Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 105
Filtrar
Más filtros

Intervalo de año de publicación
1.
Malar J ; 23(1): 112, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38641572

RESUMEN

BACKGROUND: In malaria endemic regions of the Peruvian Amazon, rainfall together with river level and breeding site availability drive fluctuating vector mosquito abundance and human malaria cases, leading to temporal heterogeneity. The main variables influencing spatial transmission include location of communities, mosquito behaviour, land use/land cover, and human ecology/behaviour. The main objective was to evaluate seasonal and microgeographic biting behaviour of the malaria vector Nyssorhynchus (or Anopheles) darlingi in Amazonian Peru and to investigate effects of seasonality on malaria transmission. METHODS: We captured mosquitoes from 18:00 to 06:00 h using Human Landing Catch in two riverine (Lupuna, Santa Emilia) and two highway (El Triunfo, Nuevo Horizonte) communities indoors and outdoors from 8 houses per community, during the dry and rainy seasons from February 2016 to January 2017. We then estimated parity rate, daily survival and age of a portion of each collection of Ny. darlingi. All collected specimens of Ny. darlingi were tested for the presence of Plasmodium vivax or Plasmodium falciparum sporozoites using real-time PCR targeting the small subunit of the 18S rRNA. RESULTS: Abundance of Ny. darlingi varied across village, season, and biting behaviour (indoor vs outdoor), and was highly significant between rainy and dry seasons (p < 0.0001). Biting patterns differed, although not significantly, and persisted regardless of season, with peaks in highway communities at ~ 20:00 h in contrast to biting throughout the night (i.e., 18:00-06:00) in riverine communities. Of 3721 Ny. darlingi tested for Plasmodium, 23 (0.62%) were infected. We detected Plasmodium-infected Ny. darlingi in both community types and most (20/23) were captured outdoors during the rainy season; 17/23 before midnight. Seventeen Ny. darlingi were infected with P. vivax, and 6 with P. falciparum. No infected Ny. darlingi were captured during the dry season. Significantly higher rates of parity were detected in Ny. darlingi during the rainy season (average 64.69%) versus the dry season (average 36.91%) and by community, Lupuna, a riverine village, had the highest proportion of parous to nulliparous females during the rainy season. CONCLUSIONS: These data add a seasonal dimension to malaria transmission in peri-Iquitos, providing more evidence that, at least locally, the greatest risk of malaria transmission is outdoors during the rainy season mainly before midnight, irrespective of whether the community was located adjacent to the highway or along the river.


Asunto(s)
Anopheles , Mordeduras y Picaduras , Malaria Falciparum , Malaria Vivax , Malaria , Plasmodium , Animales , Femenino , Humanos , Anopheles/genética , Malaria/epidemiología , Perú/epidemiología , Mosquitos Vectores , Malaria Vivax/epidemiología , Estaciones del Año
2.
BMC Genomics ; 24(1): 606, 2023 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-37821878

RESUMEN

BACKGROUND: Plasmodium vivax is the second most important cause of human malaria worldwide, and accounts for the majority of malaria cases in South America. A high-quality reference genome exists for Papua Indonesia (PvP01) and Thailand (PvW1), but is lacking for South America. A reference genome specifically for South America would be beneficial though, as P. vivax is a genetically diverse parasite with geographical clustering. RESULTS: This study presents a new high-quality assembly of a South American P. vivax isolate, referred to as PvPAM (P. vivax Peruvian AMazon). The genome was obtained from a low input patient sample from the Peruvian Amazon and sequenced using PacBio technology, resulting in a highly complete assembly with 6497 functional genes. Telomeric ends were present in 17 out of 28 chromosomal ends, and additional (sub)telomeric regions are present in 12 unassigned contigs. A comparison of multigene families between PvPAM and the PvP01 genome revealed remarkable variation in vir genes, and the presence of merozoite surface proteins (MSP) 3.6 and 3.7. Three dhfr and dhps drug resistance associated mutations are present in PvPAM, similar to those found in other Peruvian isolates. Mapping of publicly available South American whole genome sequencing (WGS) data to PvPAM resulted in significantly fewer variants and truncated reads compared to the use of PvP01 or PvW1 as reference genomes. To minimize the number of core genome variants in non-South American samples, PvW1 is most suited for Southeast Asian isolates, both PvPAM and PvW1 are suited for South Asian isolates, and PvPAM is recommended for African isolates. Interestingly, non-South American samples still contained the least subtelomeric variants when mapped to PvPAM, indicating high quality of the PvPAM subtelomeric regions. CONCLUSIONS: Our findings show that the PvPAM reference genome more accurately represents South American P. vivax isolates in comparison to PvP01 and PvW1. In addition, PvPAM has a high level of completeness, and contains a similar number of annotated genes as PvP01 or PvW1. The PvPAM genome therefore will be a valuable resource to improve future genomic analyses on P. vivax isolates from the South American continent.


Asunto(s)
Malaria Vivax , Malaria , Humanos , Plasmodium vivax/genética , Malaria/parasitología , América del Sur , Secuenciación Completa del Genoma , Mutación , Malaria Vivax/parasitología , Proteínas Protozoarias/genética
3.
J Infect Dis ; 223(8): 1466-1477, 2021 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-32822474

RESUMEN

BACKGROUND: Malaria is highly heterogeneous: its changing malaria microepidemiology needs to be addressed to support malaria elimination efforts at the regional level. METHODS: A 3-year, population-based cohort study in 2 settings in the Peruvian Amazon (Lupuna, Cahuide) followed participants by passive and active case detection from January 2013 to December 2015. Incidence and prevalence rates were estimated using microscopy and polymerase chain reaction (PCR). RESULTS: Lupuna registered 1828 infections (1708 Plasmodium vivax, 120 Plasmodium falciparum; incidence was 80.7 infections/100 person-years (95% confidence interval [CI] , 77.1-84.5). Cahuide detected 1046 infections (1024 P vivax, 20 P falciparum, 2 mixed); incidence was 40.2 infections/100 person-years (95% CI, 37.9-42.7). Recurrent P vivax infections predominated onwards from 2013. According to PCR data, submicroscopic predominated over microscopic infections, especially in periods of low transmission. The integration of parasitological, entomological, and environmental observations evidenced an intense and seasonal transmission resilient to standard control measures in Lupuna and a persistent residual transmission after severe outbreaks were intensively handled in Cahuide. CONCLUSIONS: In 2 exemplars of complex local malaria transmission, standard control strategies failed to eliminate submicroscopic and hypnozoite reservoirs, enabling persistent transmission.


Asunto(s)
Malaria Falciparum , Malaria Vivax , Estudios de Cohortes , Humanos , Malaria Falciparum/epidemiología , Malaria Falciparum/transmisión , Malaria Vivax/epidemiología , Malaria Vivax/transmisión , Perú/epidemiología , Plasmodium falciparum , Plasmodium vivax , Prevalencia
4.
J Infect Dis ; 223(12 Suppl 2): S99-S110, 2021 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-33906225

RESUMEN

BACKGROUND: Remote rural riverine villages account for most of the reported malaria cases in the Peruvian Amazon. As transmission decreases due to intensive standard control efforts, malaria strategies in these villages will need to be more focused and adapted to local epidemiology. METHODS: By integrating parasitological, entomological, and environmental observations between January 2016 and June 2017, we provided an in-depth characterization of malaria transmission dynamics in 4 riverine villages of the Mazan district, Loreto department. RESULTS: Despite variation across villages, malaria prevalence by polymerase chain reaction in March 2016 was high (>25% in 3 villages), caused by Plasmodium vivax mainly and composed of mostly submicroscopic infections. Housing without complete walls was the main malaria risk factor, while households close to forest edges were more commonly identified as spatial clusters of malaria prevalence. Villages in the basin of the Mazan River had a higher density of adult Anopheles darlingi mosquitoes, and retained higher prevalence and incidence rates compared to villages in the basin of the Napo River despite test-and-treat interventions. CONCLUSIONS: High heterogeneity in malaria transmission was found across and within riverine villages, resulting from interactions between the microgeographic landscape driving diverse conditions for vector development, housing structure, and human behavior.


Asunto(s)
Anopheles/parasitología , Mordeduras y Picaduras , Malaria/transmisión , Control de Mosquitos/métodos , Mosquitos Vectores/parasitología , Plasmodium vivax/aislamiento & purificación , Adulto , Animales , Humanos , Incidencia , Insectos Vectores , Malaria/epidemiología , Perú/epidemiología , Plasmodium vivax/genética , Reacción en Cadena de la Polimerasa , Prevalencia
5.
Malar J ; 20(1): 225, 2021 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-34011373

RESUMEN

BACKGROUND: Loop-mediated isothermal amplification (LAMP) for malaria diagnosis at the point of care (POC) depends on the detection capacity of synthesized nucleic acids and the specificity of the amplification target. To improve malaria diagnosis, new colorimetric LAMP tests were developed using multicopy targets for Plasmodium vivax and Plasmodium falciparum detection. METHODS: The cytochrome oxidase I (COX1) mitochondrial gene and the non-coding sequence Pvr47 for P. vivax, and the sub-telomeric sequence of erythrocyte membrane protein 1 (EMP1) and the non-coding sequence Pfr364 for P. falciparum were targeted to design new LAMP primers. The limit of detection (LOD) of each colorimetric LAMP was established and assessed with DNA extracted by mini spin column kit and the Boil & Spin method from 28 microscopy infections, 101 malaria submicroscopic infections detected by real-time PCR only, and 183 negatives infections by both microscopy and PCR. RESULTS: The LODs for the colorimetric LAMPs were estimated between 2.4 to 3.7 parasites/µL of whole blood. For P. vivax detection, the colorimetric LAMP using the COX1 target showed a better performance than the Pvr47 target, whereas the Pfr364 target was the most specific for P. falciparum detection. All microscopic infections of P. vivax were detected by PvCOX1-LAMP using the mini spin column kit DNA extraction method and 81% (17/21) were detected using Boil & Spin sample preparation. Moreover, all microscopic infections of P. falciparum were detected by Pfr364-LAMP using both sample preparation methods. In total, PvCOX1-LAMP and Pfr364-LAMP detected 80.2% (81 samples) of the submicroscopic infections using the DNA extraction method by mini spin column kit, while 36.6% (37 samples) were detected using the Boil & Spin sample preparation method. CONCLUSION: The colorimetric LAMPs with multicopy targets using the COX1 target for P. vivax and the Pfr364 for P. falciparum have a high potential to improve POC malaria diagnosis detecting a greater number of submicroscopic Plasmodium infections.


Asunto(s)
Colorimetría/métodos , Malaria Falciparum/diagnóstico , Malaria Vivax/diagnóstico , Técnicas de Diagnóstico Molecular/métodos , Técnicas de Amplificación de Ácido Nucleico/métodos , Plasmodium falciparum/aislamiento & purificación , Plasmodium vivax/aislamiento & purificación , Complejo IV de Transporte de Electrones/análisis , Plasmodium falciparum/enzimología , Plasmodium vivax/enzimología , Proteínas Protozoarias/análisis
6.
Malar J ; 20(1): 110, 2021 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-33632222

RESUMEN

BACKGROUND: Manual microscopy remains a widely-used tool for malaria diagnosis and clinical studies, but it has inconsistent quality in the field due to variability in training and field practices. Automated diagnostic systems based on machine learning hold promise to improve quality and reproducibility of field microscopy. The World Health Organization (WHO) has designed a 55-slide set (WHO 55) for their External Competence Assessment of Malaria Microscopists (ECAMM) programme, which can also serve as a valuable benchmark for automated systems. The performance of a fully-automated malaria diagnostic system, EasyScan GO, on a WHO 55 slide set was evaluated. METHODS: The WHO 55 slide set is designed to evaluate microscopist competence in three areas of malaria diagnosis using Giemsa-stained blood films, focused on crucial field needs: malaria parasite detection, malaria parasite species identification (ID), and malaria parasite quantitation. The EasyScan GO is a fully-automated system that combines scanning of Giemsa-stained blood films with assessment algorithms to deliver malaria diagnoses. This system was tested on a WHO 55 slide set. RESULTS: The EasyScan GO achieved 94.3 % detection accuracy, 82.9 % species ID accuracy, and 50 % quantitation accuracy, corresponding to WHO microscopy competence Levels 1, 2, and 1, respectively. This is, to our knowledge, the best performance of a fully-automated system on a WHO 55 set. CONCLUSIONS: EasyScan GO's expert ratings in detection and quantitation on the WHO 55 slide set point towards its potential value in drug efficacy use-cases, as well as in some case management situations with less stringent species ID needs. Improved runtime may enable use in general case management settings.


Asunto(s)
Pruebas Diagnósticas de Rutina/métodos , Malaria Falciparum/diagnóstico , Microscopía/instrumentación , Plasmodium falciparum/aislamiento & purificación , Automatización de Laboratorios , Pruebas Diagnósticas de Rutina/instrumentación , Humanos , Malaria/diagnóstico , Plasmodium/aislamiento & purificación , Reproducibilidad de los Resultados , Organización Mundial de la Salud
7.
Malar J ; 19(1): 161, 2020 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-32316981

RESUMEN

BACKGROUND: Case management is one of the principal strategies for malaria control. This study aimed to estimate the economic costs of uncomplicated malaria case management and explore the influence of health-seeking behaviours on those costs. METHODS: A knowledge, attitudes and practices (KAP) survey was applied to 680 households of fifteen communities in Mazan-Loreto in March 2017, then a socio-economic survey was conducted in September 2017 among 161 individuals with confirmed uncomplicated malaria in the past 3 months. Total costs per episode were estimated from both provider (Ministry of Health, MoH) and patient perspectives. Direct costs were estimated using a standard costing estimation procedure, while the indirect costs considered the loss of incomes among patients, substitute labourers and companions due to illness in terms of the monthly minimum wage. Sensitivity analysis evaluated the uncertainty of the average cost per episode. RESULTS: The KAP survey showed that most individuals (79.3%) that had malaria went to a health facility for a diagnosis and treatment, 2.7% received those services from community health workers, and 8% went to a drugstore or were self-treated at home. The average total cost per episode in the Mazan district was US$ 161. The cost from the provider's perspective was US$ 30.85 per episode while from the patient's perspective the estimated cost was US$ 131 per episode. The average costs per Plasmodium falciparum episode (US$ 180) were higher than those per Plasmodium vivax episode (US$ 156) due to longer time lost from work by patients with P. falciparum infections (22.2 days) than by patients with P. vivax infections (17.0 days). The delayed malaria diagnosis (after 48 h of the onset of symptoms) was associated with the time lost from work due to illness (adjusted mean ratio 1.8; 95% CI 1.3, 2.6). The average cost per malaria episode was most sensitive to the uncertainty around the lost productivity cost due to malaria. CONCLUSIONS: Despite the provision of free malaria case management by MoH, there is delay in seeking care and the costs of uncomplicated malaria are mainly borne by the families. These costs are not well perceived by the society and the substantial financial impact of the disease can be frequently undervalued in public policy planning.


Asunto(s)
Manejo de Caso/economía , Conocimientos, Actitudes y Práctica en Salud , Malaria Falciparum/prevención & control , Malaria Vivax/prevención & control , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Niño , Preescolar , Femenino , Humanos , Lactante , Masculino , Persona de Mediana Edad , Perú , Adulto Joven
8.
Malar J ; 19(1): 12, 2020 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-31918718

RESUMEN

BACKGROUND: Malaria diagnostics by rapid diagnostic test (RDT) relies primarily on the qualitative detection of Plasmodium falciparum histidine-rich protein 2 (PfHRP2) and Plasmodium spp lactate dehydrogenase (pLDH). As novel RDTs with increased sensitivity are being developed and implemented as point of care diagnostics, highly sensitive laboratory-based assays are needed for evaluating RDT performance. Here, a quantitative suspension array technology (qSAT) was developed, validated and applied for the simultaneous detection of PfHRP2 and pLDH in a variety of biological samples (whole blood, plasma and dried blood spots) from individuals living in different endemic countries. RESULTS: The qSAT was specific for the target antigens, with analytical ranges of 6.8 to 762.8 pg/ml for PfHRP2 and 78.1 to 17076.6 pg/ml for P. falciparum LDH (Pf-LDH). The assay detected Plasmodium vivax LDH (Pv-LDH) at a lower sensitivity than Pf-LDH (analytical range of 1093.20 to 187288.5 pg/ml). Both PfHRP2 and pLDH levels determined using the qSAT showed to positively correlate with parasite densities determined by quantitative PCR (Spearman r = 0.59 and 0.75, respectively) as well as microscopy (Spearman r = 0.40 and 0.75, respectively), suggesting the assay to be a good predictor of parasite density. CONCLUSION: This immunoassay can be used as a reference test for the detection and quantification of PfHRP2 and pLDH, and could serve for external validation of RDT performance, to determine antigen persistence after parasite clearance, as well as a complementary tool to assess malaria burden in endemic settings.


Asunto(s)
Antígenos de Protozoos/sangre , L-Lactato Deshidrogenasa/sangre , Malaria Falciparum/diagnóstico , Malaria Vivax/diagnóstico , Proteínas Protozoarias/sangre , Adolescente , Adulto , África , Animales , Biotina , Calibración , Niño , Estudios Transversales , Femenino , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Malaria Falciparum/sangre , Malaria Vivax/sangre , Ratones , Microesferas , Parasitemia/sangre , Parasitemia/diagnóstico , Embarazo , Reacción en Cadena en Tiempo Real de la Polimerasa , América del Sur , España , Adulto Joven
9.
Malar J ; 18(1): 327, 2019 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-31547821

RESUMEN

BACKGROUND: Different antigens are needed to characterize Plasmodium falciparum infection in terms of seroreactivity and targets for invasion inhibition, in order to guide and identify the proper use of such proteins as tools for the development of serological markers and/or as vaccine candidates. METHODS: IgG responses in 84 serum samples from individuals with P. falciparum infection [classified as symptomatic (Sym) or asymptomatic (Asym)], or acute Plasmodium vivax infection, from the Peruvian Amazon region, were evaluated by enzyme-linked immunosorbent assays specific for a baculovirus-produced recombinant protein P. falciparum Merozoite Surface Protein 10 (rMSP10) and for non-EGF region selected peptides of PfMSP10 selected by a bioinformatics tool (PfMSP10-1, PfMSP10-2 and PfMSP10-3). Monoclonal antibodies against the selected peptides were evaluated by western blotting, confocal microscopy and inhibition invasion assays. RESULTS: Seroreactivity analysis of the P. falciparum Sym- and Asym-infected individuals against rMSP10 showed a higher response as compared to the individuals with P. vivax acute infection. IgG responses against peptide PfMSP10-1 were weak. Interestingly high IgG response was found against peptide PfMSP10-2 and the combination of peptides PfMSP10-1 + PfMSP10-2. Monoclonal antibodies were capable of detecting native PfMSP10 on purified schizonts by western blot and confocal microscopy. A low percentage of inhibition of merozoite invasion of erythrocytes in vitro was observed when the monoclonal antibodies were compared with the control antibody against AMA-1 antigen. Further studies are needed to evaluate the role of PfMSP10 in the merozoite invasion. CONCLUSIONS: The rMSP10 and the PfMSP10-2 peptide synthesized for this study may be useful antigens for evaluation of P. falciparum malaria exposure in Sym and Asym individuals from the Peruvian Amazon region. Moreover, these antigens can be used for further investigation of the role of this protein in other malaria-endemic areas.


Asunto(s)
Antígenos de Protozoos/análisis , Malaria Falciparum/diagnóstico , Plasmodium falciparum/aislamiento & purificación , Vigilancia de la Población/métodos , Proteínas Protozoarias/análisis , Humanos , Perú , Estudios Seroepidemiológicos
10.
Malar J ; 17(1): 179, 2018 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-29703192

RESUMEN

BACKGROUND: A transmission-blocking vaccine (TBV) to prevent malaria-infected humans from infecting mosquitoes has been increasingly considered as a tool for malaria control and elimination. This study tested the hypothesis that a malaria TBV would be acceptable among residents of a malaria-hypoendemic region. METHODS: The study was carried out in six Spanish-speaking rural villages in the Department of Loreto in the Peruvian Amazon. These villages comprise a cohort of 430 households associated with the Peru-Brazil International Centre for Excellence in Malaria Research. Individuals from one-third (143) of enrolled households in an ongoing longitudinal, prospective cohort study in 6 communities in Loreto, Peru, were randomly selected to participate by answering a pre-validated questionnaire. RESULTS: All 143 participants expressed desire for a malaria vaccine in general; only 1 (0.7%) expressed unwillingness to receive a transmission-blocking malaria vaccine. Injection was considered most acceptable for adults (97.2%); for children drops in the mouth were preferred (96.8%). Acceptability waned marginally with the prospect of multiple injections (83.8%) and different projected efficacies at 70 and 50% (90.1 and 71.8%, respectively). Respondents demonstrated clear understanding that the vaccine was for community, rather than personal, protection against malaria infection. DISCUSSION: In this setting of the Peruvian Amazon, a transmission-blocking malaria vaccine was found to be almost universally acceptable. This study is the first to report that residents of a malaria-endemic region have been queried regarding a malaria vaccine strategy that policy-makers in the industrialized world often dismiss as altruistic.


Asunto(s)
Inmunidad Colectiva , Vacunas contra la Malaria/inmunología , Malaria Falciparum/prevención & control , Malaria Vivax/prevención & control , Plasmodium falciparum/inmunología , Plasmodium vivax/inmunología , Adulto , Anciano , Femenino , Humanos , Estudios Longitudinales , Masculino , Persona de Mediana Edad , Estudios Prospectivos , Adulto Joven
11.
Malar J ; 17(1): 86, 2018 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-29463241

RESUMEN

BACKGROUND: In Loreto Department, Peru, a successful 2005-2010 malaria control programme (known as PAMAFRO) included massive distribution of long-lasting insecticidal nets (LLINs). Additional local distribution of LLINs occurred in individual villages, but not between 2012 and 2015. A 2011-2012 study of the primary regional malaria vector Anopheles darlingi detected a trend of increased exophagy compared with pre-PAMAFRO behaviour. For the present study, An. darlingi were collected in three villages in Loreto in 2013-2015 to test two hypotheses: (1) that between LLIN distributions, An. darlingi reverted to pre-intervention biting behaviour; and, (2) that there are separate sub-populations of An. darlingi in Loreto with distinct biting behaviour. RESULTS: In 2013-2015 An. darlingi were collected by human landing catch during the rainy and dry seasons in the villages of Lupuna and Cahuide. The abundance of An. darlingi varied substantially across years, villages and time periods, and there was a twofold decrease in the ratio of exophagic:endophagic An. darlingi over the study period. Unexpectedly, there was evidence of a rainy season population decline in An. darlingi. Plasmodium-infected An. darlingi were detected indoors and outdoors throughout the night, and the monthly An. darlingi human biting rate was correlated with the number of malaria cases. Using nextRAD genotyping-by-sequencing, 162 exophagic and endophagic An. darlingi collected at different times during the night were genotyped at 1021 loci. Based on model-based and non-model-based analyses, all genotyped An. darlingi belonged to a homogeneous population, with no evidence for genetic differentiation by biting location or time. CONCLUSIONS: This study identified a decreasing proportion of exophagic An. darlingi in two villages in the years between LLIN distributions. As there was no evidence for genetic differentiation between endophagic and exophagic An. darlingi, this shift in biting behaviour may be the result of behavioural plasticity in An. darlingi, which shifted towards increased exophagy due to repellence by insecticides used to impregnate LLINs and subsequently reverted to increased endophagy as the nets aged. This study highlights the need to target vector control interventions to the biting behaviour of local vectors, which, like malaria risk, shows high temporal and spatial heterogeneity.


Asunto(s)
Anopheles/fisiología , Mordeduras y Picaduras/epidemiología , Mosquiteros Tratados con Insecticida/estadística & datos numéricos , Mosquitos Vectores/fisiología , Animales , Anopheles/genética , Conducta Alimentaria , Mosquitos Vectores/genética , Perú/epidemiología
12.
Mem Inst Oswaldo Cruz ; 113(12): e180380, 2018 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-30517211

RESUMEN

BACKGROUND Nyssorhynchus dunhami, a member of the Nuneztovari Complex, has been collected in Brazil, Colombia, and Peru and described as zoophilic. Although to date Ny. dunhami has not been documented to be naturally infected by Plasmodium, it is frequently misidentified as other Oswaldoi subgroup species that are local or regional malaria vectors. OBJECTIVES The current study seeks to verify the morphological identification of Nuneztovari Complex species collected in the peri-Iquitos region of Amazonian Peru, to determine their Plasmodium infection status, and to describe ecological characteristics of their larval habitats. METHODS We collected Ny. nuneztovari s.l. adults in 2011-2012, and Ny. nuneztovari s.l. larvae and adults in 2016-2017. When possible, samples were identified molecularly using cytochrome c oxidase subunit I (COI) barcode sequencing. Adult Ny. nuneztovari s.l. from 2011-2012 were tested for Plasmodium using real-time PCR. Environmental characteristics associated with Ny. nuneztovari s.l. larvae-positive water bodies were evaluated. FINDINGS We collected 590 Ny. nuneztovari s.l. adults and 116 larvae from eight villages in peri-Iquitos. Of these, 191 adults and 111 larvae were identified by COI sequencing; all were Ny. dunhami. Three Ny. dunhami were infected with P. falciparum, and one with P. vivax, all collected from one village on one night. Ny. dunhami larvae were collected from natural and artificial water bodies, and their presence was positively associated with other Anophelinae larvae and amphibians, and negatively associated with people living within 250m. MAIN CONCLUSIONS Of Nuneztovari Complex species, we identified only Ny. dunhami across multiple years in eight peri-Iquitos localities. This study is, to our knowledge, the first report of natural infection of molecularly identified Ny. dunhami with Plasmodium. We advocate the use of molecular identification methods in this region to monitor Ny. dunhami and other putative secondary malaria vectors to more precisely evaluate their importance in malaria transmission.


Asunto(s)
Anopheles/parasitología , Mosquitos Vectores/parasitología , Plasmodium falciparum/aislamiento & purificación , Plasmodium vivax/aislamiento & purificación , Animales , Anopheles/clasificación , Brasil , Colombia , Ecología , Malaria Falciparum/transmisión , Malaria Vivax/transmisión , Mosquitos Vectores/clasificación , Perú
13.
Malar J ; 16(1): 312, 2017 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-28778210

RESUMEN

BACKGROUND: Understanding the dynamics of malaria transmission in diverse endemic settings is key for designing and implementing locally adapted and sustainable control and elimination strategies. A parasitological and epidemiological survey was conducted in September-October 2012, as a baseline underlying a 3-year population-based longitudinal cohort study. The aim was to characterize malaria transmission patterns in two contrasting ecological rural sites in the Peruvian Amazon, Lupuna (LUP), a riverine environment, and Cahuide (CAH), associated with road-linked deforestation. METHODS: After a full population census, 1941 individuals 3 years and older (829 in LUP, 1112 in CAH) were interviewed, clinically examined and had a blood sample taken for the detection of malaria parasites by microscopy and PCR. Species-specific parasite prevalence was estimated overall and by site. Multivariate logistic regression models assessed risk factors for parasite infection by PCR, while SaTScan detected spatial clusters of PCR-positive individuals within each site. In addition, data from routine malaria surveillance in the period 2009-2012 were obtained. RESULTS: Parasite prevalence by PCR was higher in CAH than in LUP for Plasmodium vivax (6.2% vs. 3.9%) and for Plasmodium falciparum (2.6% vs. 1.2%). Among PCR-confirmed infections, asymptomatic (Asy) parasite carriers were always more common than symptomatic (Sy) infections for P. vivax (Asy/Sy ratio: 2/1 in LUP and 3.7/1 in CAH) and for P. falciparum (Asy/Sy ratio: 1.3/1 in LUP and 4/1 in CAH). Sub-patent (Spat) infections also predominated over patent (Pat) infections for both species: P. vivax (Spat/Pat ratio: 2.8/1 in LUP and 3.7/1 in CAH) and P. falciparum malaria (Spat/Pat ratio: 1.9/1 in LUP and 26/0 in CAH). For CAH, age, gender and living in a household without electricity were significantly associated with P. vivax infection, while only age and living in a household with electricity was associated with P. falciparum infection. For LUP, only household overcrowding was associated with P. falciparum infection. The spatial analysis only identified well-defined clusters of P. vivax and P. falciparum infected individuals in CAH. Reported malaria incidence indicated that malaria transmission has long occurred in LUP with primarily seasonal patterns, and confirmed a malaria outbreak in CAH since May 2012. CONCLUSIONS: This parasitological and epidemiological baseline assessment demonstrates that malaria transmission and parasite prevalence is heterogeneous in the Peruvian Amazon, and influenced by local socio-demographics and ecological contexts. Riverine and road construction/deforestation contexts must be taken into account in order to carry out effective anti-malaria control and elimination efforts.


Asunto(s)
Malaria Falciparum/epidemiología , Malaria Falciparum/transmisión , Malaria Vivax/epidemiología , Malaria Vivax/transmisión , Adolescente , Adulto , Anciano , Niño , Preescolar , Estudios de Cohortes , Ecosistema , Femenino , Humanos , Modelos Logísticos , Masculino , Persona de Mediana Edad , Perú/epidemiología , Plasmodium falciparum/fisiología , Plasmodium vivax/fisiología , Prevalencia , Factores de Riesgo , Adulto Joven
14.
Malar J ; 16(1): 415, 2017 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-29037202

RESUMEN

BACKGROUND: The incidence of malaria due both to Plasmodium falciparum and Plasmodium vivax in the Peruvian Amazon has risen in the past 5 years. This study tested the hypothesis that the maintenance and emergence of malaria in hypoendemic regions such as Amazonia is determined by submicroscopic and asymptomatic Plasmodium parasitaemia carriers. The present study aimed to precisely quantify the rate of very-low parasitaemia carriers in two sites of the Peruvian Amazon in relation to transmission patterns of P. vivax and P. falciparum in this area. METHODS: This study was carried out within the Amazonian-ICEMR longitudinal cohort. Blood samples were collected for light microscopy diagnosis and packed red blood cell (PRBC) samples were analysed by qPCR. Plasma samples were tested for total IgG reactivity against recombinant PvMSP-10 and PfMSP-10 antigens by ELISA. Occupation and age 10 years and greater were considered surrogates of occupation-related mobility. Risk factors for P. falciparum and P. vivax infections detected by PRBC-qPCR were assessed by multilevel logistic regression models. RESULTS: Among 450 subjects, the prevalence of P. vivax by PRBC-PCR (25.1%) was sixfold higher than that determined by microscopy (3.6%). The prevalence of P. falciparum infection was 4.9% by PRBC-PCR and 0.2% by microscopy. More than 40% of infections had parasitaemia under 5 parasites/µL. Multivariate analysis for infections detected by PRBC-PCR showed that participants with recent settlement in the study area (AOR 2.1; 95% CI 1.03:4.2), age ≥ 30 years (AOR 3.3; 95% CI 1.6:6.9) and seropositivity to P. vivax (AOR 1.8; 95% CI 1.0:3.2) had significantly higher likelihood of P. vivax infection, while the odds of P. falciparum infection was higher for participants between 10 and 29 years (AOR 10.7; 95% CI 1.3:91.1) and with a previous P. falciparum infection (AOR 10.4; 95% CI 1.5:71.1). CONCLUSIONS: This study confirms the contrasting transmission patterns of P. vivax and P. falciparum in the Peruvian Amazon, with stable local transmission for P. vivax and the source of P. falciparum to the study villages dominated by very low parasitaemia carriers, age 10 years and older, who had travelled away from home for work and brought P. falciparum infection with them.


Asunto(s)
Infecciones Asintomáticas/epidemiología , Malaria Falciparum/epidemiología , Malaria Vivax/epidemiología , Parasitemia/epidemiología , Plasmodium falciparum/aislamiento & purificación , Plasmodium vivax/aislamiento & purificación , Adolescente , Adulto , Niño , Estudios Transversales , Femenino , Humanos , Malaria Falciparum/parasitología , Malaria Vivax/parasitología , Masculino , Análisis Multivariante , Parasitemia/parasitología , Perú/epidemiología , Prevalencia , Estudios Seroepidemiológicos , Adulto Joven
15.
Malar J ; 16(1): 128, 2017 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-28340585

RESUMEN

BACKGROUND: Rapid diagnostic tests (RDTs) are today the most widely used method for malaria diagnosis and are recommended, alongside microscopy, for the confirmation of suspected cases before the administration of anti-malarial treatment. The diagnostic performance of RDTs, as compared to microscopy or PCR is well described but the actual analytical sensitivity of current best-in-class tests is poorly documented. This value is however a key performance indicator and a benchmark value needed to developed new RDTs of improved sensitivity. METHODS: Thirteen RDTs detecting either the Plasmodium falciparum histidine rich protein 2 (HRP2) or the plasmodial lactate dehydrogenase (pLDH) antigens were selected from the best performing RDTs according to the WHO-FIND product testing programme. The analytical sensitivity of these products was evaluated using a range of reference materials including P. falciparum and Plasmodium vivax whole parasite samples as well as recombinant proteins. RESULTS: The best performing HRP2-based RDTs could detect all P. falciparum cultured samples at concentrations as low as 0.8 ng/mL of HRP2. The limit of detection of the best performing pLDH-based RDT specifically detecting P. vivax was 25 ng/mL of pLDH. CONCLUSION: The analytical sensitivity of P. vivax and Pan pLDH-based RDTs appears to vary considerably from product to product, and improvement of the limit-of-detection for P. vivax detecting RDTs is needed to match the performance of HRP2 and Pf pLDH-based RDTs for P. falciparum. Different assays using different reference materials produce different values for antigen concentration in a given specimen, highlighting the need to establish universal reference assays.


Asunto(s)
Cromatografía de Afinidad/métodos , Pruebas Diagnósticas de Rutina/métodos , Malaria/diagnóstico , Plasmodium vivax/aislamiento & purificación , Adulto , Antígenos de Protozoos/análisis , Humanos , Malaria Falciparum , Malaria Vivax , Plasmodium falciparum/inmunología , Plasmodium falciparum/aislamiento & purificación , Plasmodium vivax/inmunología , Sensibilidad y Especificidad , Factores de Tiempo
16.
J Infect Dis ; 211(8): 1342-51, 2015 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-25381370

RESUMEN

BACKGROUND: Persons with blood-stage Plasmodium falciparum parasitemia in the absence of symptoms are considered to be clinically immune. We hypothesized that asymptomatic subjects with P. falciparum parasitemia would differentially recognize a subset of P. falciparum proteins on a genomic scale. METHODS AND FINDINGS: Compared with symptomatic subjects, sera from clinically immune, asymptomatically infected individuals differentially recognized 51 P. falciparum proteins, including the established vaccine candidate PfMSP1. Novel, hitherto unstudied hypothetical proteins and other proteins not previously recognized as potential vaccine candidates were also differentially recognized. Genes encoding the proteins differentially recognized by the Peruvian clinically immune individuals exhibited a significant enrichment of nonsynonymous nucleotide variation, an observation consistent with these genes undergoing immune selection. CONCLUSIONS: A limited set of P. falciparum protein antigens was associated with the development of naturally acquired clinical immunity in the low-transmission setting of the Peruvian Amazon. These results imply that, even in a low-transmission setting, an asexual blood-stage vaccine designed to reduce clinical malaria symptoms will likely need to contain large numbers of often-polymorphic proteins, a finding at odds with many current efforts in the design of vaccines against asexual blood-stage P. falciparum.


Asunto(s)
Malaria Falciparum/sangre , Malaria Falciparum/inmunología , Plasmodium falciparum/genética , Plasmodium falciparum/inmunología , Proteínas Protozoarias/sangre , Adolescente , Adulto , Anticuerpos Antiprotozoarios/inmunología , Antígenos de Protozoos/genética , Antígenos de Protozoos/inmunología , Niño , Femenino , Humanos , Vacunas contra la Malaria/inmunología , Masculino , Persona de Mediana Edad , Parasitemia/sangre , Parasitemia/inmunología , Parasitemia/parasitología , Proteínas Protozoarias/genética , Proteínas Protozoarias/inmunología , Adulto Joven
17.
Emerg Infect Dis ; 21(5): 797-803, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25897626

RESUMEN

During 2010-2012, an outbreak of 210 cases of malaria occurred in Tumbes, in the northern coast of Peru, where no Plasmodium falciparum malaria case had been reported since 2006. To identify the source of the parasite causing this outbreak, we conducted a molecular epidemiology investigation. Microsatellite typing showed an identical genotype in all 54 available isolates. This genotype was also identical to that of parasites isolated in 2010 in the Loreto region of the Peruvian Amazon and closely related to clonet B, a parasite lineage previously reported in the Amazon during 1998-2000. These findings are consistent with travel history of index case-patients. DNA sequencing revealed mutations in the Pfdhfr, Pfdhps, Pfcrt, and Pfmdr1 loci, which are strongly associated with resistance to chloroquine and sulfadoxine/pyrimethamine, and deletion of the Pfhrp2 gene. These results highlight the need for timely molecular epidemiology investigations to trace the parasite source during malaria reintroduction events.


Asunto(s)
Brotes de Enfermedades , Malaria Falciparum/epidemiología , Malaria Falciparum/parasitología , Plasmodium falciparum/genética , Alelos , Antimaláricos/farmacología , ADN Protozoario , Resistencia a Medicamentos , Eliminación de Gen , Genotipo , Geografía , Haplotipos , Historia del Siglo XXI , Humanos , Malaria Falciparum/historia , Repeticiones de Microsatélite , Epidemiología Molecular , Perú/epidemiología , Plasmodium falciparum/efectos de los fármacos , Proteínas Protozoarias/genética
18.
Malar J ; 14: 326, 2015 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-26293655

RESUMEN

BACKGROUND: Several platforms have been used to generate the primary data for microsatellite analysis of malaria parasite genotypes. Each has relative advantages but share a limitation of being time- and cost-intensive. A commercially available automated capillary gel cartridge system was assessed in the microsatellite analysis of Plasmodium vivax diversity in the Peruvian Amazon. METHODS: The reproducibility and accuracy of a commercially-available automated capillary system, QIAxcel, was assessed using a sequenced PCR product of 227 base pairs. This product was measured 42 times, then 27 P. vivax samples from Peruvian Amazon subjects were analyzed with this instrument using five informative microsatellites. Results from the QIAxcel system were compared with a Sanger-type sequencing machine, the ABI PRISM(®) 3100 Genetic Analyzer. RESULTS: Significant differences were seen between the sequenced amplicons and the results from the QIAxcel instrument. Different runs, plates and cartridges yielded significantly different results. Additionally, allele size decreased with each run by 0.045, or 1 bp, every three plates. QIAxcel and ABI PRISM systems differed in giving different values than those obtained by ABI PRISM, and too many (i.e. inaccurate) alleles per locus were also seen with the automated instrument. CONCLUSIONS: While P. vivax diversity could generally be estimated using an automated capillary gel cartridge system, the data demonstrate that this system is not sufficiently precise for reliably identifying parasite strains via microsatellite analysis. This conclusion reached after systematic analysis was due both to inadequate precision and poor reproducibility in measuring PCR product size.


Asunto(s)
Malaria Vivax/parasitología , Repeticiones de Microsatélite/genética , Tipificación Molecular/métodos , Plasmodium vivax/genética , ADN Protozoario/genética , Humanos , Malaria Vivax/epidemiología , Epidemiología Molecular , Perú/epidemiología , Reproducibilidad de los Resultados
19.
Malar J ; 14: 176, 2015 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-25903826

RESUMEN

BACKGROUND: Peru has presented a decreasing malaria trend during the last decade, particularly in areas on northwestern coast; however, a limited number of cases continues to be reported yearly mainly in malaria hotspots. METHODS: A two-phase study was conducted to identify spatial and temporal clusters of incident Plasmodium vivax malaria, as well as to determine risk factors associated with households (HH) presenting P. vivax malaria episodes in an urban area of the northwestern Peruvian Coast from June 2008 to May 2010. In the first stage, a full census of the study population was conducted, including geo-referencing of reported P. vivax episodes. In the second stage, a population-based case-control study allowed the identification of risk factors associated with HHs reporting episodes. A total of 117 case HHs with reported P. vivax and 117 control HHs without malaria episodes were assessed. A semi-structured questionnaire was used to interview the head of households and to collect data on HH location and structure, availability of public services, preventive malaria measures, family member with outdoor occupation (farmer, moto-taxi driver), and other HH characteristics. Univariate and multivariate logistic regression analyses were performed to determine case-HH risk factors. SaTScan was used to detect spatial and temporal P. vivax malaria clusters. RESULTS: The most likely spatial cluster of malaria incidence included 1,040 people (22.4% of total population) in 245 HHs (24.6% of total HHs) accounting for 283 malaria episodes (40.1% of total episodes) during the study period (RR = 2.3, p < 0.001). A temporal cluster was also identified from April 12, 2009 to July 4, 2009 accounting for 355 malaria episodes (50.4% of total episodes) (RR = 7.2, p = 0.001). Factors significantly associated with case HHs compared with control HHs were: proximity to water drain < 200 metres (OR = 2.3, 95% CI: 1.3, 4.0); HH size >5 individuals (OR = 1.8, 95% CI: 1.0, 3.2); lack of potable water (OR = 1.8, 95% CI: 1.1, 3.2); and having domestic and peridomestic animals (OR = 3.6, 95% CI: 1.3, 9.5). CONCLUSION: Plasmodium vivax malaria incidence is highly heterogeneous in space and time in the urban study area with important geographical and housing risk factors associated with symptomatic episodes.


Asunto(s)
Malaria Vivax/epidemiología , Plasmodium vivax/fisiología , Características de la Residencia , Estudios de Casos y Controles , Incidencia , Malaria Vivax/parasitología , Perú/epidemiología , Factores de Riesgo , Análisis Espacial , Población Urbana
20.
Proc Natl Acad Sci U S A ; 109(2): 511-6, 2012 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-22203975

RESUMEN

The origin of Plasmodium falciparum in South America is controversial. Some studies suggest a recent introduction during the European colonizations and the transatlantic slave trade. Other evidence--archeological and genetic--suggests a much older origin. We collected and analyzed P. falciparum isolates from different regions of the world, encompassing the distribution range of the parasite, including populations from sub-Saharan Africa, the Middle East, Southeast Asia, and South America. Analyses of microsatellite and SNP polymorphisms show that the populations of P. falciparum in South America are subdivided in two main genetic clusters (northern and southern). Phylogenetic analyses, as well as Approximate Bayesian Computation methods suggest independent introductions of the two clusters from African sources. Our estimates of divergence time between the South American populations and their likely sources favor a likely introduction from Africa during the transatlantic slave trade.


Asunto(s)
Demografía , Emigración e Inmigración , Variación Genética , Filogenia , Plasmodium falciparum/genética , Teorema de Bayes , Análisis por Conglomerados , Genética de Población , Humanos , Modelos Logísticos , Repeticiones de Microsatélite/genética , Modelos Genéticos , Filogeografía , Plasmodium falciparum/clasificación , Polimorfismo de Nucleótido Simple/genética , Análisis de Componente Principal , América del Sur
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA