RESUMEN
HRAS, NRAS, and KRAS4A/KRAS4B comprise the RAS family of small GTPases that regulate signaling pathways controlling cell proliferation, differentiation, and survival. RAS pathway abnormalities cause developmental disorders and cancers. We found that KRAS4B colocalizes on the cell membrane with other RAS isoforms and a subset of prenylated small GTPase family members using a live-cell quantitative split luciferase complementation assay. RAS protein coclustering is mainly mediated by membrane association-facilitated interactions (MAFIs). Using the RAS-RBD (CRAF RAS binding domain) interaction as a model system, we showed that MAFI alone is not sufficient to induce RBD-mediated RAS inhibition. Surprisingly, we discovered that high-affinity membrane-targeted RAS binding proteins inhibit RAS activity and deplete RAS proteins through an autophagosome-lysosome-mediated degradation pathway. Our results provide a mechanism for regulating RAS activity and protein levels, a more detailed understanding of which should lead to therapeutic strategies for inhibiting and depleting oncogenic RAS proteins.
Asunto(s)
Autofagosomas/metabolismo , Membrana Celular/metabolismo , Lisosomas/metabolismo , Proteínas ras/metabolismo , Humanos , Modelos Moleculares , Dominios y Motivos de Interacción de Proteínas , Isoformas de Proteínas , Transducción de SeñalRESUMEN
Cellular pyruvate is an essential metabolite at the crossroads of glycolysis and oxidative phosphorylation, capable of supporting fermentative glycolysis by reduction to lactate mediated by lactate dehydrogenase (LDH) among other functions. Several inherited diseases of mitochondrial metabolism impact extracellular (plasma) pyruvate concentrations, and [1-13C]pyruvate infusion is used in isotope-labeled metabolic tracing studies, including hyperpolarized magnetic resonance spectroscopic imaging. However, how these extracellular pyruvate sources impact intracellular metabolism is not clear. Herein, we examined the effects of excess exogenous pyruvate on intracellular LDH activity, extracellular acidification rates (ECARs) as a measure of lactate production, and hyperpolarized [1-13C]pyruvate-to-[1-13C]lactate conversion rates across a panel of tumor and normal cells. Combined LDH activity and LDHB/LDHA expression analysis intimated various heterotetrameric isoforms comprising LDHA and LDHB in tumor cells, not only canonical LDHA. Millimolar concentrations of exogenous pyruvate induced substrate inhibition of LDH activity in both enzymatic assays ex vivo and in live cells, abrogated glycolytic ECAR, and inhibited hyperpolarized [1-13C]pyruvate-to-[1-13C]lactate conversion rates in cellulo. Of importance, the extent of exogenous pyruvate-induced inhibition of LDH and glycolytic ECAR in live cells was highly dependent on pyruvate influx, functionally mediated by monocarboxylate transporter-1 localized to the plasma membrane. These data provided evidence that highly concentrated bolus injections of pyruvate in vivo may transiently inhibit LDH activity in a tissue type- and monocarboxylate transporter-1-dependent manner. Maintaining plasma pyruvate at submillimolar concentrations could potentially minimize transient metabolic perturbations, improve pyruvate therapy, and enhance quantification of metabolic studies, including hyperpolarized [1-13C]pyruvate magnetic resonance spectroscopic imaging and stable isotope tracer experiments.
Asunto(s)
L-Lactato Deshidrogenasa/antagonistas & inhibidores , Transportadores de Ácidos Monocarboxílicos/metabolismo , Ácido Pirúvico/farmacología , Simportadores/metabolismo , Ácidos/metabolismo , Tampones (Química) , Isótopos de Carbono , Extractos Celulares , Línea Celular Tumoral , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Espacio Extracelular/química , Glucólisis/efectos de los fármacos , Humanos , Concentración 50 Inhibidora , Cinética , L-Lactato Deshidrogenasa/metabolismo , Ácido Láctico/biosíntesis , Especificidad por Sustrato/efectos de los fármacosRESUMEN
Exosomes are lipid-bilayer-enclosed extracellular vesicles that contain proteins and nucleic acids. They are secreted by all cells and circulate in the blood. Specific detection and isolation of cancer-cell-derived exosomes in the circulation is currently lacking. Using mass spectrometry analyses, we identify a cell surface proteoglycan, glypican-1 (GPC1), specifically enriched on cancer-cell-derived exosomes. GPC1(+) circulating exosomes (crExos) were monitored and isolated using flow cytometry from the serum of patients and mice with cancer. GPC1(+) crExos were detected in the serum of patients with pancreatic cancer with absolute specificity and sensitivity, distinguishing healthy subjects and patients with a benign pancreatic disease from patients with early- and late-stage pancreatic cancer. Levels of GPC1(+) crExos correlate with tumour burden and the survival of pre- and post-surgical patients. GPC1(+) crExos from patients and from mice with spontaneous pancreatic tumours carry specific KRAS mutations, and reliably detect pancreatic intraepithelial lesions in mice despite negative signals by magnetic resonance imaging. GPC1(+) crExos may serve as a potential non-invasive diagnostic and screening tool to detect early stages of pancreatic cancer to facilitate possible curative surgical therapy.
Asunto(s)
Exosomas/metabolismo , Glipicanos , Neoplasias Pancreáticas/diagnóstico , Animales , Biomarcadores/sangre , Línea Celular Tumoral , Exosomas/genética , Femenino , Glipicanos/sangre , Glipicanos/metabolismo , Células HCT116 , Humanos , Células MCF-7 , Masculino , Ratones , Células 3T3 NIH , Neoplasias Pancreáticas/sangre , Neoplasias Pancreáticas/patología , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Proto-Oncogénicas p21(ras) , Proteínas ras/metabolismoRESUMEN
While pancreatic cancer (PC) survival rates have recently shown modest improvement, the disease remains largely incurable. Early detection of pancreatic cancer may result in improved outcomes and therefore, methods for early detection of cancer, even premalignant lesions, may provide more favorable outcomes. Pancreatic intraepithelial neoplasias (PanINs) have been identified as premalignant precursor lesions to pancreatic cancer. However, conventional imaging methods used for screening high-risk populations do not have the sensitivity to detect PanINs. Here, we have employed hyperpolarized metabolic imaging in vivo and nuclear magnetic resonance (1H-NMR) metabolomics ex vivo to identify and understand metabolic changes, towards enabling detection of early PanINs and progression to advanced PanINs lesions that precede pancreatic cancer formation. Progression of disease from tissue containing predominantly low-grade PanINs to tissue with high-grade PanINs showed a decreasing alanine/lactate ratio from high-resolution NMR metabolomics ex vivo. Hyperpolarized magnetic resonance spectroscopy (HP-MRS) allows over 10,000-fold sensitivity enhancement relative to conventional magnetic resonance. Real-time HP-MRS was employed to measure non-invasively changes of alanine and lactate metabolites with disease progression and in control mice in vivo, following injection of hyperpolarized [1-13C] pyruvate. The alanine-to-lactate signal intensity ratio was found to decrease as the disease progressed from low-grade PanINs to high-grade PanINs. The biochemical changes of alanine transaminase (ALT) and lactate dehydrogenase (LDH) enzyme activity were assessed. These results demonstrate that there are significant alterations of ALT and LDH activities during the transformation from early to advanced PanINs lesions. Furthermore, we demonstrate that real-time conversion kinetic rate constants (kPA and kPL) can be used as metabolic imaging biomarkers of pancreatic premalignant lesions. Findings from this emerging HP-MRS technique can be translated to the clinic for detection of pancreatic premalignant lesion in high-risk populations.
Asunto(s)
Carcinoma in Situ/diagnóstico por imagen , Espectroscopía de Resonancia Magnética/métodos , Neoplasias Pancreáticas/diagnóstico por imagen , Alanina Transaminasa/sangre , Animales , Isótopos de Carbono , Carcinoma in Situ/sangre , Carcinoma in Situ/genética , L-Lactato Deshidrogenasa/metabolismo , Espectroscopía de Resonancia Magnética/normas , Ratones , Ratones Endogámicos C57BL , Neoplasias Pancreáticas/sangre , Neoplasias Pancreáticas/genética , Sensibilidad y EspecificidadRESUMEN
Pancreatic ductal adenocarcinoma (PDAC) is a deadly cancer that progresses without any symptom, and oftentimes, it is detected at an advanced stage. The lack of prior symptoms and effective treatments have created a knowledge gap in the management of this lethal disease. This issue can be addressed by developing novel noninvasive imaging-based biomarkers in PDAC. We explored in vivo hyperpolarized (HP) 13C MRS of pyruvate to lactate conversion and ex vivo 1H NMR spectroscopy in a panel of well-annotated patient-derived PDAC xenograft (PDXs) model and investigated the correlation between aberrant glycolytic metabolism and aggressiveness of the tumor. Real-time metabolic imaging data demonstrate the immediate intracellular conversion of HP 13C pyruvate to lactate after intravenous injection interrogating upregulated lactate dehydrogenase (LDH) activity in aggressive PDXs. Total ex vivo lactate measurement by 1H NMR spectroscopy showed a direct correlation with in vivo dynamic pyruvate-to-lactate conversion and demonstrated the potential of dynamic metabolic flux as a biomarker of total lactate concentration and aggressiveness of the tumor. Furthermore, the metabolite concentrations were very distinct among all four tumor types analyzed in this study. Overexpression of LDH-A and hypoxia-inducible factor (HIF-1α) plays a significant role in the conversion kinetics of HP pyruvate-to-lactate in tumors. Collectively, these data identified aberrant metabolic characteristics of pancreatic cancer PDXs and could potentially delineate metabolic targets for therapeutic intervention. Metabolic imaging with HP pyruvate and NMR metabolomics may enable identification and classification of aggressive subtypes of patient-derived xenografts. Translation of this real-time metabolic technique to the clinic may have the potential to improve the management of patients at high risk of developing pancreatic diseases.
Asunto(s)
Biomarcadores de Tumor/metabolismo , Imagen por Resonancia Magnética/métodos , Neoplasias Pancreáticas/diagnóstico , Animales , Carcinoma Ductal Pancreático , Glucólisis , Xenoinjertos , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , L-Lactato Deshidrogenasa/metabolismo , Ácido Láctico/metabolismo , Espectroscopía de Resonancia Magnética/métodos , Neoplasias Pancreáticas/metabolismo , Ácido Pirúvico/metabolismoRESUMEN
Quantitative imaging of apoptosis in vivo could enable real-time monitoring of acute cell death pathologies such as traumatic brain injury, as well as the efficacy and safety of cancer therapy. Here, we describe the development and validation of F-18-labeled caspase-3 substrates for PET/CT imaging of apoptosis. Preliminary studies identified the O-benzylthreonine-containing substrate 2MP-TbD-AFC as a highly caspase 3-selective and cell-permeable fluorescent reporter. This lead compound was converted into the radiotracer [18F]-TBD, which was obtained at 10% decay-corrected yields with molar activities up to 149 GBq/µmol on an automated radiosynthesis platform. [18F]-TBD accumulated in ovarian cancer cells in a caspase- and cisplatin-dependent fashion. PET imaging of a Jo2-induced hepatotoxicity model showed a significant increase in [18F]-TBD signal in the livers of Jo2-treated mice compared to controls, driven through a reduction in hepatobiliary clearance. A chemical control tracer that could not be cleaved by caspase 3 showed no change in liver accumulation after induction of hepatocyte apoptosis. Our data demonstrate that [18F]-TBD provides an immediate pharmacodynamic readout of liver apoptosis in mice by dynamic PET/CT and suggest that [18F]-TBD could be used to interrogate apoptosis in other disease states.
Asunto(s)
Apoptosis , Caspasa 3/metabolismo , Tomografía Computarizada por Tomografía de Emisión de Positrones/métodos , Animales , Línea Celular Tumoral , Femenino , Ratones , Ratones Desnudos , Especificidad por SustratoRESUMEN
Peptides typically have poor biostabilities, and natural sequences cannot easily be converted into drug-like molecules without extensive medicinal chemistry. We have adapted mRNA display to drive the evolution of highly stable cyclic peptides while preserving target affinity. To do this, we incorporated an unnatural amino acid in an mRNA display library that was subjected to proteolysis prior to selection for function. The resulting "SUPR (scanning unnatural protease resistant) peptide" showed ≈500-fold improvement in serum stability (t1/2 =160â h) and up to 3700-fold improvement in protease resistance versus the parent sequence. We extended this approach by carrying out SUPR peptide selections against Her2-positive cells in culture. The resulting SUPR4 peptide showed low-nanomolar affinity toward Her2, excellent specificity, and selective tumor uptake in vivo. These results argue that this is a general method to design potent and stable peptides for in vivo imaging and therapy.
Asunto(s)
Evolución Molecular Dirigida , Péptido Hidrolasas/metabolismo , Péptidos Cíclicos/química , Péptidos Cíclicos/metabolismo , Aminoácidos/química , Aminoácidos/genética , Aminoácidos/metabolismo , Animales , Línea Celular Tumoral , Humanos , Ratones , Modelos Moleculares , Estructura Molecular , Biblioteca de Péptidos , Péptidos Cíclicos/farmacocinética , Estabilidad Proteica , ARN Mensajero/genética , Células Tumorales CultivadasRESUMEN
In vivo imaging is an important tool for preclinical studies of lung function and disease. The widespread availability of multimodal animal imaging systems and the rapid rate of diagnostic contrast agent development have empowered researchers to noninvasively study lung function and pulmonary disorders. Investigators can identify, track, and quantify biological processes over time. In this review, we highlight the fundamental principles of bioluminescence, fluorescence, planar X-ray, X-ray computed tomography, magnetic resonance imaging, and nuclear imaging modalities (such as positron emission tomography and single photon emission computed tomography) that have been successfully employed for the study of lung function and pulmonary disorders in a preclinical setting. The major principles, benefits, and applications of each imaging modality and technology are reviewed. Limitations and the future prospective of multimodal imaging in pulmonary physiology are also discussed. In vivo imaging bridges molecular biological studies, drug design and discovery, and the imaging field with modern medical practice, and, as such, will continue to be a mainstay in biomedical research.
Asunto(s)
Enfermedades Pulmonares/diagnóstico , Pulmón/patología , Animales , Humanos , Pulmón/diagnóstico por imagen , Enfermedades Pulmonares/diagnóstico por imagen , Enfermedades Pulmonares/patología , Imagen por Resonancia Magnética , Imagen Óptica , Tomografía de Emisión de Positrones , Tomografía Computarizada por Rayos XRESUMEN
B7-H3 (CD276) has two isoforms (2Ig and 4Ig), no confirmed cognate receptor, and physiological functions that remain elusive. While differentially expressed on many solid tumors correlating with poor survival, mechanisms of how B7-H3 signals in cis (tumor cell) versus in trans (immune cell co-regulator) to elicit pro-tumorigenic phenotypes remain poorly defined. Herein, we characterized a tumorigenic and signaling role for tumor cell-expressed 4Ig-B7-H3, the dominant human isoform, in gynecological cancers that could be abrogated upon CRISPR/Cas9 knockout of B7-H3; tumorigenesis was rescued upon re-expression of 4Ig-B7-H3. Size exclusion chromatography revealed dimerization states for the extracellular domains of both human 4Ig- and murine 2Ig-B7-H3. mEGFP lifetimes of expressed 4Ig-B7-H3-mEGFP fusions determined by FRET-FLIM assays confirmed close-proximity interactions of 4Ig-B7-H3 and identified two distinct homo-FRET lifetime populations, consistent with monomeric and homo-dimer interactions. In live cells, bioluminescence imaging of 4Ig-B7-H3-mediated split luciferase complementation showed dimerization of 4Ig-B7-H3. To separate basal from dimer state activities in the absence of a known receptor, C-terminus (cytosolic) chemically-induced dimerization of 4Ig-B7-H3 increased tumor cell proliferation and cell activation signaling pathways (AKT, Jak/STAT, HIF1α, NF-κß) significantly above basal expression of 4Ig-B7-H3 alone. These results revealed a new, dimerization-dependent intrinsic tumorigenic signaling role for 4Ig-B7-H3, likely acting in cis, and provide a therapeutically-actionable target for intervention of B7-H3-dependent tumorigenesis.
Asunto(s)
Antígenos B7 , Carcinogénesis , Proliferación Celular , Transducción de Señal , Animales , Humanos , Ratones , Antígenos B7/genética , Dimerización , Polímeros , Isoformas de Proteínas/genética , Factores de TranscripciónRESUMEN
We previously showed that ablation of tumor hypoxia can sensitize tumors to immune checkpoint blockade (ICB). Here, we used a Kras+/G12D TP53+/R172H Pdx1-Cre-derived (KPC-derived) model of pancreatic adenocarcinoma to examine the tumor response and adaptive resistance mechanisms involved in response to 2 established methods of hypoxia-reducing therapy: the hypoxia-activated prodrug TH-302 and vascular endothelial growth factor receptor 2 (VEGFR-2) blockade. The combination of both modalities normalized tumor vasculature, increased DNA damage and cell death, and delayed tumor growth. In contrast with prior cancer models, the combination did not alleviate overall tissue hypoxia or sensitize these KPC tumors to ICB therapy despite qualitative improvements to the CD8+ T cell response. Bulk tumor RNA sequencing, flow cytometry, and adoptive myeloid cell transfer suggested that treated tumor cells increased their capacity to recruit granulocytic myeloid-derived suppressor cells (G-MDSCs) through CCL9 secretion. Blockade of the CCL9/CCR1 axis could limit G-MDSC migration, and depletion of Ly6G-positive cells could sensitize tumors to the combination of TH-302, anti-VEGFR-2, and ICB. Together, these data suggest that pancreatic tumors modulate G-MDSC migration as an adaptive response to vascular normalization and that these immunosuppressive myeloid cells act in a setting of persistent hypoxia to maintain adaptive immune resistance.
Asunto(s)
Adenocarcinoma , Células Supresoras de Origen Mieloide , Neoplasias Pancreáticas , Humanos , Neoplasias Pancreáticas/patología , Adenocarcinoma/patología , Factor A de Crecimiento Endotelial Vascular/metabolismo , Hipoxia/metabolismoRESUMEN
PURPOSE: Microcystoid macular degeneration (MMD) is a condition where cystoid vacuoles develop within the inner nuclear layer of the retina in humans in a variety of disorders. Here we report the occurrence of MMD in non-human primates (NHPs) with various retinal ganglion cell (RGC) pathologies and evaluate the hypothesis that MMD does not precede RGC loss but follows it. METHODS: Morphological studies were performed of the retinas of NHPs, specifically both rhesus (Macaca mulatta) and cynomolgus macaques (Macaca fascicularis), in which MMD was identified after induction of experimental glaucoma (EG), hemiretinal endodiathermy axotomy (HEA), and spontaneous idiopathic bilateral optic atrophy. In vivo imaging analyses included fundus photography, fluorescein angiography (FA), optical coherence tomography (OCT), adaptive optics scanning laser ophthalmoscopy (AOSLO), light microscopy, and electron microscopy. RESULTS: MMD, like that seen on OCT scans of humans, was found in both rhesus and cynomolgus macaques with EG. Of 13 cynomolgus macaques with chronic EG imaged once with OCT six of 13 animals were noted to have MMD. MMD was also evident in a cynomolgus macaque with bilateral optic atrophy. Following HEA, MMD did not develop until at least 2 weeks following the RNFL loss. CONCLUSION: These data suggest that MMD may be caused by a retrograde trans-synaptic process related to RGC loss. MMD is not associated with inflammation, nor would it be an independent indicator of drug toxicity per se in pre-clinical regulatory studies. Because of its inconsistent appearance and late development, MMD has limited use as a clinical biomarker.
RESUMEN
Background: Metabolic remodeling is a hallmark of the failing heart. Oncometabolic stress during cancer increases the activity and abundance of the ATP-dependent citrate lyase (ACL, Acly ), which promotes histone acetylation and cardiac adaptation. ACL is critical for the de novo synthesis of lipids, but how these metabolic alterations contribute to cardiac structural and functional changes remains unclear. Methods: We utilized human heart tissue samples from healthy donor hearts and patients with hypertrophic cardiomyopathy. Further, we used CRISPR/Cas9 gene editing to inactivate Acly in cardiomyocytes of MyH6-Cas9 mice. In vivo, positron emission tomography and ex vivo stable isotope tracer labeling were used to quantify metabolic flux changes in response to the loss of ACL. We conducted a multi-omics analysis using RNA-sequencing and mass spectrometry-based metabolomics and proteomics. Experimental data were integrated into computational modeling using the metabolic network CardioNet to identify significantly dysregulated metabolic processes at a systems level. Results: Here, we show that in mice, ACL drives metabolic adaptation in the heart to sustain contractile function, histone acetylation, and lipid modulation. Notably, we show that loss of ACL increases glucose oxidation while maintaining fatty acid oxidation. Ex vivo isotope tracing experiments revealed a reduced efflux of glucose-derived citrate from the mitochondria into the cytosol, confirming that citrate is required for reductive metabolism in the heart. We demonstrate that YAP inactivation facilitates ACL deficiency. Computational flux analysis and integrative multi-omics analysis indicate that loss of ACL induces alternative isocitrate dehydrogenase 1 flux to compensate. Conclusions: This study mechanistically delineates how cardiac metabolism compensates for suppressed citrate metabolism in response to ACL loss and uncovers metabolic vulnerabilities in the heart.
RESUMEN
Primary and adaptive resistance to immune checkpoint therapies (ICT) represent a considerable obstacle to achieving enhanced overall survival. Innate immune activators have been actively pursued for their antitumor potential. Herein we report that a syngeneic 4T1 mammary carcinoma murine model for established highly-refractory triple negative breast cancer showed enhanced survival when treated intra-tumorally with either the TLR5 agonist flagellin or CBLB502, a flagellin derivative, in combination with antibodies targeting CTLA-4 and PD-1. Long-term survivor mice showed immunologic memory upon tumor re-challenge and a distinctive immune activating cytokine profile that engaged both innate and adaptive immunity. Low serum levels of G-CSF and CXCL5 (as well as high IL-15) were candidate predictive biomarkers correlating with enhanced survival. CBLB502-induced enhancement of ICT was also observed in poorly immunogenic B16-F10 melanoma tumors. Combination immune checkpoint therapy plus TLR5 agonists may offer a new therapeutic strategy to treat ICT-refractory solid tumors.
Asunto(s)
Melanoma Experimental , Receptor Toll-Like 5 , Animales , Ratones , Inmunidad Adaptativa , Citocinas , Flagelina/farmacología , Melanoma Experimental/tratamiento farmacológico , Receptor Toll-Like 5/agonistasRESUMEN
BACKGROUND: The presence of a highly immunosuppressive tumor microenvironment has limited the success of immune checkpoint therapy (ICT). Immune suppressing myeloid cells with increased production of reactive oxygen species are critical drivers of this immunosuppressive tumor microenvironment. Strategies to limit these immune suppressing myeloid cells are needed to enhance response to ICT. METHODS: To evaluate the contribution of myeloperoxidase (MPO), a myeloid lineage-restricted enzyme and a major source of reactive oxygen species, to mediating ICT response, we compared treatment outcome and immune composition in wild-type, MPO-deficient (MPO -/- ), and MPO inhibitor-treated wild-type mice using established primary melanoma models. RESULTS: Tumor growth and survival studies demonstrated that either host deficiency (MPO -/- ) or pharmacological inhibition of MPO enhanced ICT response in two preclinical models of established primary melanoma in aged animals. The tumor microenvironment and systemic immune landscape underwent striking changes in infiltration of myeloid cells, T cells, B cells, and dendritic cells in MPO -/- mice; furthermore, a significant increase in myeloid cells was observed in ICT non-responders. The contribution of CD4+ T cells and NK cells during ICT response also changed in MPO -/- mice. Interestingly, MPO enzymatic activity, but not protein, was increased in CD11b+Ly6G+ myeloid cells isolated from marrow, spleen, and peritoneal cavities of mice bearing untreated melanoma, indicating systemic activation of innate immunity. Notably, repurposing MPO-specific inhibitors (verdiperstat, AZD5904) in combination with ICT pointedly enhanced response rates above ICT alone. Indeed, long-term survival was 100% in the YUMM3.3 melanoma model on treatment with verdiperstat plus ICT. CONCLUSION: MPO contributes to ICT resistance in established melanoma. Repurposing MPO-specific inhibitors may provide a promising therapeutic strategy to enhance ICT response.
Asunto(s)
Melanoma , Peroxidasa , Animales , Ratones , Especies Reactivas de Oxígeno , Linfocitos B , Inmunidad Innata , Inmunosupresores , Microambiente TumoralRESUMEN
Programmed death ligand 1 (PD-L1) is a type 1 transmembrane immunosuppressive protein that is expressed on a wide range of cell types, including cancer cells. Anti-PD-L1 antibodies have revolutionized cancer therapy and have led to improved outcomes for subsets of cancer patients, including triple-negative breast cancer (TNBC) patients. As a result, PET imaging of PD-L1 protein expression in cancer patients has been explored for noninvasive detection of PD-L1 expressing tumors as well as monitoring response to anti-PD-L1 immune checkpoint therapy. Previous studies have indicated that the in vivo stability and in vivo target detection of antibody-based radio-conjugates can be dramatically affected by the chelator used. These reports demonstrated that the chelator HOPO diminishes 89Zr de-chelation compared to DFO. Herein, we report an improved HOPO synthesis and evaluated a series of novel analogues for thermal stability, serum stability, PD-L1-specific binding using the BT-549 TNBC cell line, PET imaging in vivo, as well as biodistribution of 89Zr-labeled anti-PD-L1 antibodies in BT-549 xenograft murine models. A new chelator, C5HOPO, demonstrated high stability in vitro and afforded effective PD-L1 targeting in vivovia immuno-PET. These results demonstrated that an improved HOPO chelator is an effective chelating agent that can be utilized to image therapeutically relevant targets in vivo.
RESUMEN
The worldwide incidence of hepatocellular carcinoma (HCC) continues to rise, in part due to poor diet, limited exercise, and alcohol abuse. Numerous studies have suggested that the loss or mutation of PTEN plays a critical role in HCC tumorigenesis through the activation of the PI3K/Akt signaling axis. The homozygous knockout of PTEN in the livers of mice results in the accumulation of fat (steatosis), inflammation, fibrosis, and eventually progression to HCC. This phenotype bears a striking similarity to non-alcoholic steatohepatitis (NASH) which is thought to occupy an intermediate stage between non-alcoholic fatty liver disease (NAFLD), fibrosis, and HCC. The molecular and physiological phenotypes that manifest during the transition to HCC suggest that molecular imaging could provide a non-invasive screening platform to identify the hallmarks of HCC initiation prior to the presentation of clinical disease. We have carried out longitudinal imaging studies on the liver-specific PTEN knockout mouse model using CT, MRI, and multi-tracer PET to interrogate liver size, steatosis, inflammation, and apoptosis. In male PTEN knockout mice, significant steatosis was observed as early as 3 months using both magnetic resonance spectroscopy (MRS) and computed tomography (CT). Enhanced uptake of the apoptosis tracer 18F-TBD was also observed in the livers of male PTEN homozygous knockout mice between 3 and 4 months of age relative to heterozygous knockout controls. Liver uptake of the inflammation tracer [18F]4FN remained relatively low and constant over 7 months in male PTEN homozygous knockout mice, suggesting the suppression of high-energy ROS/RNS with PTEN deletion relative to heterozygous males where the [18F]4FN liver uptake was elevated at early and late time points. All male PTEN homozygous mice developed HCC lesions by month 10. In contrast to the male cohort, only 20% (2 out of 10) of female PTEN homozygous knockout mice developed HCC lesions by month 10. Steatosis was significantly less pronounced in the female PTEN homozygous knockout mice relative to males and could not accurately predict the eventual occurrence of HCC. As with the males, the [18F]4FN uptake in female PTEN homozygous knockout mice was low and constant throughout the time course. The liver uptake of 18F-TBD at 3 and 4.5 months was higher in the two female PTEN knockout mice that would eventually develop HCC and was the most predictive imaging biomarker for HCC in the female cohort. These studies demonstrate the diagnostic and prognostic role of multi-modal imaging in HCC mouse models and provide compelling evidence that disease progression in the PTEN knockout model is highly dependent on gender.
RESUMEN
Relevant to co-clinical trials, the goal of this work was to assess repeatability, reproducibility, and bias of the apparent diffusion coefficient (ADC) for preclinical MRIs using standardized procedures for comparison to performance of clinical MRIs. A temperature-controlled phantom provided an absolute reference standard to measure spatial uniformity of these performance metrics. Seven institutions participated in the study, wherein diffusion-weighted imaging (DWI) data were acquired over multiple days on 10 preclinical scanners, from 3 vendors, at 6 field strengths. Centralized versus site-based analysis was compared to illustrate incremental variance due to processing workflow. At magnet isocenter, short-term (intra-exam) and long-term (multiday) repeatability were excellent at within-system coefficient of variance, wCV [±CI] = 0.73% [0.54%, 1.12%] and 1.26% [0.94%, 1.89%], respectively. The cross-system reproducibility coefficient, RDC [±CI] = 0.188 [0.129, 0.343] µm2/ms, corresponded to 17% [12%, 31%] relative to the reference standard. Absolute bias at isocenter was low (within 4%) for 8 of 10 systems, whereas two high-bias (>10%) scanners were primary contributors to the relatively high RDC. Significant additional variance (>2%) due to site-specific analysis was observed for 2 of 10 systems. Base-level technical bias, repeatability, reproducibility, and spatial uniformity patterns were consistent with human MRIs (scaled for bore size). Well-calibrated preclinical MRI systems are capable of highly repeatable and reproducible ADC measurements.
Asunto(s)
Imagen de Difusión por Resonancia Magnética , Imagen por Resonancia Magnética , Humanos , Fantasmas de Imagen , Reproducibilidad de los Resultados , Imagen de Difusión por Resonancia Magnética/métodos , BenchmarkingRESUMEN
Providing method descriptions that are more detailed than currently available in typical peer reviewed journals has been identified as an actionable area for improvement. In the biochemical and cell biology space, this need has been met through the creation of new journals focused on detailed protocols and materials sourcing. However, this format is not well suited for capturing instrument validation, detailed imaging protocols, and extensive statistical analysis. Furthermore, the need for additional information must be counterbalanced by the additional time burden placed upon researchers who may be already overtasked. To address these competing issues, this white paper describes protocol templates for positron emission tomography (PET), X-ray computed tomography (CT), and magnetic resonance imaging (MRI) that can be leveraged by the broad community of quantitative imaging experts to write and self-publish protocols in protocols.io. Similar to the Structured Transparent Accessible Reproducible (STAR) or Journal of Visualized Experiments (JoVE) articles, authors are encouraged to publish peer reviewed papers and then to submit more detailed experimental protocols using this template to the online resource. Such protocols should be easy to use, readily accessible, readily searchable, considered open access, enable community feedback, editable, and citable by the author.
Asunto(s)
Tomografía de Emisión de Positrones , Tomografía Computarizada por Rayos X , Imagen por Resonancia MagnéticaRESUMEN
One of the major obstacles to treating pancreatic ductal adenocarcinoma (PDAC) is its immunoresistant microenvironment. The functional importance and molecular mechanisms of Schwann cells in PDAC remains largely elusive. We characterized the gene signature of tumor-associated nonmyelinating Schwann cells (TASc) in PDAC and indicated that the abundance of TASc was correlated with immune suppressive tumor microenvironment and the unfavorable outcome of patients with PDAC. Depletion of pancreatic-specific TASc promoted the tumorigenesis of PDAC tumors. TASc-expressed long noncoding RNA (lncRNA) plasmacytoma variant translocation 1 (PVT1) was triggered by the tumor cell-produced interleukin-6. Mechanistically, PVT1 modulated RAF proto-oncogene serine/threonine protein kinase-mediated phosphorylation of tryptophan 2,3-dioxygenase in TASc, facilitating its enzymatic activities in catalysis of tryptophan to kynurenine. Depletion of TASc-expressed PVT1 suppressed PDAC tumor growth. Furthermore, depletion of TASc using a small-molecule inhibitor effectively sensitized PDAC to immunotherapy, signifying the important roles of TASc in PDAC immune resistance.