Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
PLoS Pathog ; 19(11): e1011417, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37983287

RESUMEN

Successful subversion of translation initiation factors eIF4E determines the infection success of potyviruses, the largest group of viruses affecting plants. In the natural variability of many plant species, resistance to potyvirus infection is provided by polymorphisms at eIF4E that renders them inadequate for virus hijacking but still functional in translation initiation. In crops where such natural resistance alleles are limited, the genetic inactivation of eIF4E has been proposed for the engineering of potyvirus resistance. However, recent findings indicate that knockout eIF4E alleles may be deleterious for plant health and could jeopardize resistance efficiency in comparison to functional resistance proteins. Here, we explored the cause of these adverse effects by studying the role of the Arabidopsis eIF4E1, whose inactivation was previously reported as conferring resistance to the potyvirus clover yellow vein virus (ClYVV) while also promoting susceptibility to another potyvirus turnip mosaic virus (TuMV). We report that eIF4E1 is required to maintain global plant translation and to restrict TuMV accumulation during infection, and its absence is associated with a favoured virus multiplication over host translation. Furthermore, our findings show that, in the absence of eIF4E1, infection with TuMV results in the production of a truncated eIFiso4G1 protein. Finally, we demonstrate a role for eIFiso4G1 in TuMV accumulation and in supporting plant fitness during infection. These findings suggest that eIF4E1 counteracts the hijacking of the plant translational apparatus during TuMV infection and underscore the importance of preserving the functionality of translation initiation factors eIF4E when implementing potyvirus resistance strategies.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Potyvirus , Arabidopsis/metabolismo , Factor 4E Eucariótico de Iniciación/genética , Factor 4E Eucariótico de Iniciación/metabolismo , Potyvirus/fisiología , Plantas Modificadas Genéticamente/metabolismo , Enfermedades de las Plantas/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Factor 4G Eucariótico de Iniciación/metabolismo
2.
Curr Top Microbiol Immunol ; 439: 121-138, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36592244

RESUMEN

The wealth of variability amongst genes controlling immunity against potyviruses in pepper (Capsicum spp.) has been instrumental in understanding plant-virus co-evolution and major determinants of plant resistance durability. Characterization of the eukaryotic initiation factor 4E1 (eIF4E1), involved in mRNA translation, as the basis of potyvirus resistance in pepper initiated a large body of work that showed that recessive resistance to potyviruses and other single-stranded positive-sense RNA viruses resulted from mutations in eukaryotic initiation factors in many plant crop species. Combining mutations in different eIF4Es in the same pepper genotype had complex effects on the breadth of the resistance spectrum and on resistance durability, revealing a trade-off between these two traits. In addition, combining eIF4E1 mutations with a quantitatively resistant genetic background had a strong positive effect on resistance durability. Analysing the evolutionary forces imposed by pepper genotypes onto virus populations allowed identifying three key factors improving plant resistance durability: the complexity of mutational pathways involved in virus adaptation to the plant resistance, the decrease of competitivity induced by these mutations on the virus and the intensity of genetic drift imposed by plant genotypes on the virus during its infection cycle.


Asunto(s)
Potyvirus , Potyvirus/genética , Potyvirus/metabolismo , Factor 4E Eucariótico de Iniciación/genética , Factor 4E Eucariótico de Iniciación/metabolismo , Mutación , Plantas , Genotipo
3.
Plant Biotechnol J ; 21(5): 918-930, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36715107

RESUMEN

Resistance to potyviruses in plants has been largely provided by the selection of natural variant alleles of eukaryotic translation initiation factors (eIF) 4E in many crops. However, the sources of such variability for breeding can be limited for certain crop species, while new virus isolates continue to emerge. Different methods of mutagenesis have been applied to inactivate the eIF4E genes to generate virus resistance, but with limited success due to the physiological importance of translation factors and their redundancy. Here, we employed genome editing approaches at the base level to induce non-synonymous mutations in the eIF4E1 gene and create genetic diversity in cherry tomato (Solanum lycopersicum var. cerasiforme). We sequentially edited the genomic sequences coding for two regions of eIF4E1 protein, located around the cap-binding pocket and known to be important for susceptibility to potyviruses. We show that the editing of only one of the two regions, by gene knock-in and base editing, respectively, is not sufficient to provide resistance. However, combining amino acid mutations in both regions resulted in resistance to multiple potyviruses without affecting the functionality in translation initiation. Meanwhile, we report that extensive base editing in exonic region can alter RNA splicing pattern, resulting in gene knockout. Altogether our work demonstrates that precision editing allows to design plant factors based on the knowledge on evolutionarily selected alleles and enlarge the gene pool to potentially provide advantageous phenotypes such as pathogen resistance.


Asunto(s)
Potyvirus , Solanum lycopersicum , Edición Génica , Solanum lycopersicum/genética , Factor 4E Eucariótico de Iniciación/genética , Potyvirus/genética , Proteínas de Plantas/genética , Fitomejoramiento , Mutación , Enfermedades de las Plantas/genética
4.
Virologie (Montrouge) ; 27(4): 225-337, 2023 08 01.
Artículo en Francés | MEDLINE | ID: mdl-37565678

RESUMEN

Resistance to viruses is an important aspect of plant breeding. One way to achieve it is to select genetic resistances based on the susceptibility factors hijacked by the virus to infect the plants. Here, we recount work done on genes encoding translation initiation factors eIF4E, some of the most successful targets for obtaining resistance to potyviruses, starting from their characterization 20 years ago. With examples from different plant species, pepper, tomato, tobacco and arabidopsis, we present the basis of this type of resistances and their characteristics, highlighting the role of gene redundancy among 4E factors, their specificity for the virus and the need for the plant of a trade-off between resistance and development. Finally, we show how the new genome editing techniques could be used in plant breeding to develop eIF4E-based resistances in crops, mimicking the functional alleles that have been selected during evolution in many crops.


Asunto(s)
Resistencia a la Enfermedad , Factor 4E Eucariótico de Iniciación , Enfermedades de las Plantas , Plantas , Potyvirus , Alelos , Factor 4E Eucariótico de Iniciación/genética , Fitomejoramiento , Potyvirus/genética , Plantas/virología , Enfermedades de las Plantas/virología
5.
New Phytol ; 230(3): 1258-1272, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33421132

RESUMEN

CRISPR-Cas9 has proven to be highly valuable for genome editing in plants, including the model plant Physcomitrium patens. However, the fact that most of the editing events produced using the native Cas9 nuclease correspond to small insertions and deletions is a limitation. CRISPR-Cas9 base editors enable targeted mutation of single nucleotides in eukaryotic genomes and therefore overcome this limitation. Here, we report two programmable base-editing systems to induce precise cytosine or adenine conversions in P. patens. Using cytosine or adenine base editors, site-specific single-base mutations can be achieved with an efficiency up to 55%, without off-target mutations. Using the APT gene as a reporter of editing, we could show that both base editors can be used in simplex or multiplex, allowing for the production of protein variants with multiple amino-acid changes. Finally, we set up a co-editing selection system, named selecting modification of APRT to report gene targeting (SMART), allowing up to 90% efficiency site-specific base editing in P. patens. These two base editors will facilitate gene functional analysis in P. patens, allowing for site-specific editing of a given base through single sgRNA base editing or for in planta evolution of a given gene through the production of randomly mutagenised variants using multiple sgRNA base editing.


Asunto(s)
Bryopsida , Bryopsida/genética , Sistemas CRISPR-Cas/genética , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Edición Génica , Mutagénesis Sitio-Dirigida
6.
Plant Cell ; 30(9): 2116-2136, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30087208

RESUMEN

Postgerminative mobilization of neutral lipids stored in seed lipid droplets (LDs) is preceded by the degradation of oleosins, the major structural LD proteins that stabilize LDs in dry seeds. We previously showed that Arabidopsis thaliana oleosins are marked for degradation by ubiquitination and are extracted from LDs before proteolysis. However, the mechanisms underlying the dislocation of these LD-anchored proteins from the LD monolayer are yet unknown. Here, we report that PUX10, a member of the plant UBX-domain containing (PUX) protein family, is an integral LD protein that associates with a subpopulation of LDs during seed germination. In pux10 mutant seedlings, PUX10 deficiency impaired the degradation of ubiquitinated oleosins and prevented the extraction of ubiquitinated oleosins from LDs. We also showed that PUX10 interacts with ubiquitin and CDC48A, the AAA ATPase Cell Division Cycle 48, through its UBA and UBX domains, respectively. Collectively, these results strongly suggest that PUX10 is an adaptor recruiting CDC48A to ubiquitinated oleosins, thus facilitating the dislocation of oleosins from LDs by the segregase activity of CDC48A. We propose that PUX10 and CDC48A are core components of a LD-associated degradation machinery, which we named the LD-associated degradation system. Importantly, PUX10 is also the first determinant of a LD subpopulation described in plants, suggesting functional differentiation of LDs in Arabidopsis seedlings.


Asunto(s)
ATPasas Asociadas con Actividades Celulares Diversas/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas de Ciclo Celular/metabolismo , Gotas Lipídicas/metabolismo , ATPasas Asociadas con Actividades Celulares Diversas/genética , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Ciclo Celular/genética , Mutación , Semillas/metabolismo , Ubiquitina/metabolismo
7.
J Gen Virol ; 101(3): 334-346, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31958051

RESUMEN

Tomato spotted wilt virus (TSWV; genus Orthotospovirus, family Tospoviridae) has a huge impact on a large range of plants worldwide. In this study, we determined the sequence of the large (L) RNA segment that encodes the RNA-dependent RNA polymerase (RdRp) from a TSWV isolate (LYE51) collected in the south of France. Analysis of the phylogenetic relationships of TSWV-LYE51 with other TSWV isolates shows that it is closely related to other European isolates. A 3D model of TSWV-LYE51 RdRp was built by homology with the RdRp structure of the La Crosse virus (genus Orthobunyavirus, family Peribunyaviridae). Finally, an analysis of positive and negative selection was carried out on 30 TSWV full-length RNA L sequences and compared with the phylogeny and the protein structure data. We showed that the seven codons that are under positive selection are distributed all along the RdRp gene. By contrast, the codons associated with negative selection are especially concentrated in three highly constrained domains: the endonuclease in charge of the cap-snatching mechanism, the thumb domain and the mid domain. Those three domains could constitute good candidates to look for host targets on which genetic resistance by loss of susceptibility could be developed.


Asunto(s)
Adaptación Fisiológica/genética , Evolución Molecular , Modelos Moleculares , Dominios Proteicos/genética , ARN Polimerasa Dependiente del ARN/genética , Homología Estructural de Proteína , Tospovirus/enzimología , Codón/genética , Francia , Genoma Viral/genética , Solanum lycopersicum/virología , Filogenia , Enfermedades de las Plantas/virología , ARN Viral/genética , Secuenciación Completa del Genoma
8.
Int J Mol Sci ; 21(3)2020 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-32033083

RESUMEN

Genome editing has become a major tool for both functional studies and plant breeding in several species. Besides generating knockouts through the classical CRISPR-Cas9 system, recent development of CRISPR base editing holds great and exciting opportunities for the production of gain-of-function mutants. The PAM requirement is a strong limitation for CRISPR technologies such as base editing, because the base substitution mainly occurs in a small edition window. As precise single amino-acid substitution can be responsible for functions associated to some domains or agronomic traits, development of Cas9 variants with relaxed PAM recognition is of upmost importance for gene function analysis and plant breeding. Recently, the SpCas9-NG variant that recognizes the NGN PAM has been successfully tested in plants, mainly in monocotyledon species. In this work, we studied the efficiency of SpCas9-NG in the model moss Physcomitrella patens and two Solanaceae crops (Solanum lycopersicum and Solanum tuberosum) for both classical CRISPR-generated gene knock-out and cytosine base editing. We showed that the SpCas9-NG greatly expands the scope of genome editing by allowing the targeting of non-canonical NGT and NGA PAMs. The CRISPR toolbox developed in our study opens up new gene function analysis and plant breeding perspectives for model and crop plants.


Asunto(s)
Bryopsida/genética , Proteína 9 Asociada a CRISPR/genética , Edición Génica/métodos , Solanum lycopersicum/genética , Solanum tuberosum/genética , Sustitución de Aminoácidos/genética , Sistemas CRISPR-Cas/genética , Productos Agrícolas/genética , Plantas Modificadas Genéticamente/genética , Streptococcus pyogenes/enzimología
9.
Plant Biotechnol J ; 17(9): 1736-1750, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-30784179

RESUMEN

In many crop species, natural variation in eIF4E proteins confers resistance to potyviruses. Gene editing offers new opportunities to transfer genetic resistance to crops that seem to lack natural eIF4E alleles. However, because eIF4E are physiologically important proteins, any introduced modification for virus resistance must not bring adverse phenotype effects. In this study, we assessed the role of amino acid substitutions encoded by a Pisum sativum eIF4E virus-resistance allele (W69L, T80D S81D, S84A, G114R and N176K) by introducing them independently into the Arabidopsis thaliana eIF4E1 gene, a susceptibility factor to the Clover yellow vein virus (ClYVV). Results show that most mutations were sufficient to prevent ClYVV accumulation in plants without affecting plant growth. In addition, two of these engineered resistance alleles can be combined with a loss-of-function eIFiso4E to expand the resistance spectrum to other potyviruses. Finally, we use CRISPR-nCas9-cytidine deaminase technology to convert the Arabidopsis eIF4E1 susceptibility allele into a resistance allele by introducing the N176K mutation with a single-point mutation through C-to-G base editing to generate resistant plants. This study shows how combining knowledge on pathogen susceptibility factors with precise genome-editing technologies offers a feasible solution for engineering transgene-free genetic resistance in plants, even across species barriers.


Asunto(s)
Sistemas CRISPR-Cas , Resistencia a la Enfermedad/genética , Factor 4E Eucariótico de Iniciación/genética , Edición Génica , Pisum sativum/genética , Enfermedades de las Plantas/genética , Potyvirus/patogenicidad , Alelos , Arabidopsis/genética , Arabidopsis/virología , Pisum sativum/virología , Enfermedades de las Plantas/virología , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente
10.
Plant Cell Rep ; 38(9): 1065-1080, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31101972

RESUMEN

KEY MESSAGE: The StGBSSI gene was successfully and precisely edited in the tetraploid potato using gene and base-editing strategies, leading to plants with impaired amylose biosynthesis. Genome editing has recently become a method of choice for basic research and functional genomics, and holds great potential for molecular plant-breeding applications. The powerful CRISPR-Cas9 system that typically produces double-strand DNA breaks is mainly used to generate knockout mutants. Recently, the development of base editors has broadened the scope of genome editing, allowing precise and efficient nucleotide substitutions. In this study, we produced mutants in two cultivated elite cultivars of the tetraploid potato (Solanum tuberosum) using stable or transient expression of the CRISPR-Cas9 components to knock out the amylose-producing StGBSSI gene. We set up a rapid, highly sensitive and cost-effective screening strategy based on high-resolution melting analysis followed by direct Sanger sequencing and trace chromatogram analysis. Most mutations consisted of small indels, but unwanted insertions of plasmid DNA were also observed. We successfully created tetra-allelic mutants with impaired amylose biosynthesis, confirming the loss of function of the StGBSSI protein. The second main objective of this work was to demonstrate the proof of concept of CRISPR-Cas9 base editing in the tetraploid potato by targeting two loci encoding catalytic motifs of the StGBSSI enzyme. Using a cytidine base editor (CBE), we efficiently and precisely induced DNA substitutions in the KTGGL-encoding locus, leading to discrete variation in the amino acid sequence and generating a loss-of-function allele. The successful application of base editing in the tetraploid potato opens up new avenues for genome engineering in this species.


Asunto(s)
Edición Génica , Solanum tuberosum/genética , Almidón Sintasa/genética , Alelos , Sistemas CRISPR-Cas , Tetraploidía
11.
PLoS Genet ; 12(8): e1006214, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27490800

RESUMEN

This work analyses the genetic variation and evolutionary patterns of recessive resistance loci involved in matching-allele (MA) host-pathogen interactions, focusing on the pvr2 resistance gene to potyviruses of the wild pepper Capsicum annuum glabriusculum (chiltepin). Chiltepin grows in a variety of wild habitats in Mexico, and its cultivation in home gardens started about 25 years ago. Potyvirus infection of Capsicum plants requires the physical interaction of the viral VPg with the pvr2 product, the translation initiation factor eIF4E1. Mutations impairing this interaction result in resistance, according to the MA model. The diversity of pvr2/eIF4E1 in wild and cultivated chiltepin populations from six biogeographical provinces in Mexico was analysed in 109 full-length coding sequences from 97 plants. Eleven alleles were found, and their interaction with potyvirus VPg in yeast-two-hybrid assays, plus infection assays of plants, identified six resistance alleles. Mapping resistance mutations on a pvr2/eIF4E1 model structure showed that most were around the cap-binding pocket and strongly altered its surface electrostatic potential, suggesting resistance-associated costs due to functional constraints. The pvr2/eIF4E1 phylogeny established that susceptibility was ancestral and resistance was derived. The spatial structure of pvr2/eIF4E1 diversity differed from that of neutral markers, but no evidence of selection for resistance was found in wild populations. In contrast, the resistance alleles were much more frequent, and positive selection stronger, in cultivated chiltepin populations, where diversification of pvr2/eIF4E1 was higher. This analysis of the genetic variation of a recessive resistance gene involved in MA host-pathogen interactions in populations of a wild plant show that evolutionary patterns differ according to the plant habitat, wild or cultivated. It also demonstrates that human management of the plant population has profound effects on the diversity and the evolution of the resistance gene, resulting in the selection of resistance alleles.


Asunto(s)
Capsicum/genética , Resistencia a la Enfermedad/genética , Factor 4E Eucariótico de Iniciación/genética , Interacciones Huésped-Patógeno/genética , Proteínas de Plantas/genética , Alelos , Capsicum/virología , Humanos , Mutación , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/virología , Potyvirus/genética , Potyvirus/patogenicidad
12.
Plant Biotechnol J ; 2018 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-29504210

RESUMEN

To infect plants, viruses rely heavily on their host's machinery. Plant genetic resistances based on host factor modifications can be found among existing natural variability and are widely used for some but not all crops. While biotechnology can supply for the lack of natural resistance alleles, new strategies need to be developed to increase resistance spectra and durability without impairing plant development. Here, we assess how the targeted allele modification of the Arabidopsis thaliana translation initiation factor eIF4E1 can lead to broad and efficient resistance to the major group of potyviruses. A synthetic Arabidopsis thaliana eIF4E1 allele was designed by introducing multiple amino acid changes associated with resistance to potyvirus in naturally occurring Pisum sativum alleles. This new allele encodes a functional protein while maintaining plant resistance to a potyvirus isolate that usually hijacks eIF4E1. Due to its biological functionality, this synthetic allele allows, at no developmental cost, the pyramiding of resistances to potyviruses that selectively use the two major translation initiation factors, eIF4E1 or its isoform eIFiso4E. Moreover, this combination extends the resistance spectrum to potyvirus isolates for which no efficient resistance has so far been found, including resistance-breaking isolates and an unrelated virus belonging to the Luteoviridae family. This study is a proof-of-concept for the efficiency of gene engineering combined with knowledge of natural variation to generate trans-species virus resistance at no developmental cost to the plant. This has implications for breeding of crops with broad-spectrum and high durability resistance using recent genome editing techniques.

13.
Int J Mol Sci ; 19(10)2018 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-30241370

RESUMEN

In view of major economic problems caused by viruses, the development of genetically resistant crops is critical for breeders but remains limited by the evolution of resistance-breaking virus mutants. During the plant breeding process, the introgression of traits from Crop Wild Relatives results in a dramatic change of the genetic background that can alter the resistance efficiency or durability. Here, we conducted a meta-analysis on 19 Quantitative Trait Locus (QTL) studies of resistance to viruses in plants. Frequent epistatic effects between resistance genes indicate that a large part of the resistance phenotype, conferred by a given QTL, depends on the genetic background. We next reviewed the different resistance mechanisms in plants to survey at which stage the genetic background could impact resistance or durability. We propose that the genetic background may impair effector-triggered dominant resistances at several stages by tinkering the NB-LRR (Nucleotide Binding-Leucine-Rich Repeats) response pathway. In contrast, effects on recessive resistances by loss-of-susceptibility-such as eIF4E-based resistances-are more likely to rely on gene redundancy among the multigene family of host susceptibility factors. Finally, we show how the genetic background is likely to shape the evolution of resistance-breaking isolates and propose how to take this into account in order to breed plants with increased resistance durability to viruses.


Asunto(s)
Resistencia a la Enfermedad/genética , Enfermedades de las Plantas/genética , Virus de Plantas , Plantas/genética , Epistasis Genética , Plantas/inmunología , Plantas/virología , Plantas Modificadas Genéticamente , Sitios de Carácter Cuantitativo
14.
Plant J ; 85(6): 717-29, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26850324

RESUMEN

Genetic resistance to pathogens is important for sustainable maintenance of crop yields. Recent biotechnologies offer alternative approaches to generate resistant plants by compensating for the lack of natural resistance. Tomato (Solanum lycopersicum) and related species offer a model in which natural and TILLING-induced potyvirus resistance alleles may be compared. For resistance based on translation initiation factor eIF4E1, we confirm that the natural allele Sh-eIF4E1(PI24)-pot1, isolated from the wild tomato species Solanum habrochaites, is associated with a wide spectrum of resistance to both potato virus Y and tobacco etch virus isolates. In contrast, a null allele of the same gene, isolated through a TILLING strategy in cultivated tomato S. lycopersicum, is associated with a much narrower resistance spectrum. Introgressing the null allele into S. habrochaites did not extend its resistance spectrum, indicating that the genetic background is not responsible for the broad resistance. Instead, the different types of eIF4E1 mutations affect the levels of eIF4E2 differently, suggesting that eIF4E2 is also involved in potyvirus resistance. Indeed, combining two null mutations affecting eIF4E1 and eIF4E2 re-establishes a wide resistance spectrum in cultivated tomato, but to the detriment of plant development. These results highlight redundancy effects within the eIF4E gene family, where regulation of expression alters susceptibility or resistance to potyviruses. For crop improvement, using loss-of-function alleles to generate resistance may be counter-productive if they narrow the resistance spectrum and limit growth. It may be more effective to use alleles encoding functional variants similar to those found in natural diversity.


Asunto(s)
Factor 4E Eucariótico de Iniciación/genética , Genómica/métodos , Enfermedades de las Plantas/virología , Potyvirus/patogenicidad , Solanum lycopersicum/genética , Resistencia a la Enfermedad/genética , Factor 4E Eucariótico de Iniciación/metabolismo , Regulación de la Expresión Génica de las Plantas , Técnicas de Inactivación de Genes , Genes Dominantes , Solanum lycopersicum/crecimiento & desarrollo , Solanum lycopersicum/virología , Familia de Multigenes , Mutación , Enfermedades de las Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente
15.
New Phytol ; 215(2): 624-641, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28585324

RESUMEN

Plant metabolites are important to world food security due to their roles in crop yield and nutritional quality. Here we report the metabolic profile of 300 tomato accessions (Solanum lycopersicum and related wild species) by quantifying 60 primary and secondary metabolites, including volatile organic compounds, over a period of 2 yr. Metabolite content and genetic inheritance of metabolites varied broadly, both within and between different genetic groups. Using genotype information gained from 10 000 single nucleotide polymorphism markers, we performed a metabolite genome-wide association mapping (GWAS) study. We identified 79 associations influencing 13 primary and 19 secondary metabolites with large effects at high resolution. Four genome regions were detected, highlighting clusters of associations controlling the variation of several metabolites. Local linkage disequilibrium analysis and allele mining identified possible candidate genes which may modulate the content of metabolites that are of significant importance for human diet and fruit consumption. We precisely characterized two associations involved in fruit acidity and phenylpropanoid volatile production. Taken together, this study reveals complex and distinct metabolite regulation in tomato subspecies and demonstrates that GWAS is a powerful tool for gene-metabolite annotation and identification, pathways elucidation, and further crop improvement.


Asunto(s)
Polimorfismo de Nucleótido Simple , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Compuestos Orgánicos Volátiles/metabolismo , Frutas/genética , Estudio de Asociación del Genoma Completo , Desequilibrio de Ligamiento , Malatos/metabolismo , Alcohol Feniletílico/metabolismo , Filogenia , Sitios de Carácter Cuantitativo , Metabolismo Secundario , Gusto
16.
J Gen Virol ; 97(11): 3063-3072, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27655175

RESUMEN

Allele mining on susceptibility factors offers opportunities to find new sources of resistance among crop wild relatives for breeding purposes. As a proof of concept, we used available RNAseq data to investigate polymorphisms among the four tomato genes encoding translation initiation factors [eIF4E1 and eIF4E2, eIFiso4E and the related gene new cap-binding protein(nCBP)] to look for new potential resistance alleles to potyviruses. By analysing polymorphism among RNAseq data obtained for 20 tomato accessions, 10 belonging to the cultivated type Solanum lycopersicum and 10 belonging to the closest related wild species Solanum pimpinellifolium, we isolated one new eIF4E1 allele, in the S. pimpinellifolium LA0411 accession, which encodes a potential new resistance allele, mainly due to a polymorphism associated with an amino acid change within eIF4E1 region II. We confirmed that this new allele, pot12, is indeed associated with resistance to potato virus Y, although with a restricted resistance spectrum and a very low durability potential. This suggests that mutations occurring in eIF4E region II only may not be sufficient to provide efficient and durable resistance in plants. However, our study emphasizes the opportunity brought by RNAseq data to mine for new resistance alleles. Moreover, this approach could be extended to seek for putative new resistance alleles by screening for variant forms of susceptibility genes encoding plant host proteins known to interact with viral proteins.


Asunto(s)
Factor 4E Eucariótico de Iniciación/genética , Factor 4E Eucariótico de Iniciación/inmunología , Enfermedades de las Plantas/virología , Proteínas de Plantas/genética , Proteínas de Plantas/inmunología , Potyvirus/fisiología , Solanum lycopersicum/genética , Alelos , Resistencia a la Enfermedad , Regulación de la Expresión Génica de las Plantas , Solanum lycopersicum/clasificación , Solanum lycopersicum/inmunología , Solanum lycopersicum/virología , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/inmunología , Potyvirus/inmunología
17.
Plant J ; 79(5): 705-16, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24930633

RESUMEN

Arabidopsis thaliana represents a valuable and efficient model to understand mechanisms underlying plant susceptibility to viral diseases. Here, we describe the identification and molecular cloning of a new gene responsible for recessive resistance to several isolates of Watermelon mosaic virus (WMV, genus Potyvirus) in the Arabidopsis Cvi-0 accession. rwm1 acts at an early stage of infection by impairing viral accumulation in initially infected leaf tissues. Map-based cloning delimited rwm1 on chromosome 1 in a 114-kb region containing 30 annotated genes. Positional and functional candidate gene analysis suggested that rwm1 encodes cPGK2 (At1g56190), an evolutionary conserved nucleus-encoded chloroplast phosphoglycerate kinase with a key role in cell metabolism. Comparative sequence analysis indicates that a single amino acid substitution (S78G) in the N-terminal domain of cPGK2 is involved in rwm1-mediated resistance. This mutation may have functional consequences because it targets a highly conserved residue, affects a putative phosphorylation site and occurs within a predicted nuclear localization signal. Transgenic complementation in Arabidopsis together with virus-induced gene silencing in Nicotiana benthamiana confirmed that cPGK2 corresponds to rwm1 and that the protein is required for efficient WMV infection. This work uncovers new insight into natural plant resistance mechanisms that may provide interesting opportunities for the genetic control of plant virus diseases.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Resistencia a la Enfermedad/genética , Fosfoglicerato Quinasa/genética , Enfermedades de las Plantas/inmunología , Potyvirus/fisiología , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Arabidopsis/enzimología , Arabidopsis/inmunología , Arabidopsis/virología , Proteínas de Arabidopsis/metabolismo , Cloroplastos/enzimología , Mapeo Cromosómico , Clonación Molecular , ADN de Plantas/química , ADN de Plantas/genética , Datos de Secuencia Molecular , Mutación Missense , Fenotipo , Fosfoglicerato Quinasa/metabolismo , Enfermedades de las Plantas/virología , Hojas de la Planta/enzimología , Hojas de la Planta/genética , Hojas de la Planta/inmunología , Hojas de la Planta/virología , Virus de Plantas/fisiología , Plantas Modificadas Genéticamente , Plantones/enzimología , Plantones/genética , Plantones/inmunología , Plantones/virología , Análisis de Secuencia de ADN
18.
BMC Plant Biol ; 14: 67, 2014 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-24645730

RESUMEN

BACKGROUND: In plants, eIF4E translation initiation factors and their eIFiso4E isoforms are essential susceptibility factors for many RNA viruses, including potyviruses. Mutations altering these factors are a major source of resistance to the viruses. The eIF4E allelic series is associated with specific resistance spectra in crops such as Capsicum annum. Genetic evidence shows that potyviruses have a specific requirement for a given 4E isoform that depends on the host plant. For example, Tobacco etch virus (TEV) uses eIF4E1 to infect Capsicum annuum but uses eIFiso4E to infect Arabidopsis thaliana. Here, we investigated how TEV exploits different translation initiation factor isoforms to infect these two plant species. RESULTS: A complementation system was set up in Arabidopsis to test the restoration of systemic infection by TEV. Using this system, Arabidopsis susceptibility to TEV was complemented with a susceptible pepper eIF4E1 allele but not with a resistant allele. Therefore, in Arabidopsis, TEV can use the pepper eIF4E1 instead of the endogenous eIFiso4E isoform so is able to switch between translation initiation factor 4E isoform to infect the same host. Moreover, we show that overexpressing the pepper eIF4E1 alleles is sufficient to make Arabidopsis susceptible to an otherwise incompatible TEV strain. Lastly, we show that the resistant eIF4E1 allele is similarly overcome by a resistance-breaking TEV strain as in pepper, confirming that this Arabidopsis TEV-susceptibility complementation system is allele-specific. CONCLUSION: We report here a complementation system in Arabidopsis that makes it possible to assess the role of pepper pvr2-eIF4E alleles in susceptibility to TEV. Heterologous complementation experiments showed that the idiosyncratic properties of the 4E and iso4E proteins create a major checkpoint for viral infection of different hosts. This system could be used to screen natural or induced eIF4E alleles to find and study alleles of interest for plant breeding.


Asunto(s)
Nicotiana/metabolismo , Nicotiana/virología , Proteínas de Plantas/metabolismo , Virus de Plantas/patogenicidad , Alelos , Arabidopsis/metabolismo , Arabidopsis/virología , Proteínas de Plantas/genética
19.
Mol Plant Pathol ; 25(5): e13466, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38767756

RESUMEN

The movement of potyviruses, the largest genus of single-stranded, positive-sense RNA viruses responsible for serious diseases in crops, is very complex. As potyviruses developed strategies to hijack the host secretory pathway and plasmodesmata (PD) for their transport, the goal of this study was to identify membrane and/or PD-proteins that interact with the 6K2 protein, a potyviral protein involved in replication and cell-to-cell movement of turnip mosaic virus (TuMV). Using split-ubiquitin membrane yeast two-hybrid assays, we screened an Arabidopsis cDNA library for interactors of TuMV6K2. We isolated AtHVA22a (Hordeum vulgare abscisic acid responsive gene 22), which belongs to a multigenic family of transmembrane proteins, homologous to Receptor expression-enhancing protein (Reep)/Deleted in polyposis (DP1)/Yop1 family proteins in animal and yeast. HVA22/DP1/Yop1 family genes are widely distributed in eukaryotes, but the role of HVA22 proteins in plants is still not well known, although proteomics analysis of PD fractions purified from Arabidopsis suspension cells showed that AtHVA22a is highly enriched in a PD proteome. We confirmed the interaction between TuMV6K2 and AtHVA22a in yeast, as well as in planta by using bimolecular fluorescence complementation and showed that TuMV6K2/AtHVA22a interaction occurs at the level of the viral replication compartment during TuMV infection. Finally, we showed that the propagation of TuMV is increased when AtHVA22a is overexpressed in planta but slowed down upon mutagenesis of AtHVA22a by CRISPR-Cas9. Altogether, our results indicate that AtHVA22a plays an agonistic effect on TuMV propagation and that the C-terminal tail of the protein is important in this process.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Potyvirus , Potyvirus/patogenicidad , Potyvirus/fisiología , Arabidopsis/virología , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Enfermedades de las Plantas/virología , Proteínas Virales/metabolismo , Proteínas Virales/genética , Replicación Viral , Nicotiana/virología , Nicotiana/genética
20.
Viruses ; 14(6)2022 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-35746717

RESUMEN

The development of recessive resistance by loss of susceptibility is a consistent strategy to combat and limit damages caused by plant viruses. Susceptibility genes can be turned into resistances, a feat that can either be selected among the plant's natural diversity or engineered by biotechnology. Here, we summarize the current knowledge on the phosphoglycerate kinases (PGK), which have emerged as a new class of susceptibility factors to single-stranded positive RNA viruses, including potyviruses. PGKs are metabolic enzymes involved in glycolysis and the carbon reduction cycle, encoded by small multigene families in plants. To fulfil their role in the chloroplast and in the cytosol, PGKs genes encode differentially addressed proteins. Here, we assess the diversity and homology of chloroplastic and cytosolic PGKs sequences in several crops and review the current knowledge on their redundancies during plant development, taking Arabidopsis as a model. We also show how PGKs have been shown to be involved in susceptibility-and resistance-to viruses. Based on this knowledge, and drawing from the experience with the well-characterized translation initiation factors eIF4E, we discuss how PGKs genes, in light of their subcellular localization, function in metabolism, and susceptibility to viruses, could be turned into efficient genetic resistances using genome editing techniques.


Asunto(s)
Arabidopsis , Potyvirus , Arabidopsis/genética , Cloroplastos/genética , Factor 4E Eucariótico de Iniciación/metabolismo , Fosfoglicerato Quinasa/genética , Fosfoglicerato Quinasa/metabolismo , Potyvirus/genética , Potyvirus/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA