Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Development ; 143(23): 4352-4367, 2016 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-27802170

RESUMEN

Enhanced BMP or canonical Wnt (cWnt) signaling are therapeutic strategies employed to enhance bone formation and fracture repair, but the mechanisms each pathway utilizes to specify cell fate of bone-forming osteoblasts remain poorly understood. Among all BMPs expressed in bone, we find that singular deficiency of Bmp2 blocks the ability of cWnt signaling to specify osteoblasts from limb bud or bone marrow progenitors. When exposed to cWnts, Bmp2-deficient cells fail to progress through the Runx2/Osx1 checkpoint and thus do not upregulate multiple genes controlling mineral metabolism in osteoblasts. Cells lacking Bmp2 after induction of Osx1 differentiate normally in response to cWnts, suggesting that pre-Osx1+ osteoprogenitors are an essential source and a target of BMP2. Our analysis furthermore reveals Grainyhead-like 3 (Grhl3) as a transcription factor in the osteoblast gene regulatory network induced during bone development and bone repair, which acts upstream of Osx1 in a BMP2-dependent manner. The Runx2/Osx1 transition therefore receives crucial regulatory inputs from BMP2 that are not compensated for by cWnt signaling, and this is mediated at least in part by induction and activation of Grhl3.


Asunto(s)
Desarrollo Óseo/fisiología , Proteína Morfogenética Ósea 2/metabolismo , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Osteoblastos/citología , Osteogénesis/fisiología , Factores de Transcripción/metabolismo , Vía de Señalización Wnt/fisiología , Animales , Desarrollo Óseo/genética , Proteína Morfogenética Ósea 2/genética , Células Cultivadas , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Activación Enzimática/genética , Esbozos de los Miembros/citología , Ratones , Ratones Noqueados , Osteogénesis/genética , Factor de Transcripción Sp7 , Factores de Transcripción/genética , Vía de Señalización Wnt/genética , Proteína Wnt3A/metabolismo
2.
J Cell Sci ; 128(7): 1308-15, 2015 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-25663702

RESUMEN

Imbalances in the ratio of bone morphogenetic protein (BMP) versus activin and TGFß signaling are increasingly associated with human diseases yet the mechanisms mediating this relationship remain unclear. The type 2 receptors ACVR2A and ACVR2B bind BMPs and activins but the type 2 receptor BMPR2 only binds BMPs, suggesting that type 2 receptor utilization might play a role in mediating the interaction of these pathways. We tested this hypothesis in the mouse skeleton, where bone mass is reciprocally regulated by BMP signaling and activin and TGFß signaling. We found that deleting Bmpr2 in mouse skeletal progenitor cells (Bmpr2-cKO mice) selectively impaired activin signaling but had no effect on BMP signaling, resulting in an increased bone formation rate and high bone mass. Additionally, activin sequestration had no effect on bone mass in Bmpr2-cKO mice but increased bone mass in wild-type mice. Our findings suggest a novel model whereby BMPR2 availability alleviates receptor-level competition between BMPs and activins and where utilization of ACVR2A and ACVR2B by BMPs comes at the expense of activins. As BMP and activin pathway modulation are of current therapeutic interest, our findings provide important mechanistic insight into the relationship between these pathways in human health.


Asunto(s)
Desarrollo Óseo , Enfermedades Óseas/metabolismo , Receptores de Proteínas Morfogenéticas Óseas de Tipo II/metabolismo , Osteoblastos/metabolismo , Receptores de Activinas Tipo II/genética , Receptores de Activinas Tipo II/metabolismo , Activinas/metabolismo , Animales , Enfermedades Óseas/genética , Enfermedades Óseas/fisiopatología , Receptores de Proteínas Morfogenéticas Óseas de Tipo II/genética , Proteínas Morfogenéticas Óseas/metabolismo , Huesos/metabolismo , Células Cultivadas , Femenino , Humanos , Ratones , Ratones Noqueados , Transducción de Señal
3.
Connect Tissue Res ; 58(3-4): 238-245, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28005443

RESUMEN

Meniscal damage is a common problem that accelerates the onset of knee osteoarthritis. Stem cell-based tissue engineering treatment approaches have shown promise in preserving meniscal tissue and restoring meniscal function. The purpose of our study was to identify meniscus-derived stem/progenitor cells (MSPCs) from mouse, a model system that allows for in vivo analysis of the mechanisms underlying meniscal injury and healing. MSPCs were isolated from murine menisci grown in explant culture and characterized for stem cell properties. Flow cytometry was used to detect the presence of surface antigens related to stem cells, and qRT-PCR was used to examine the gene expression profile of MSPCs. Major proteins associated with MSPCs were localized in the adult mouse knee using immunohistochemistry. Our data show that MSPCs have universal stem cell-like properties including clonogenicity and multi-potentiality. MSPCs expressed the mesenchymal stem cell markers CD44, Sca-1, CD90, and CD73 and when cultured had elevated levels of biglycan and collagen type I, important extracellular matrix components of adult meniscus. MSPC also expressed significant levels of Lox and Igf-1, genes associated with the embryonic meniscus. Localization studies showed staining for these same proteins in the superficial and outer zones of the adult mouse meniscus, regions thought to harbor endogenous repair cells. MSPCs represent a novel resident stem cell population in the murine meniscus. Analysis of MSPCs in mice will allow for a greater understanding of the cell biology of the meniscus, essential information for enhancing therapeutic strategies for treating knee joint injury and disease.


Asunto(s)
Células Madre Adultas/citología , Envejecimiento/fisiología , Separación Celular/métodos , Menisco/citología , Células Madre/citología , Animales , Células Cultivadas , Citometría de Flujo , Perfilación de la Expresión Génica , Ratones Endogámicos C57BL
4.
Dev Dyn ; 241(11): 1816-26, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22972626

RESUMEN

BACKGROUND: Synovial joints develop from the interzone, a dense layer of mesenchymal progenitor cells that marks the site of the future joint. During the morphogenic events that follow, joints attain their distinct shape and organization. The molecular mechanisms controlling the initial specification of synovial joints has been studied, but the question of how individual joints attain the specific structure required for their unique functions remains largely unresolved. Here, we use microarray analysis to compare knee and elbow formation to identify factors involved in the development of specific joints. RESULTS: The knee is enriched for the hindlimb patterning genes Hoxc9, Hoxc10, and Tbx4 and for Tgfbi, Rspo2, and Sfrp2, factors involved in transforming growth factor-beta/bone morphogenetic protein (TGFß/BMP) and Wnt signaling. Consistent with these findings, we show that TGFß signaling directs knee morphogenesis, and is necessary for meniscus development. The tissue surrounding the elbow is highly enriched for genes involved in muscle specification and differentiation, and in splotch-delayed muscleless mutants, elbow, but not knee morphogenesis is disrupted. CONCLUSIONS: Our results suggest there are fundamental differences in how individual joints develop after interzone formation. Our microarray analyses provides a new resource for further investigation of the pathways involved in the morphogenesis of specific synovial joints.


Asunto(s)
Miembro Anterior/embriología , Miembro Anterior/metabolismo , Articulación de la Rodilla/embriología , Articulación de la Rodilla/metabolismo , Animales , Femenino , Regulación del Desarrollo de la Expresión Génica , Inmunohistoquímica , Hibridación in Situ , Ratones , Ratones Endogámicos C57BL , Análisis por Micromatrices , Embarazo , Factor de Crecimiento Transformador beta
5.
Front Physiol ; 14: 1221152, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37799511

RESUMEN

The periosteum is a thin tissue surrounding each skeletal element that contains stem and progenitor cells involved in bone development, postnatal appositional bone growth, load-induced bone formation, and fracture repair. BMP and TGFß signaling are important for periosteal activity and periosteal cell behavior, but thorough examination of the influence of these pathways on specific cell populations resident in the periosteum is lacking due to limitations associated with primary periosteal cell isolations and in vitro experiments. Here we describe the generation of a novel periosteum-derived clonal cell (PDC) line from postnatal day 14 mice and use it to examine periosteal cell behavior in vitro. PDCs exhibit key characteristics of periosteal cells observed during skeletal development, maintenance, and bone repair. Specifically, PDCs express established periosteal markers, can be expanded in culture, demonstrate the ability to differentiate into chondrocytes, osteoblasts, and adipocytes, and exhibit an osteogenic response to physical stimulation. PDCs also engage in BMP and/or TGFß signaling when treated with the activating ligands BMP2 and TGFß-1, and in response to mechanical stimulation via fluid shear. We believe that this PDC line will be useful for large-scale, long-term experiments that were not feasible when using primary periosteal cells. Anticipated future uses include advancing our understanding of the signaling interactions that occur during appositional bone growth and fracture repair and developing drug screening platforms to discover novel growth and fracture healing factors.

6.
J Bone Miner Res ; 37(4): 764-775, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35080046

RESUMEN

Vertebrate lonesome kinase (Vlk) is a secreted tyrosine kinase important for normal skeletogenesis during embryonic development. Vlk null mice (Vlk-/- ) are born with severe craniofacial and limb skeletal defects and die shortly after birth. We used a conditional deletion model to remove Vlk in limb bud mesenchyme (Vlk-Prx1 cKO) to assess the specific requirement for Vlk expression by skeletal progenitor cells during endochondral ossification, and an inducible global deletion model (Vlk-Ubq iKO) to address the role of Vlk during fracture repair. Deletion of Vlk with Prx1-Cre recapitulated the limb skeletal phenotype of the Vlk-/- mice and enabled us to study the postnatal skeleton as Vlk-Prx1 cKO mice survived to adulthood. In Vlk-Prx1 cKO adult mice, limbs remained shorter with decreased trabecular and cortical bone volumes. Both Vlk-Prx1 cKO and Vlk-Ubq iKO mice had a delayed fracture repair response but eventually formed bridging calluses. Furthermore, levels of phosphorylated osteopontin (OPN) were decreased in tibias of Vlk-Ubq iKO, establishing OPN as a Vlk substrate in bone. In summary, our data indicate that Vlk produced by skeletal progenitor cells influences the timing and extent of chondrogenesis during endochondral bone formation and fracture repair. © 2022 American Society for Bone and Mineral Research (ASBMR).


Asunto(s)
Condrogénesis , Osteogénesis , Animales , Huesos , Condrogénesis/genética , Extremidades , Ratones , Ratones Noqueados , Osteogénesis/genética , Proteínas Tirosina Quinasas
7.
Bone ; 160: 116418, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35398294

RESUMEN

We previously found that FoxA factors are necessary for chondrocyte differentiation. To investigate whether FoxA factors alone are sufficient to drive chondrocyte hypertrophy, we build a FoxA2 transgenic mouse in which FoxA2 cDNA is driven by a reiterated Tetracycline Response Element (TRE) and a minimal CMV promoter. This transgenic line was crossed with a col2CRE;Rosa26rtTA/+ mouse line to generate col2CRE;Rosa26rtTA/+;TgFoxA2+/- mice for inducible expression of FoxA2 in cartilage using doxycycline treatment. Ectopic expression of FoxA2 in the developing skeleton reveals skeletal defects and shorter skeletal elements in E17.5 mice. The chondro-osseous border was frequently mis-shaped in mutant mice, with small islands of col.10+ hypertrophic cells extending in the metaphyseal bone. Even though overexpression of FoxA2 causes an accumulation of hypertrophic chondrocytes, it did not trigger ectopic hypertrophy in the immature chondrocytes. This suggests that FoxA2 may need transcriptional co-factors (such as Runx2), whose expression is restricted to the hypertrophic zone, and absent in the immature chondrocytes. To investigate a potential FoxA2/Runx2 interaction in immature chondrocytes versus hypertrophic cells, we separated these two subpopulations by FACS to obtain CD24+CD200+ hypertrophic chondrocytes and CD24+CD200- immature chondrocytes and we ectopically expressed FoxA2 alone or in combination with Runx2 via lentiviral gene delivery. In CD24+CD200+ hypertrophic chondrocytes, FoxA2 enhanced the expression of chondrocyte hypertrophic markers collagen 10, MMP13, and alkaline phosphatase. In contrast, in the CD24+CD200- immature chondrocytes, neither FoxA2 nor Runx2 overexpression could induce ectopic expression of hypertrophic markers MMP13, alkaline phosphatase, or PTH/PTHrP receptor. Overall these findings mirror our in vivo data, and suggest that induction of chondrocyte hypertrophy by FoxA2 may require other factors in addition to Runx2 (i.e., Hif2α, MEF2C, or perhaps unknown factors), whose expression/activity is rate-limiting in immature chondrocytes.


Asunto(s)
Condrocitos , Subunidad alfa 1 del Factor de Unión al Sitio Principal , Fosfatasa Alcalina/metabolismo , Animales , Huesos/metabolismo , Cartílago/metabolismo , Diferenciación Celular/genética , Condrocitos/metabolismo , Subunidad alfa 1 del Factor de Unión al Sitio Principal/genética , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Factor Nuclear 3-beta del Hepatocito/genética , Factor Nuclear 3-beta del Hepatocito/metabolismo , Hipertrofia , Metaloproteinasa 13 de la Matriz/genética , Metaloproteinasa 13 de la Matriz/metabolismo , Ratones , Factores de Transcripción/metabolismo
8.
Nat Commun ; 13(1): 2515, 2022 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-35523895

RESUMEN

Longitudinal bone growth, achieved through endochondral ossification, is accomplished by a cartilaginous structure, the physis or growth plate, comprised of morphologically distinct zones related to chondrocyte function: resting, proliferating and hypertrophic zones. The resting zone is a stem cell-rich region that gives rise to the growth plate, and exhibits regenerative capabilities in response to injury. We discovered a FoxA2+group of long-term skeletal stem cells, situated at the top of resting zone, adjacent the secondary ossification center, distinct from the previously characterized PTHrP+ stem cells. Compared to PTHrP+ cells, FoxA2+ cells exhibit higher clonogenicity and longevity. FoxA2+ cells exhibit dual osteo-chondro-progenitor activity during early postnatal development (P0-P28) and chondrogenic potential beyond P28. When the growth plate is injured, FoxA2+ cells expand in response to trauma, and produce physeal cartilage for growth plate tissue regeneration.


Asunto(s)
Placa de Crecimiento , Proteína Relacionada con la Hormona Paratiroidea , Cartílago , Condrocitos , Factor Nuclear 3-beta del Hepatocito/metabolismo , Células Madre
9.
Genesis ; 49(9): 719-24, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21538804

RESUMEN

Initiation of BMP signaling is dependent upon activation of Type I BMP receptor by constitutively active Type II BMP receptor. Three Type II BMP receptors have been identified; Acvr2a and Acvr2b serve as receptors for BMPs and for activin-like ligands whereas BMPR-II functions only as a BMP receptor. As BMP signaling is required for endochondral ossification and loss of either Acvr2a or Acvr2b is not associated with deficits in limb development, we hypothesized that BMPR-II would be essential for BMP signaling during skeletogenesis. We removed BMPR-II from early limb mesoderm by crossing BMPR-II floxed mice with those carrying the Prx1-Cre transgene. Mice lacking limb expression of BMPR-II have normal skeletons that could not be distinguished from control littermates. From these data, we conclude that BMPR-II is not required for endochondral ossification in the limb where loss of BMPR-II may be compensated by BMP utilization of Acvr2a and Acvr2b.


Asunto(s)
Receptores de Proteínas Morfogenéticas Óseas de Tipo II/metabolismo , Receptores de Proteínas Morfogenéticas Óseas de Tipo 1/metabolismo , Proteínas Morfogenéticas Óseas/metabolismo , Extremidades/embriología , Osteogénesis/genética , Receptores de Activinas Tipo II/genética , Receptores de Activinas Tipo II/metabolismo , Animales , Receptores de Proteínas Morfogenéticas Óseas de Tipo 1/genética , Receptores de Proteínas Morfogenéticas Óseas de Tipo II/genética , Proteínas Morfogenéticas Óseas/genética , Regulación del Desarrollo de la Expresión Génica , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Fenotipo , Unión Proteica , Eliminación de Secuencia , Transducción de Señal/genética , Transgenes
10.
Dev Dyn ; 238(9): 2374-81, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19653325

RESUMEN

Bone morphogenetic protein-3 (BMP) has been identified as a negative regulator in the skeleton as mice lacking BMP3 have increased bone mass. To further understand how BMP3 mediates bone formation, we created transgenic mice overexpressing BMP3 using the type I collagen promoter. BMP3 transgenic mice displayed spontaneous rib fractures that were first detected at E17.0. The fractures were due to defects in differentiation of the periosteum and late hypertrophic chondrocytes resulting in thinner cortical bone with decreased mineralization. As BMP3 modulates BMP and activin signaling through ActRIIB, we examined the ribs of ActRIIB receptor knockout mice and found they had defects in late chondrogenesis and mineralization similar to BMP3 transgenic mice. These data suggest that BMP3 exerts its effects in the skeleton by altering signaling through ActRIIB in chondrocytes and the periosteum, and this results in defects in bone collar formation and late hypertrophic chondrocyte maturation leading to decreased mineralization and less bone.


Asunto(s)
Proteína Morfogenética Ósea 3/fisiología , Fracturas Espontáneas/genética , Fracturas de las Costillas/genética , Receptores de Activinas Tipo II/genética , Receptores de Activinas Tipo II/fisiología , Animales , Northern Blotting , Proteína Morfogenética Ósea 3/genética , Inmunohistoquímica , Hibridación in Situ , Ratones , Ratones Noqueados , Ratones Transgénicos , Reacción en Cadena de la Polimerasa
11.
Dev Cell ; 4(2): 143-4, 2003 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-12586054

RESUMEN

Members of the TGFbeta superfamily play many roles in embryonic development and adult tissue homeostasis. Now recent work focused on growth and differentiation factors (GDFs) suggest that these TGFbeta-like molecules may also control organ size and may, in fact, be the long sought after chalones, or negative growth regulators.


Asunto(s)
Inhibidores de Crecimiento/fisiología , Animales , Diferenciación Celular , División Celular/fisiología , Humanos , Factor de Crecimiento Transformador beta/fisiología
12.
Elife ; 82019 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-30735122

RESUMEN

Two decades after signals controlling bone length were discovered, the endogenous ligands determining bone width remain unknown. We show that postnatal establishment of normal bone width in mice, as mediated by bone-forming activity of the periosteum, requires BMP signaling at the innermost layer of the periosteal niche. This developmental signaling center becomes quiescent during adult life. Its reactivation however, is necessary for periosteal growth, enhanced bone strength, and accelerated fracture repair in response to bone-anabolic therapies used in clinical orthopedic settings. Although many BMPs are expressed in bone, periosteal BMP signaling and bone formation require only Bmp2 in the Prx1-Cre lineage. Mechanistically, BMP2 functions downstream of Lrp5/6 pathway to activate a conserved regulatory element upstream of Sp7 via recruitment of Smad1 and Grhl3. Consistent with our findings, human variants of BMP2 and GRHL3 are associated with increased risk of fractures.


Asunto(s)
Proteína Morfogenética Ósea 2/genética , Osteogénesis/genética , Periostio/crecimiento & desarrollo , Animales , Proliferación Celular/genética , Proteínas de Unión al ADN/genética , Fracturas Óseas/genética , Fracturas Óseas/patología , Regulación del Desarrollo de la Expresión Génica/genética , Proteínas de Homeodominio/genética , Humanos , Ratones , Periostio/metabolismo , Transducción de Señal/genética , Proteína Smad1/genética , Factor de Transcripción Sp7/genética , Factores de Transcripción/genética
13.
J Bone Miner Res ; 33(9): 1708-1717, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29665134

RESUMEN

Bone morphogenetic proteins (BMPs) are key regulators of skeletal development, growth, and repair. Although BMP signaling is required for synovial joint formation and is also involved in preserving joint function after birth, the role of specific BMP ligands in adult joint homeostasis remains unclear. The purpose of this study was to define the role of Bmp2 in the morphogenesis and maintenance of the knee joint. To do this, we first created Bmp2-LacZ and Gdf5-LacZ knock-in mice and compared their expression patterns in the developing and postnatal murine knee joint. We then generated a knockout mouse model using the Gdf5-cre transgene to specifically delete Bmp2 within synovial joint-forming cells. Joint formation, maturation, and homeostasis were analyzed using histology, immunohistochemistry, qRT-PCR, and atomic force microscopy (AFM)-based nanoindentation to assess the cellular, molecular, and biomechanical changes in meniscus and articular cartilage. Bmp2 is expressed in the articular cartilage and meniscus of the embryonic and adult mouse knee in a pattern distinct from Gdf5. The knee joints of the Bmp2 knockout mice form normally but fail to mature properly. In the absence of Bmp2, the extracellular matrix and shape of the meniscus are altered, resulting in functional deficits in the meniscus and articular cartilage that lead to a progressive osteoarthritis (OA) like knee pathology as the animals age. These findings demonstrate that BMP activity provided by Bmp2 is required for the maturation and maintenance of the murine knee joint and reveal a unique role for Bmp2 that is distinct from Gdf5 in knee joint biology. © 2018 American Society for Bone and Mineral Research.


Asunto(s)
Proteína Morfogenética Ósea 2/metabolismo , Extremidades/crecimiento & desarrollo , Articulaciones/crecimiento & desarrollo , Envejecimiento/patología , Animales , Fenómenos Biomecánicos , Cartílago Articular/metabolismo , Extremidades/embriología , Genes Reporteros , Factor 5 de Diferenciación de Crecimiento/metabolismo , Integrasas/metabolismo , Articulaciones/embriología , Ratones Noqueados , Osteoartritis/patología , Fenotipo
14.
J Orthop Res ; 35(8): 1683-1689, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-27664939

RESUMEN

Meniscal injuries are commonplace, but current surgical repair procedures do not prevent degenerative joint changes that occur after meniscal injury and often lead to osteoarthritis. Successful tissue regeneration in adults often recapitulates events that occur during embryogenesis, suggesting that understanding the regulatory pathways controlling these early processes may provide clues for developing strategies for tissue repair. While the mouse is now widely used to study joint diseases, detailed knowledge of the basic biology of murine meniscus is not readily available. Here, we examine meniscal morphogenesis in mice from embryonic day 13.5 (E13.5) to 6 months of age using histology, in situ hybridization, and immunohistochemistry. We find that the meniscus is a morphologically distinct structure at E16 when it begins to regionalize. At birth, the meniscus has a distinguishable inner, avascular, round chondrocyte cell region, an outer, vascularized, fibroblast cell region, and a surface superficial zone. Maturation begins at 2 weeks of age when the meniscus expresses type I collagen, type II collagen, type X collagen, and MMP-13 in specific patterns. By 4 weeks of age, small areas of ossification are detected in the anterior meniscal horn, a common feature seen in rodents. Maturation appears complete at 8 weeks of age, when the meniscus resembles the adult structure complete with ossifying tissue that contains bone marrow like areas. Our results provide, the first systematic study of mouse meniscal development and will be a valuable tool for analyzing murine models of knee joint formation and disease. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:1683-1689, 2017.


Asunto(s)
Meniscos Tibiales/embriología , Meniscos Tibiales/crecimiento & desarrollo , Ratones/embriología , Ratones/crecimiento & desarrollo , Morfogénesis , Animales , Femenino , Embarazo
15.
Nat Rev Endocrinol ; 12(4): 203-21, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26893264

RESUMEN

Since the identification in 1988 of bone morphogenetic protein 2 (BMP2) as a potent inducer of bone and cartilage formation, BMP superfamily signalling has become one of the most heavily investigated topics in vertebrate skeletal biology. Whereas a large part of this research has focused on the roles of BMP2, BMP4 and BMP7 in the formation and repair of endochondral bone, a large number of BMP superfamily molecules have now been implicated in almost all aspects of bone, cartilage and joint biology. As modulating BMP signalling is currently a major therapeutic target, our rapidly expanding knowledge of how BMP superfamily signalling affects most tissue types of the skeletal system creates enormous potential to translate basic research findings into successful clinical therapies that improve bone mass or quality, ameliorate diseases of skeletal overgrowth, and repair damage to bone and joints. This Review examines the genetic evidence implicating BMP superfamily signalling in vertebrate bone and joint development, discusses a selection of human skeletal disorders associated with altered BMP signalling and summarizes the status of modulating the BMP pathway as a therapeutic target for skeletal trauma and disease.


Asunto(s)
Desarrollo Óseo/genética , Enfermedades Óseas/metabolismo , Proteínas Morfogenéticas Óseas/metabolismo , Regeneración Ósea , Huesos/metabolismo , Animales , Enfermedades Óseas/genética , Proteína Morfogenética Ósea 2/genética , Proteína Morfogenética Ósea 2/metabolismo , Proteína Morfogenética Ósea 2/fisiología , Proteína Morfogenética Ósea 4/genética , Proteína Morfogenética Ósea 4/metabolismo , Proteína Morfogenética Ósea 4/fisiología , Proteína Morfogenética Ósea 7/genética , Proteína Morfogenética Ósea 7/metabolismo , Proteína Morfogenética Ósea 7/fisiología , Proteínas Morfogenéticas Óseas/genética , Proteínas Morfogenéticas Óseas/fisiología , Huesos/embriología , Huesos/fisiología , Regulación de la Expresión Génica , Humanos , Transducción de Señal
16.
Gene Expr Patterns ; 5(5): 601-8, 2005 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-15905132

RESUMEN

The Evi-1 gene was first identified as a site for viral integration in murine myeloid leukemia. Evi-1 is a zinc finger transcription factor that has been implicated in the development of myeloid neoplasia. In humans, disruption of the Evi-1 locus, by chromosomal rearrangements, is associated with myeloid leukemia and myelodyplastic syndromes. Here, we report the cloning and developmental pattern of expression of Xenopus Evi-1. xEvi-1 is expressed during oogenesis and during embryonic development. In situ hydridization reveals that xEvi-1 has a dynamic expression profile during early embryonic development. Expression of Evi-1 is detected by in situ hybridization in the pronephric tissue, the brain and in neural crest derivatives of the head and neck.


Asunto(s)
Proteínas de Unión al ADN/biosíntesis , Regulación del Desarrollo de la Expresión Génica , Factores de Transcripción/biosíntesis , Secuencia de Aminoácidos , Animales , Northern Blotting , Encéfalo/metabolismo , Clonación Molecular , ADN Complementario/metabolismo , Biblioteca de Genes , Hibridación in Situ , Riñón/embriología , Proteína del Locus del Complejo MDS1 y EV11 , Ratones , Datos de Secuencia Molecular , Cresta Neural/metabolismo , Oocitos/metabolismo , Poli A/química , Proto-Oncogenes , Homología de Secuencia de Aminoácido , Factores de Tiempo , Transcripción Genética , Xenopus laevis
17.
J Biomech ; 48(8): 1364-70, 2015 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-25817332

RESUMEN

This study aimed to quantify the biomechanical properties of murine meniscus surface. Atomic force microscopy (AFM)-based nanoindentation was performed on the central region, proximal side of menisci from 6- to 24-week old male C57BL/6 mice using microspherical tips (Rtip≈5µm) in PBS. A unique, linear correlation between indentation depth, D, and response force, F, was found on menisci from all age groups. This non-Hertzian behavior is likely due to the dominance of tensile resistance by the collagen fibril bundles on meniscus surface that are mostly aligned along the circumferential direction. The indentation resistance was calculated as both the effective modulus, Eind, via the isotropic Hertz model, and the effective stiffness, Sind = dF/dD. Values of Sind and Eind were found to depend on indentation rate, suggesting the existence of poro-viscoelasticity. These values do not significantly vary with anatomical sites, lateral versus medial compartments, or mouse age. In addition, Eind of meniscus surface (e.g., 6.1±0.8MPa for 12 weeks of age, mean±SEM, n=13) was found to be significantly higher than those of meniscus surfaces in other species, and of murine articular cartilage surface (1.4±0.1MPa, n=6). In summary, these results provided the first direct mechanical knowledge of murine knee meniscus tissues. We expect this understanding to serve as a mechanics-based benchmark for further probing the developmental biology and osteoarthritis symptoms of meniscus in various murine models.


Asunto(s)
Cartílago Articular/fisiopatología , Meniscos Tibiales/fisiopatología , Animales , Anisotropía , Fenómenos Biomecánicos , Cartílago Articular/patología , Modelos Animales de Enfermedad , Módulo de Elasticidad , Masculino , Meniscos Tibiales/patología , Ratones , Ratones Endogámicos C57BL , Microscopía de Fuerza Atómica/métodos , Microscopía Electrónica de Rastreo , Osteoartritis de la Rodilla/patología , Propiedades de Superficie , Viscosidad
18.
J Orthop Res ; 32(1): 46-53, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24108661

RESUMEN

The meniscus is a fibrocartilagenous disc in the knee that protects the joint from damage. Meniscal injuries are common, however repair efforts are largely unsuccessful and are not able to prevent the degenerative changes that result in development of osteoarthritis. Tissue regeneration in adults often recapitulates events of embryonic development, suggesting the regulatory pathways controlling morphogenesis are candidate repair signals. Here we use laser capture microdissection to collect mouse embryonic day 16 (E16) meniscus, articular cartilage, and cruciate ligaments. RNA isolated from these tissues was then used to perform genome-wide microarray analysis. We found 38 genes were differentially expressed between E16 meniscus and articular cartilage and 43 genes were differentially expressed between E16 meniscus and cruciate ligaments. Included in our data set were extracellular matrix proteins, transcription factors, and growth factors, including TGF-ß modulators (Lox, Dpt) and IGF-1 pathway members (Igf-1, Igfbp2, Igfbp3, Igfbp5). Ingenuity Pathway Analysis revealed that IGF-1 signaling was enriched in the meniscus compared to the other joint structures, while qPCR showed that Igf-1, Igfbp2, and Igfbp3 expression declined with age. We also found that several meniscus-enriched genes were expressed either in the inner or outer meniscus, establishing that regionalization of the meniscus occurs early in development.


Asunto(s)
Ligamento Cruzado Anterior/embriología , Cartílago Articular/embriología , Regulación del Desarrollo de la Expresión Génica , Articulación de la Rodilla/embriología , Meniscos Tibiales/embriología , Transcriptoma , Animales , Ligamento Cruzado Anterior/anatomía & histología , Ligamento Cruzado Anterior/fisiología , Cartílago Articular/anatomía & histología , Cartílago Articular/fisiología , Femenino , Articulación de la Rodilla/anatomía & histología , Articulación de la Rodilla/fisiología , Captura por Microdisección con Láser , Meniscos Tibiales/anatomía & histología , Meniscos Tibiales/fisiología , Ratones , Ratones Endogámicos C57BL , Análisis de Secuencia por Matrices de Oligonucleótidos , Embarazo , Membrana Sinovial/anatomía & histología , Membrana Sinovial/embriología , Membrana Sinovial/fisiología
19.
Bone ; 51(4): 800-9, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22846673

RESUMEN

Bone graft incorporation depends on the orchestrated activation of numerous growth factors and cytokines in both the host and the graft. Prominent in this signaling cascade is BMP2. Although BMP2 is dispensable for bone formation, it is required for the initiation of bone repair; thus understanding the cellular mechanisms underlying bone regeneration driven by BMP2 is essential for improving bone graft therapies. In the present study, we assessed the role of Bmp2 in bone graft incorporation using mice in which Bmp2 has been removed from the limb prior to skeletal formation (Bmp2(cKO)). When autograft transplantations were performed in Bmp2cKO mice, callus formation and bone healing were absent. Transplantation of either a vital wild type (WT) bone graft into a Bmp2(cKO) host or a vital Bmp2(cKO) graft into a WT host also resulted in the inhibition of bone graft incorporation. Histological analyses of these transplants show that in the absence of BMP2, periosteal progenitors remain quiescent and healing is not initiated. When we analyzed the expression of Sox9, a marker of chondrogenesis, on the graft surface, we found it significantly reduced when BMP2 was absent in either the graft itself or the host, suggesting that local BMP2 levels drive periosteal cell condensation and subsequent callus cell differentiation. The lack of integrated healing in the absence of BMP2 was not due to the inability of periosteal cells to respond to BMP2. Healing was achieved when grafts were pre-soaked in rhBMP2 protein, indicating that periosteal progenitors remain responsive in the absence of BMP2. In contrast to the requirement for BMP2 in periosteal progenitor activation in vital bone grafts, we found that bone matrix-derived BMP2 does not significantly enhance bone graft incorporation. Taken together, our data show that BMP2 signaling is not essential for the maintenance of periosteal progenitors, but is required for the activation of these progenitors and their subsequent differentiation along the osteo-chondrogenic pathway. These results indicate that BMP2 will be among the signaling molecules whose presence will determine success or failure of new bone graft strategies.


Asunto(s)
Proteína Morfogenética Ósea 2/fisiología , Trasplante Óseo , Cicatrización de Heridas , Animales , Huesos/citología , Huesos/metabolismo , Diferenciación Celular , Inmunohistoquímica , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos
20.
Mol Endocrinol ; 26(1): 87-94, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22074949

RESUMEN

Enhancing bone morphogenetic protein (BMP) signaling increases bone formation in a variety of settings that target bone repair. However, the role of BMP in the maintenance of adult bone mass is not well understood. Targeted disruption of BMP3 in mice results in increased trabecular bone formation, whereas transgenic overexpression of BMP3 in skeletal cells leads to spontaneous fracture, consistent with BMP3 having a negative role in bone mass regulation. Here we investigate the importance of BMP3 as a mediator of BMP signaling in the adult skeleton. We find that osteoblasts (OBL) and osteocytes are the source of BMP3 in adult bone. Using in vitro cultures of primary bone marrow stromal cells, we show that overexpression of BMP3 suppresses OBL differentiation, whereas loss of BMP3 increases colony-forming unit fibroblasts and colony-forming unit OBL. The ability of BMP3 to affect OBL differentiation is due to its interaction with activin receptor type 2b (Acvr2b) because knockdown of endogenous Acvr2b in bone marrow stromal cells reduces the suppressive effect of BMP3 on OBL differentiation. These findings best fit a model in which BMP3, produced by mature bone cells, acts to reduce BMP signaling through Acvr2b in skeletal progenitor cells, limiting their differentiation to mature OBL. Our data further support the idea that endogenous BMPs have a physiological role in regulating adult bone mass.


Asunto(s)
Receptores de Activinas Tipo II/metabolismo , Células de la Médula Ósea/metabolismo , Proteína Morfogenética Ósea 3/metabolismo , Osteoblastos/metabolismo , Osteogénesis , Células del Estroma/metabolismo , Receptores de Activinas Tipo II/genética , Animales , Células de la Médula Ósea/citología , Proteína Morfogenética Ósea 3/genética , Diferenciación Celular , Línea Celular , Técnicas de Sustitución del Gen , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Osteoblastos/citología , Osteocitos/citología , Osteocitos/metabolismo , Interferencia de ARN , ARN Interferente Pequeño , Transducción de Señal , Proteínas Smad/metabolismo , Células del Estroma/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA