Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Mol Pharm ; 20(11): 5593-5606, 2023 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-37755323

RESUMEN

Photodynamic therapy (PDT) is a noninvasive therapeutic approach for the treatment of skin cancer and diseases. 5-Aminolevulinic acid is a prodrug clinically approved for PDT. Once internalized by cancer cells, it is rapidly metabolized to the photosensitizer protoporphyrin IX, which under the proper light irradiation, stimulates the deleterious reactive oxygen species (ROS) production and leads to cell death. The high hydrophilicity of 5-aminolevulinic acid limits its capability to cross the epidermis. Lipophilic derivatives of 5-aminolevulinic acid only partly improved skin penetration, thus making its incorporation into nanocarriers necessary. Here we have developed and characterized 5-aminolevulinic acid loaded invasomes made of egg lecithin, either 1,2-dilauroyl-sn-glycero-3-phosphocholine or 1,2-dioleoyl-sn-glycero-3-phosphocholine, and the terpene limonene. The obtained invasomes are highly thermostable and display a spherical morphology with an average size of 150 nm and an encapsulation efficiency of 80%; moreover, the ex vivo epidermis diffusion tests established that nanovesicles containing the terpene led to a much higher skin penetration (up to 80% in 3 h) compared to those without limonene and to the free fluorescent tracer (less than 50%). Finally, in vitro studies with 2D and 3D human cell models of melanoma proved the biocompatibility of invasomes, the enhanced intracellular transport of 5-aminolevulinic acid, its ability to generate ROS upon irradiation, and consequently, its antiproliferative effect. A simplified scaffold-based 3D skin model containing melanoma spheroids was also prepared. Considering the results obtained, we conclude that the lecithin invasomes loaded with 5-aminolevulinic acid have a good therapeutic potential and may represent an efficient tool that can be considered a valid alternative in the topical treatment of melanoma and other skin diseases.


Asunto(s)
Melanoma , Fotoquimioterapia , Humanos , Ácido Aminolevulínico/farmacología , Lecitinas , Limoneno , Especies Reactivas de Oxígeno , Fármacos Fotosensibilizantes , Melanoma/tratamiento farmacológico , Fotoquimioterapia/métodos , Melanoma Cutáneo Maligno
2.
Int J Mol Sci ; 24(12)2023 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-37373443

RESUMEN

Hyaluronic acid (HA) is a glycosaminoglycan widely distributed in the human body, especially in body fluids and the extracellular matrix of tissues. It plays a crucial role not only in maintaining tissue hydration but also in cellular processes such as proliferation, differentiation, and the inflammatory response. HA has demonstrated its efficacy as a powerful bioactive molecule not only for skin antiaging but also in atherosclerosis, cancer, and other pathological conditions. Due to its biocompatibility, biodegradability, non-toxicity, and non-immunogenicity, several HA-based biomedical products have been developed. There is an increasing focus on optimizing HA production processes to achieve high-quality, efficient, and cost-effective products. This review discusses HA's structure, properties, and production through microbial fermentation. Furthermore, it highlights the bioactive applications of HA in emerging sectors of biomedicine.


Asunto(s)
Ácido Hialurónico , Piel , Humanos , Ácido Hialurónico/química , Fenómenos Químicos , Matriz Extracelular , Hidrogeles
3.
Int J Mol Sci ; 24(3)2023 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-36768265

RESUMEN

In the last two decades, fisheries and fish industries by-products have started to be recovered for the extraction of type I collagen because of issues related to the extraction of traditional mammalian tissues. In this work, special attention has been paid to by-products from fish bred in aquaponic plants. The valorization of aquaponic fish wastes as sources of biopolymers would make the derived materials eco-friendlier and attractive in terms of profitability and cost effectiveness. Among fish species, Nile Tilapia is the second-most farmed species in the world and its skin is commonly chosen as a collagen extraction source. However, to the best of our knowledge, no studies have been carried out to investigate, in depth, the age-related differences in fish skin with the final aim of selecting the most advantageous fish size for collagen extraction. In this work, the impact of age on the structural and compositional properties of Tilapia skin was evaluated with the aim of selecting the condition that best lends itself to the extraction of type I collagen for biomedical applications, based on the known fact that the properties of the original tissue have a significant impact on those of the final product. Performed analysis showed statistically significant age-related differences. In particular, an increase in skin thickness (+110 µm) and of wavy-like collagen fiber bundle diameter (+3 µm) besides their organization variation was observed with age. Additionally, a preferred collagen molecule orientation along two specific directions was revealed, with a higher fiber orientation degree according to age. Thermal analysis registered a shift of the endothermic peak (+1.7 °C) and an increase in the enthalpy (+3.3 J/g), while mechanical properties were found to be anisotropic, with an age-dependent brittle behavior. Water (+13%) and ash (+0.6%) contents were found to be directly proportional with age, as opposed to protein (-8%) and lipid (-10%) contents. The amino acid composition revealed a decrease in the valine, leucine, isoleucine, and threonine content and an increase in proline and hydroxyproline. Lastly, fatty acids C14:0, C15:0, C16:1, C18:2n6c, C18:3n6, C18:0, C20:3n3, and C23:0 were revealed to be upregulated, while C18:1n9c was downregulated with age.


Asunto(s)
Cíclidos , Tilapia , Animales , Tilapia/metabolismo , Cíclidos/metabolismo , Colágeno Tipo I/metabolismo , Ácidos Grasos/metabolismo , Colágeno/metabolismo , Mamíferos
4.
Int J Biol Macromol ; 256(Pt 2): 128489, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38043667

RESUMEN

Type I collagen is commonly recognized as the gold standard biomaterial for the manufacturing of medical devices for health-care related applications. In recent years, with the final aim of developing scaffolds with optimal bioactivity, even more studies focused on the influence of processing parameters on collagen properties, since processing can strongly affect the architecture of collagen at various length scales and, consequently, scaffolds macroscopic performances. The ability to finely tune scaffold properties in order to closely mimic the tissues' hierarchical features, preserving collagen's natural conformation, is actually of great interest. In this work, the effect of the pepsin-based extraction step on the material final properties was investigated. Thus, the physico-chemical properties of fibrillar type I collagens upon being extracted under various conditions were analyzed in depth. Correlations of collagen structure at the supramolecular scale with its microstructural properties were done, confirming the possibility of tuning rheological, viscoelastic and degradation properties of fibrillar type I collagen.


Asunto(s)
Colágeno Tipo I , Pepsina A , Caballos , Animales , Pepsina A/metabolismo , Colágeno/química , Colágenos Fibrilares/química , Tendones/química
5.
Polymers (Basel) ; 15(3)2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36771844

RESUMEN

Fish collagen garnered significant academic and commercial focus in the last decades featuring prospective applications in a variety of health-related industries, including food, medicine, pharmaceutics, and cosmetics. Due to its distinct advantages over mammalian-based collagen, including the reduced zoonosis transmission risk, the absence of cultural-religious limitations, the cost-effectiveness of manufacturing process, and its superior bioavailability, the use of collagen derived from fish wastes (i.e., skin, scales) quickly expanded. Moreover, by-products are low cost and the need to minimize fish industry waste's environmental impact paved the way for the use of discards in the development of collagen-based products with remarkable added value. This review summarizes the recent advances in the valorization of fish industry wastes for the extraction of collagen used in several applications. Issues related to processing and characterization of collagen were presented. Moreover, an overview of the most relevant applications in food industry, nutraceutical, cosmetics, tissue engineering, and food packaging of the last three years was introduced. Lastly, the fish-collagen market and the open technological challenges to a reliable recovery and exploitation of this biopolymer were discussed.

6.
Polymers (Basel) ; 15(4)2023 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-36850304

RESUMEN

Soft tissues diseases significantly affect patients quality of life and usually require targeted, costly and sometimes constant interventions. With the average lifetime increase, a proportional increase of age-related soft tissues diseases has been witnessed. Due to this, the last two decades have seen a tremendous demand for minimally invasive one-step resolutive procedures. Intensive scientific and industrial research has led to the recognition of injectable formulations as a new advantageous approach in the management of complex diseases that are challenging to treat with conventional strategies. Among them, collagen-based products are revealed to be one of the most promising among bioactive biomaterials-based formulations. Collagen is the most abundant structural protein of vertebrate connective tissues and, because of its structural and non-structural role, is one of the most widely used multifunctional biomaterials in the health-related sectors, including medical care and cosmetics. Indeed, collagen-based formulations are historically considered as the "gold standard" and from 1981 have been paving the way for the development of a new generation of fillers. A huge number of collagen-based injectable products have been approved worldwide for clinical use and have routinely been introduced in many clinical settings for both aesthetic and regenerative surgery. In this context, this review article aims to be an update on the clinical outcomes of approved collagen-based injectables for both aesthetic and regenerative medicine of the last 20 years with an in-depth focus on their safety and effectiveness for the treatment of diseases of the integumental, gastrointestinal, musculoskeletal, and urogenital apparatus.

7.
Pharmaceutics ; 15(5)2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-37242741

RESUMEN

Gelatin is a highly versatile natural polymer, which is widely used in healthcare-related sectors due to its advantageous properties, such as biocompatibility, biodegradability, low-cost, and the availability of exposed chemical groups. In the biomedical field, gelatin is used also as a biomaterial for the development of drug delivery systems (DDSs) due to its applicability to several synthesis techniques. In this review, after a brief overview of its chemical and physical properties, the focus is placed on the commonly used techniques for the development of gelatin-based micro- or nano-sized DDSs. We highlight the potential of gelatin as a carrier of many types of bioactive compounds and its ability to tune and control select drugs' release kinetics. The desolvation, nanoprecipitation, coacervation, emulsion, electrospray, and spray drying techniques are described from a methodological and mechanistic point of view, with a careful analysis of the effects of the main variable parameters on the DDSs' properties. Lastly, the outcomes of preclinical and clinical studies involving gelatin-based DDSs are thoroughly discussed.

8.
Pharmaceutics ; 15(2)2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36839801

RESUMEN

Vascularization is a highly conserved and considerably complex and precise process that is finely driven by endogenous regulatory processes at the tissue and systemic levels. However, it can reveal itself to be slow and inadequate for tissue repair and regeneration consequent to severe lesions/damages. Several biomaterial-based strategies were developed to support and enhance vasculogenesis by supplying pro-angiogenic agents. Several approaches were adopted to develop effective drug delivery systems for the controlled release of a huge variety of compounds. In this work, a microparticulate system was chosen to be loaded with the essential amino acid L-lysine, a molecule that has recently gained interest due to its involvement in pro-angiogenic, pro-regenerative, and anti-inflammatory mechanisms. Poly (lactic-co-glycolic acid), the most widely used FDA-approved biodegradable synthetic polymer for the development of drug delivery systems, was chosen due to its versatility and ability to promote neovascularization and wound healing. This study dealt with the development and the effectiveness evaluation of a PLGA-based microparticulate system for the controlled release of L-lysine. Therefore, in order to maximize L-lysine encapsulation efficiency and tune its release kinetics, the microparticle synthesis protocol was optimized by varying some processing parameters. All developed formulations were characterized from a morphological and physicochemical point of view. The optimized formulation was further characterized via the evaluation of its preliminary biological efficacy in vitro. The cellular and molecular studies revealed that the L-lysine-loaded PLGA microparticles were non-toxic, biocompatible, and supported cell proliferation and angiogenesis well by stimulating the expression of pro-angiogenic genes such as metalloproteinase-9, focal adhesion kinases, and different growth factors. Thus, this work showed the potential of delivering L-lysine encapsulated in PLGA microparticles as a cost-effective promoter system for angiogenesis enhancement and rapid healing.

9.
Materials (Basel) ; 16(13)2023 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-37445069

RESUMEN

Type I collagen physiological scaffold for tissue regeneration is considered one of the widely used biomaterials for tissue engineering and medical applications. It is hierarchically organized: five laterally staggered molecules are packed within fibrils, arranged into fascicles and bundles. The structural organization is correlated to the direction and intensity of the forces which can be loaded onto the tissue. For a tissue-specific regeneration, the required macro- and microstructure of a suitable biomaterial has been largely investigated. Conversely, the function of multiscale structural integrity has been much less explored but is crucial for scaffold design and application. In this work, collagen was extracted from different animal sources with protocols that alter its structure. Collagen of tendon shreds excised from cattle, horse, sheep and pig was structurally investigated by wide- and small-angle X-ray scattering techniques, at both molecular and supramolecular scales, and thermo-mechanically with thermal and load-bearing tests. Tendons were selected because of their resistance to chemical degradation and mechanical stresses. The multiscale structural integrity of tendons' collagen was studied in relation to the animal source, anatomic location and source for collagen extraction.

10.
Gels ; 9(4)2023 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-37102922

RESUMEN

Bio-based polymers are attracting great interest due to their potential for several applications in place of conventional polymers. In the field of electrochemical devices, the electrolyte is a fundamental element that determines their performance, and polymers represent good candidates for developing solid-state and gel-based electrolytes toward the development of full-solid-state devices. In this context, the fabrication and characterization of uncrosslinked and physically cross-linked collagen membranes are reported to test their potential as a polymeric matrix for the development of a gel electrolyte. The evaluation of the membrane's stability in water and aqueous electrolyte and the mechanical characterization demonstrated that cross-linked samples showed a good compromise in terms of water absorption capability and resistance. The optical characteristics and the ionic conductivity of the cross-linked membrane, after overnight dipping in sulfuric acid solution, demonstrated the potential of the reported membrane as an electrolyte for electrochromic devices. As proof of concept, an electrochromic device was fabricated by sandwiching the membrane (after sulfuric acid dipping) between a glass/ITO/PEDOT:PSS substrate and a glass/ITO/SnO2 substrate. The results in terms of optical modulation and kinetic performance of such a device demonstrated that the reported cross-linked collagen membrane could represent a valid candidate as a water-based gel and bio-based electrolyte for full-solid-state electrochromic devices.

11.
J Pers Med ; 13(12)2023 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-38138874

RESUMEN

Hyaluronic acid (HA) naturally occurs as a biopolymer in the human body, primarily in connective tissues like joints and skin. Functioning as a vital element of synovial fluid, it lubricates joints, facilitating fluid movement and diminishing bone friction to protect articular well-being. Its distinctive attributes encompass notable viscosity and water retention capacities, ensuring flexibility and absorbing shock during motion. Furthermore, HA has gained significant attention for its potential benefits in various medical applications, including rehabilitation. Ongoing research explores its properties and functions, especially its biomedical applications in several clinical trials, with a focus on its role in improving rehabilitation outcomes. But the clinical and biochemical implications of HA in musculoskeletal rehabilitation have yet to be fully explored. This review thoroughly investigates the properties and functions of HA while highlighting its biomedical applications in different clinical trials, with a special emphasis on its role in rehabilitation. The presented findings provide evidence that HA, as a natural substance, enhances the outcomes of musculoskeletal rehabilitation through its exceptional mechanical and biochemical effects.

12.
Polymers (Basel) ; 14(9)2022 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-35567034

RESUMEN

Collagen is one of the most widely used biomaterials in health-related sectors. The industrial production of collagen mostly relies on its extraction from mammals, but several issues limited its use. In the last two decades, marine organisms attracted interest as safe, abundant, and alternative source for collagen extraction. In particular, the possibility to valorize the huge quantity of fish industry waste and byproducts as collagen source reinforced perception of fish collagen as eco-friendlier and particularly attractive in terms of profitability and cost-effectiveness. Especially fish byproducts from eco-sustainable aquaponics production allow for fish biomass with additional added value and controlled properties over time. Among fish species, Oreochromis niloticus is one of the most widely bred fish in large-scale aquaculture and aquaponics systems. In this work, type I collagen was extracted from aquaponics-raised Tilapia skin and characterized from a chemical, physical, mechanical, and biological point of view in comparison with a commercially available analog. Performed analysis confirmed that the proprietary process optimized for type I collagen extraction allowed to isolate pure native collagen and to preserve its native conformational structure. Preliminary cellular studies performed with mouse fibroblasts indicated its optimal biocompatibility. All data confirmed the eligibility of the extracted Tilapia-derived native type I collagen as a biomaterial for healthcare applications.

13.
Pharmaceutics ; 13(7)2021 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-34206758

RESUMEN

Three-dimensional (3D) cell culture systems mimic the structural complexity of the tissue microenvironment and are gaining increasing importance as they resemble the extracellular matrix (ECM)-cell and cell-cell physical interactions occurring in vivo. Several scaffold-based culture systems have been already proposed as valuable tools for large-scale production of spheroids, but they often suffer of poor reproducibility or high costs of production. In this work, we present a reliable 3D culture system based on collagen I-blended agarose hydrogels and show how the variation in the agarose percentage affects the physical and mechanical properties of the resulting hydrogel. The influence of the different physical and mechanical properties of the blended hydrogels on the growth, size, morphology, and cell motility of the spheroids obtained by culturing three different breast cancer cell lines (MCF-7, MDA-MB-361, and MDA-MB-231) was also evaluated. As proof of concept, the cisplatin penetration and its cytotoxic effect on the tumor spheroids as function of the hydrogel stiffness were also investigated. Noteworthily, the possibility to recover the spheroids from the hydrogels for further processing and other biological studies has been considered. This feature, in addition to the ease of preparation, the lack of cross-linking chemistry and the high reproducibility, makes this hydrogel a reliable biomimetic matrix for the growth of 3D cell structures.

14.
Front Bioeng Biotechnol ; 9: 644595, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33987173

RESUMEN

Biological materials found in living organisms, many of which are proteins, feature a complex hierarchical organization. Type I collagen, a fibrous structural protein ubiquitous in the mammalian body, provides a striking example of such a hierarchical material, with peculiar architectural features ranging from the amino acid sequence at the nanoscale (primary structure) up to the assembly of fibrils (quaternary structure) and fibers, with lengths of the order of microns. Collagen plays a dominant role in maintaining the biological and structural integrity of various tissues and organs, such as bone, skin, tendons, blood vessels, and cartilage. Thus, "artificial" collagen-based fibrous assemblies, endowed with appropriate structural properties, represent ideal substrates for the development of devices for tissue engineering applications. In recent years, with the ultimate goal of developing three-dimensional scaffolds with optimal bioactivity able to promote both regeneration and functional recovery of a damaged tissue, numerous studies focused on the capability to finely modulate the scaffold architecture at the microscale and the nanoscale in order to closely mimic the hierarchical features of the extracellular matrix and, in particular, the natural patterning of collagen. All of these studies clearly show that the accurate characterization of the collagen structure at the submolecular and supramolecular levels is pivotal to the understanding of the relationships between the nanostructural/microstructural properties of the fabricated scaffold and its macroscopic performance. Several studies also demonstrate that the selected processing, including any crosslinking and/or sterilization treatments, can strongly affect the architecture of collagen at various length scales. The aim of this review is to highlight the most recent findings on the development of collagen-based scaffolds with optimized properties for tissue engineering. The optimization of the scaffolds is particularly related to the modulation of the collagen architecture, which, in turn, impacts on the achieved bioactivity.

15.
J Biomed Mater Res B Appl Biomater ; 109(9): 1313-1326, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33427396

RESUMEN

In the present work, we investigated the potential of novel semi-interpenetrating polymer network (semi-IPN) cryogels, obtained through ultraviolet exposure of aqueous mixtures of poly(ethylene glycol) diacrylate and type I collagen, as tunable off-the-shelf platforms for 3D cancer cell research. We synthesized semi-IPN cryogels with variable collagen amounts (0.1% and 1% w/v) and assessed the effect of collagen on key cryogel properties for cell culture, for example, porosity, degradation rate and mechanical stiffness. Then, we investigated the ability of the cryogels to sustain the long-term growth of two pancreatic ductal adenocarcinoma (PDAC) cell populations, the parenchymal Panc1 cells and their derived cancer stem cells. Results revealed that both cell lines efficiently infiltrated, attached and expanded in the cryogels over a period of 14 days. However, only when grown in the cryogels with the highest collagen concentration, both cell lines reproduced their characteristic growth pattern previously observed in collagen-enriched organotypic cultures, biomimetic of the highly fibrotic PDAC stroma. Cellular preembedding in Matrigel, that is, the classical approach to develop/grow organoids, interfered with an efficient intra-scaffold migration and growth. Although preliminary, these findings highlight the potential of the proposed cryogels as reproducible and tunable cancer cell research platforms.


Asunto(s)
Carcinoma Ductal Pancreático/metabolismo , Colágeno/química , Criogeles/química , Polietilenglicoles/química , Técnicas de Cultivo de Célula , Proliferación Celular/efectos de los fármacos , Combinación de Medicamentos , Humanos , Laminina/química , Fenómenos Mecánicos , Células Madre Neoplásicas , Porosidad , Proteoglicanos/química , Relación Estructura-Actividad , Propiedades de Superficie
16.
Materials (Basel) ; 14(24)2021 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-34947245

RESUMEN

Urethral stenosis is a pathological condition that consists in the narrowing of the urethral lumen because of the formation of scar tissue. Unfortunately, none of the current surgical approaches represent an optimal solution because of the high stricture recurrence rate. In this context, we preliminarily explored the potential of an insoluble type-I collagen from horse tendon as scaffolding material for the development of innovative devices for the regeneration of injured urethral tracts. Non-porous collagen-based substrates were produced and optimized, in terms of crosslinking density of the macromolecular structure, to either provide mechanical properties compliant with the urinary tract physiological stress and better sustain tissue regeneration. The effect of the adopted crosslinking strategy on the protein integrity and on the substrate physical-chemical, mechanical and biological properties was investigated in comparison with a decellularized matrix from porcine small intestinal submucosa (SIS patch), an extensively used xenograft licensed for clinical use in urology. The optimized production protocols allowed the preservation of the type I collagen native structure and the realization of a substrate with appealing end-use properties. The biological response, preliminarily investigated by immunofluorescence experiments on human adult renal stem/progenitor cells until 28 days, showed the formation of a stem-cell monolayer within 14 days and the onset of spheroids within 28 days. These results suggested the great potential of the collagen-based material for the development of scaffolds for urethral plate regeneration and for in vitro cellular studies.

17.
J Funct Biomater ; 11(4)2020 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-33139660

RESUMEN

Type I collagen has always aroused great interest in the field of life-science and bioengineering, thanks to its favorable structural properties and bioactivity. For this reason, in the last five decades it has been widely studied and employed as biomaterial for the manufacture of implantable medical devices. Commonly used sources of collagen are represented by bovine and swine but their applications are limited because of the zoonosis transmission risks, the immune response and the religious constrains. Thus, type-I collagen isolated from horse tendon has recently gained increasing interest as an attractive alternative, so that, although bovine and porcine derived collagens still remain the most common ones, more and more companies started to bring to market a various range of equine collagen-based products. In this context, this work aims to overview the properties of equine collagen making it particularly appealing in medicine, cosmetics and pharmaceuticals, as well as its main biomedical applications and the currently approved equine collagen-based medical devices, focusing on experimental studies and clinical trials of the last 15 years. To the best of our knowledge, this is the first review focusing on the use of equine collagen, as well as on equine collagen-based marketed products for healthcare.

18.
Mater Sci Eng C Mater Biol Appl ; 113: 110963, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32487384

RESUMEN

In the last two decades, marine collagen has attracted great scientific and industrial interest as a 'blue resource', with potential for use in various health-related sectors, such as food, medicine, pharmaceutics and cosmetics. In particular, the large availability of polluting by-products from the fish processing industry has been the key factor driving the research towards the conversion of these low cost by-products (e.g. fish skin and scales) into collagen-based products with high added value and low environmental impact. After addressing the extraction of collagen from aquatic sources and its physicochemical properties, this review focuses on the use of marine collagen and its derivatives (e.g. gelatin and peptides) in different healthcare sectors. Particular attention is given to the bioactive properties of marine collagen that are being explored in preclinical and clinical studies, and pave the way to an increased demand for this biomaterial in the next future. In this context, in addition to the use of native collagen for the development of tissue engineering or wound healing devices, particularly relevant is the use of gelatin and peptides for the development of dietary supplements and nutraceuticals, specifically directed to weight management and glycemic control. The marine collagen market is also briefly discussed to highlight the opportunities and the most profitable areas of interest.


Asunto(s)
Colágeno/química , Animales , Organismos Acuáticos/metabolismo , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Colágeno/metabolismo , Colágeno/farmacología , Cosméticos , Suplementos Dietéticos , Humanos , Estabilidad Proteica , Ingeniería de Tejidos , Cicatrización de Heridas/efectos de los fármacos
19.
Macromol Biosci ; 20(5): e2000017, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32163225

RESUMEN

Collagen represents one of the most widely used biomaterial for scaffolds fabrication in tissue engineering as it represents the mechanical support of natural tissues. It also provides physical scaffolding for cells and it influences their attachment, growth, and tissue regeneration. Among all fibrillary collagens, type I is considered one of the gold standard for scaffolds fabrication, thanks to its high biocompatibility, biodegradability, and hemostatic properties. It can be extracted by chemical and enzymatic protocols from several collagen-rich tissues, such as tendon and skin, of different animal species. Both the extraction processes and the manufacturing protocols for scaffolds fabrication provide structural and mechanical changes that can be tuned in order to deeply impact the properties of the final biomaterial. The aim of this review is to discuss the role of X-rays to study structural changes of type I collagen from fresh collagen-rich tissues (bovine, equine, fish) to the final scaffolds, with the aim to screen across available collagen sources and scaffolds fabrication protocols to be used in tissue regeneration.


Asunto(s)
Colágeno Tipo I/metabolismo , Dermis/diagnóstico por imagen , Piel/diagnóstico por imagen , Tendones/diagnóstico por imagen , Ingeniería de Tejidos , Animales , Bovinos , Peces , Caballos , Rayos X
20.
Int J Biol Macromol ; 154: 291-306, 2020 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-32173436

RESUMEN

Type I collagen is the most abundant protein of the human body. Due to its favourable properties, collagen extracted from animal tissues is adopted to manufacture a wide range of devices for biomedical applications. Compared to bovine and porcine collagens, which are the most largely used, equine collagen is free from the risk of zoonosis, has no reported immune reactions, and has not religious constraints. In this work, a recently available type I collagen extracted from horse tendon was evaluated and compared with a commercially available collagen isoform derived from the same species and tissue. Detailed physical, chemical and biological investigations were performed, in agreement with the requirements of the current standard for the characterization of type I collagen to be used for the manufacture of Tissue Engineering Medical Products. To the best of our knowledge, this is the first report on the complete primary structure of the investigated collagen.


Asunto(s)
Materiales Biocompatibles , Colágeno Tipo I/química , Caballos , Tendones/química , Ingeniería de Tejidos , Andamios del Tejido , Animales , Ratones , Células 3T3 NIH
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA