología , Flagelos/genética , Flagelos/metabolismo , Microbioma Gastrointestinal , Regulación Bacteriana de la Expresión Génica/genética , Ratones , Ratones Endogámicos BALB C , Ratones Noqueados , Sulfonamidas/farmacología , Virulencia/genética
2.
Proc Natl Acad Sci U S A ; 112(25): 7803-8, 2015 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-26056274

RESUMEN

Beneficial microbes that target molecules and pathways, such as oxidative stress, which can negatively affect both host and microbiota, may hold promise as an inflammatory bowel disease therapy. Prior work showed that a five-strain fermented milk product (FMP) improved colitis in T-bet(-/-) Rag2(-/-) mice. By varying the number of strains used in the FMP, we found that Lactococcus lactis I-1631 was sufficient to ameliorate colitis. Using comparative genomic analyses, we identified genes unique to L. lactis I-1631 involved in oxygen respiration. Respiration of oxygen results in reactive oxygen species (ROS) generation. Also, ROS are produced at high levels during intestinal inflammation and cause tissue damage. L. lactis I-1631 possesses genes encoding enzymes that detoxify ROS, such as superoxide dismutase (SodA). Thus, we hypothesized that lactococcal SodA played a role in attenuating colitis. Inactivation of the sodA gene abolished L. lactis I-1631's beneficial effect in the T-bet(-/-) Rag2(-/-) model. Similar effects were obtained in two additional colonic inflammation models, Il10(-/-) mice and dextran sulfate sodium-treated mice. Efforts to understand how a lipophobic superoxide anion (O2 (-)) can be detoxified by cytoplasmic lactoccocal SodA led to the finding that host antimicrobial-mediated lysis is a prerequisite for SodA release and SodA's extracytoplasmic O2 (-) scavenging. L. lactis I-1631 may represent a promising vehicle to deliver antioxidant, colitis-attenuating SodA to the inflamed intestinal mucosa, and host antimicrobials may play a critical role in mediating SodA's bioaccessibility.


Asunto(s)
Colitis/metabolismo , Lactococcus lactis/metabolismo , Muramidasa/metabolismo , Superóxido Dismutasa/metabolismo , Animales , Colitis/enzimología , Colitis/microbiología , Mucosa Intestinal/enzimología , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiología , Ratones , Especies Reactivas de Oxígeno/metabolismo
3.
Proc Natl Acad Sci U S A ; 107(42): 18132-7, 2010 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-20921388

RESUMEN

Intestinal health requires the coexistence of eukaryotic self with the gut microbiota and dysregulated host-microbial interactions can result in intestinal inflammation. Here, we show that colitis improved in T-bet(-/-)Rag2(-/-) mice that consumed a fermented milk product containing Bifidobacterium animalis subsp. lactis DN-173 010 strain. A decrease in cecal pH and alterations in short chain fatty acid profiles occurred with consumption, and there were concomitant increases in the abundance of select lactate-consuming and butyrate-producing bacteria. These metabolic shifts created a nonpermissive environment for the Enterobacteriaceae recently identified as colitogenic in a T-bet(-/-)Rag2(-/-) ulcerative colitis mouse model. In addition, 16S rRNA-based analysis of the T-bet(-/-)Rag2(-/-) fecal microbiota suggest that the structure of the endogenous gut microbiota played a key role in shaping the host response to the bacterial strains studied herein. We have identified features of the gut microbiota, at the membership and functional level, associated with response to this B. lactis-containing fermented milk product, and therefore this model provides a framework for evaluating and optimizing probiotic-based functional foods.


Asunto(s)
Bifidobacterium/fisiología , Colitis/microbiología , Enterobacteriaceae/patogenicidad , Inflamación/prevención & control , Leche , Animales , Fermentación , Ratones , Ratones Noqueados
4.
Cell Microbiol ; 13(4): 508-17, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21314883

RESUMEN

Humans are colonized by a diverse collection of microbes, the largest numbers of which reside in the distal gut. The vast majority of humans coexist in a beneficial equilibrium with these microbes. However, disruption of this mutualistic relationship can manifest itself in human diseases such as inflammatory bowel disease. Thus the study of inflammatory bowel disease and its genetics can provide insight into host pathways that mediate host-microbiota symbiosis. Bacteria of the human intestinal ecosystem face numerous challenges imposed by human dietary intake, the mucosal immune system, competition from fellow members of the gut microbiota, transient ingested microbes and invading pathogens. Considering features of human resident gut bacteria provides the opportunity to understand how microbes have achieved their symbiont status. While model symbionts have provided perspective into host-microbial homeostasis, high-throughput approaches are becoming increasingly practical for functionally characterizing the gut microbiota as a community.


Asunto(s)
Tracto Gastrointestinal/microbiología , Enfermedades Inflamatorias del Intestino/microbiología , Metagenoma , Simbiosis , Animales , Proteínas Relacionadas con la Autofagia , Bacterias/genética , Bacterias/metabolismo , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Proteínas de Unión al GTP/genética , Proteínas de Unión al GTP/metabolismo , Estudio de Asociación del Genoma Completo , Humanos , Enfermedades Inflamatorias del Intestino/genética , Enfermedades Inflamatorias del Intestino/inmunología , Interleucinas/genética , Interleucinas/metabolismo , Proteína Adaptadora de Señalización NOD2/genética , Proteína Adaptadora de Señalización NOD2/metabolismo
5.
Science ; 351(6279): 1329-33, 2016 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-26847546

RESUMEN

The intestinal epithelium forms an essential barrier between a host and its microbiota. Protozoa and helminths are members of the gut microbiota of mammals, including humans, yet the many ways that gut epithelial cells orchestrate responses to these eukaryotes remain unclear. Here we show that tuft cells, which are taste-chemosensory epithelial cells, accumulate during parasite colonization and infection. Disruption of chemosensory signaling through the loss of TRMP5 abrogates the expansion of tuft cells, goblet cells, eosinophils, and type 2 innate lymphoid cells during parasite colonization. Tuft cells are the primary source of the parasite-induced cytokine interleukin-25, which indirectly induces tuft cell expansion by promoting interleukin-13 production by innate lymphoid cells. Our results identify intestinal tuft cells as critical sentinels in the gut epithelium that promote type 2 immunity in response to intestinal parasites.


Asunto(s)
Células Quimiorreceptoras/inmunología , Parasitosis Intestinales/inmunología , Mucosa Intestinal/inmunología , Mucosa Intestinal/parasitología , Microbiota/inmunología , Canales Catiónicos TRPM/inmunología , Animales , Quinasas Similares a Doblecortina , Eosinófilos/inmunología , Células Caliciformes/inmunología , Helmintiasis/inmunología , Helmintiasis/parasitología , Helmintos/inmunología , Inmunidad Mucosa , Interleucina-13/inmunología , Interleucina-17/inmunología , Parasitosis Intestinales/parasitología , Ratones , Ratones Endogámicos C57BL , Ratones Mutantes , Proteínas Serina-Treonina Quinasas/inmunología , Infecciones por Protozoos/inmunología , Infecciones por Protozoos/parasitología , Transducción de Señal , Gusto , Transducina/genética , Transducina/inmunología , Tritrichomonas/inmunología
6.
Cell Rep ; 12(2): 244-57, 2015 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-26146082

RESUMEN

Our study reveals a non-canonical role for CCL2 in modulating non-macrophage, myeloid-derived suppressor cells (MDSCs) and shaping a tumor-permissive microenvironment during colon cancer development. We found that intratumoral CCL2 levels increased in patients with colitis-associated colorectal cancer (CRC), adenocarcinomas, and adenomas. Deletion of CCL2 blocked progression from dysplasia to adenocarcinoma and reduced the number of colonic MDSCs in a spontaneous mouse model of colitis-associated CRC. In a transplantable mouse model of adenocarcinoma and an APC-driven adenoma model, CCL2 fostered MDSC accumulation in evolving colonic tumors and enhanced polymorphonuclear (PMN)-MDSC immunosuppressive features. Mechanistically, CCL2 regulated T cell suppression of PMN-MDSCs in a STAT3-mediated manner. Furthermore, CCL2 neutralization decreased tumor numbers and MDSC accumulation and function. Collectively, our experiments support that perturbing CCL2 and targeting MDSCs may afford therapeutic opportunities for colon cancer interception and prevention.


Asunto(s)
Adenocarcinoma/patología , Quimiocina CCL2/metabolismo , Neoplasias del Colon/patología , Adenocarcinoma/etiología , Adenocarcinoma/metabolismo , Animales , Linfocitos T CD8-positivos/citología , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Transformación Celular Neoplásica , Quimiocina CCL2/antagonistas & inhibidores , Quimiocina CCL2/genética , Colitis/complicaciones , Colitis/patología , Neoplasias del Colon/etiología , Neoplasias del Colon/metabolismo , Proteínas de Unión al ADN/deficiencia , Proteínas de Unión al ADN/genética , Modelos Animales de Enfermedad , Regulación de la Expresión Génica , Humanos , Ratones , Ratones Endogámicos BALB C , Ratones Noqueados , Células Mieloides/citología , Células Mieloides/metabolismo , Neutrófilos/citología , Neutrófilos/metabolismo , Interferencia de ARN , Especies Reactivas de Oxígeno/metabolismo , Receptores de Antígenos de Linfocitos T gamma-delta/metabolismo , Factor de Transcripción STAT3/metabolismo , Proteínas de Dominio T Box/deficiencia , Proteínas de Dominio T Box/genética
7.
ISME J ; 8(7): 1403-17, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24500617

RESUMEN

Dysregulated immune responses to gut microbes are central to inflammatory bowel disease (IBD), and gut microbial activity can fuel chronic inflammation. Examining how IBD-directed therapies influence gut microbiomes may identify microbial community features integral to mitigating disease and maintaining health. However, IBD patients often receive multiple treatments during disease flares, confounding such analyses. Preclinical models of IBD with well-defined disease courses and opportunities for controlled treatment exposures provide a valuable solution. Here, we surveyed the gut microbiome of the T-bet(-/-) Rag2(-/-) mouse model of colitis during active disease and treatment-induced remission. Microbial features modified among these conditions included altered potential for carbohydrate and energy metabolism and bacterial pathogenesis, specifically cell motility and signal transduction pathways. We also observed an increased capacity for xenobiotics metabolism, including benzoate degradation, a pathway linking host adrenergic stress with enhanced bacterial virulence, and found decreased levels of fecal dopamine in active colitis. When transferred to gnotobiotic mice, gut microbiomes from mice with active disease versus treatment-induced remission elicited varying degrees of colitis. Thus, our study provides insight into specific microbial clades and pathways associated with health, active disease and treatment interventions in a mouse model of colitis.


Asunto(s)
Colitis/microbiología , Tracto Gastrointestinal/microbiología , Enfermedades Inflamatorias del Intestino/microbiología , Microbiota/genética , Animales , Antibacterianos/farmacología , Ácido Benzoico/metabolismo , Metabolismo de los Hidratos de Carbono , Movimiento Celular , Colitis/tratamiento farmacológico , Colitis/genética , Colitis/patología , Proteínas de Unión al ADN/deficiencia , Proteínas de Unión al ADN/genética , Dopamina/metabolismo , Metabolismo Energético , Humanos , Inflamación/tratamiento farmacológico , Inflamación/genética , Inflamación/microbiología , Inflamación/patología , Enfermedades Inflamatorias del Intestino/tratamiento farmacológico , Enfermedades Inflamatorias del Intestino/genética , Enfermedades Inflamatorias del Intestino/patología , Ratones , Ratones Noqueados , Microbiota/efectos de los fármacos , Filogenia , ARN Ribosómico 16S/clasificación , ARN Ribosómico 16S/genética , Inducción de Remisión , Transducción de Señal , Proteínas de Dominio T Box/deficiencia , Proteínas de Dominio T Box/genética
8.
Science ; 341(6145): 569-73, 2013 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-23828891

RESUMEN

Regulatory T cells (Tregs) that express the transcription factor Foxp3 are critical for regulating intestinal inflammation. Candidate microbe approaches have identified bacterial species and strain-specific molecules that can affect intestinal immune responses, including species that modulate Treg responses. Because neither all humans nor mice harbor the same bacterial strains, we posited that more prevalent factors exist that regulate the number and function of colonic Tregs. We determined that short-chain fatty acids, gut microbiota-derived bacterial fermentation products, regulate the size and function of the colonic Treg pool and protect against colitis in a Ffar2-dependent manner in mice. Our study reveals that a class of abundant microbial metabolites underlies adaptive immune microbiota coadaptation and promotes colonic homeostasis and health.


Asunto(s)
Bacterias/metabolismo , Colon/microbiología , Ácidos Grasos Volátiles/metabolismo , Homeostasis , Metagenoma , Linfocitos T Reguladores/fisiología , Animales , Colitis/metabolismo , Proteínas de Unión al ADN/genética , Ácidos Grasos Volátiles/administración & dosificación , Fermentación , Vida Libre de Gérmenes , Humanos , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Linfocitos T Reguladores/trasplante
9.
Cell Host Microbe ; 14(2): 207-15, 2013 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-23954159

RESUMEN

Increasing evidence links the gut microbiota with colorectal cancer. Metagenomic analyses indicate that symbiotic Fusobacterium spp. are associated with human colorectal carcinoma, but whether this is an indirect or causal link remains unclear. We find that Fusobacterium spp. are enriched in human colonic adenomas relative to surrounding tissues and in stool samples from colorectal adenoma and carcinoma patients compared to healthy subjects. Additionally, in the Apc(Min/+) mouse model of intestinal tumorigenesis, Fusobacterium nucleatum increases tumor multiplicity and selectively recruits tumor-infiltrating myeloid cells, which can promote tumor progression. Tumors from Apc(Min/+) mice exposed to F. nucleatum exhibit a proinflammatory expression signature that is shared with human fusobacteria-positive colorectal carcinomas. However, unlike other bacteria linked to colorectal carcinoma, F. nucleatum does not exacerbate colitis, enteritis, or inflammation-associated intestinal carcinogenesis. Collectively, these data suggest that, through recruitment of tumor-infiltrating immune cells, fusobacteria generate a proinflammatory microenvironment that is conducive for colorectal neoplasia progression.


Asunto(s)
Carcinogénesis/inmunología , Neoplasias Colorrectales/inmunología , Neoplasias Colorrectales/microbiología , Fusobacterium nucleatum/inmunología , Fusobacterium nucleatum/patogenicidad , Adenoma/inmunología , Adenoma/microbiología , Adenoma/patología , Animales , Neoplasias Colorrectales/patología , Citocinas/biosíntesis , Modelos Animales de Enfermedad , Humanos , Leucocitos/inmunología , Ratones
10.
PLoS One ; 7(5): e38136, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22675442

RESUMEN

BACKGROUND: Abnormal expression of the liver peptide hormone hepcidin, a key regulator of iron homeostasis, contributes to the pathogenesis of anemia in conditions such as inflammatory bowel disease (IBD). Since little is known about the mechanisms that control hepcidin expression during states of intestinal inflammation, we sought to shed light on this issue using mouse models. METHODOLOGY/PRINCIPAL FINDINGS: Hepcidin expression was evaluated in two types of intestinal inflammation caused by innate immune activation-dextran sulfate sodium (DSS)-induced colitis in wild-type mice and the spontaneous colitis occurring in T-bet/Rag2-deficient (TRUC) mice. The role of tumor necrosis factor (TNF) α was investigated by in vivo neutralization, and by treatment of a hepatocyte cell line, as well as mice, with the recombinant cytokine. Expression and activation of Smad1, a positive regulator of hepcidin transcription, were assessed during colitis and following administration or neutralization of TNFα. Hepcidin expression progressively decreased with time during DSS colitis, correlating with changes in systemic iron distribution. TNFα inhibited hepcidin expression in cultured hepatocytes and non-colitic mice, while TNFα neutralization during DSS colitis increased it. Similar results were obtained in TRUC mice. These effects involved a TNFα-dependent decrease in Smad1 protein but not mRNA. CONCLUSIONS/SIGNIFICANCE: TNFα inhibits hepcidin expression in two distinct types of innate colitis, with down-regulation of Smad1 protein playing an important role in this process. This inhibitory effect of TNFα may be superseded by other factors in the context of T cell-mediated colitis given that in the latter form of intestinal inflammation hepcidin is usually up-regulated.


Asunto(s)
Péptidos Catiónicos Antimicrobianos/genética , Colitis/genética , Regulación de la Expresión Génica/efectos de los fármacos , Factor de Necrosis Tumoral alfa/farmacología , Animales , Péptidos Catiónicos Antimicrobianos/metabolismo , Proteínas Morfogenéticas Óseas/metabolismo , Línea Celular , Colitis/inducido químicamente , Colitis/metabolismo , Sulfato de Dextran/efectos adversos , Modelos Animales de Enfermedad , Femenino , Hepcidinas , Humanos , Hierro/metabolismo , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados , Transducción de Señal/efectos de los fármacos , Proteínas Smad/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA