RESUMEN
Studies of microglial gene manipulation in mouse models of Alzheimer's disease (AD) amyloidopathy can cause unpredictable effects on various key endpoints, including amyloidosis, inflammation, neuritic dystrophy, neurodegeneration, and learning behavior. In this Correspondence, we discuss three examples, microRNA 155 (miR155), TREM2, and INPP5D, in which observed results have been difficult to reconcile with predicted results based on precedent, because these six key endpoints do not reliably track together. The pathogenesis of AD involves multiple cell types and complex events that may change with disease stage. We propose that cell-type targeting and timing of intervention are responsible for the sometimes impossibility of predicting whether any prospective therapeutic intervention should aim at increasing or decreasing the level or activity of a particular molecular target.
Asunto(s)
Enfermedad de Alzheimer , Amiloidosis , MicroARNs , Animales , Ratones , Enfermedad de Alzheimer/genética , Movimiento Celular , Amiloidosis/genética , Modelos Animales de Enfermedad , MicroARNs/genéticaRESUMEN
INTRODUCTION: The inositol polyphosphate-5-phosphatase D (INPP5D) gene encodes a dual-specificity phosphatase that can dephosphorylate both phospholipids and phosphoproteins. Single nucleotide polymorphisms in INPP5D impact risk for developing late onset sporadic Alzheimer's disease (LOAD). METHODS: To assess the consequences of inducible Inpp5d knockdown in microglia of APPKM670/671NL /PSEN1Δexon9 (PSAPP) mice, we injected 3-month-old Inpp5dfl/fl /Cx3cr1CreER/+ and PSAPP/Inpp5dfl/fl /Cx3cr1CreER/+ mice with either tamoxifen (TAM) or corn oil (CO) to induce recombination. RESULTS: At age 6 months, we found that the percent area of 6E10+ deposits and plaque-associated microglia in Inpp5d knockdown mice were increased compared to controls. Spatial transcriptomics identified a plaque-specific expression profile that was extensively altered by Inpp5d knockdown. DISCUSSION: These results demonstrate that conditional Inpp5d downregulation in the PSAPP mouse increases plaque burden and recruitment of microglia to plaques. Spatial transcriptomics highlighted an extended gene expression signature associated with plaques and identified CST7 (cystatin F) as a novel marker of plaques. HIGHLIGHTS: Inpp5d knockdown increases plaque burden and plaque-associated microglia number. Spatial transcriptomics identifies an expanded plaque-specific gene expression profile. Plaque-induced gene expression is altered by Inpp5d knockdown in microglia. Our plaque-associated gene signature overlaps with human Alzheimer's disease gene networks.
Asunto(s)
Enfermedad de Alzheimer , Ratones , Humanos , Animales , Lactante , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Microglía/metabolismo , Ratones Transgénicos , Placa Amiloide/metabolismo , Modelos Animales de Enfermedad , Péptidos beta-Amiloides/metabolismo , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatasas/genética , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatasas/metabolismoRESUMEN
Cholesterol levels have been repeatedly linked to Alzheimer's Disease (AD), suggesting that high levels could be detrimental, but this effect is likely attributed to Low-Density Lipoprotein (LDL) cholesterol. On the other hand, High-Density Lipoproteins (HDL) cholesterol levels have been associated with reduced brain amyloidosis and improved cognitive function. However, recent findings have suggested that HDL-functionality, which depends upon the HDL-cargo proteins associated with HDL, rather than HDL levels, appears to be the key factor, suggesting a quality over quantity status. In this report, we have assessed the HDL-cargo (Cholesterol, ApoA-I, ApoA-II, ApoC-I, ApoC-III, ApoD, ApoE, ApoH, ApoJ, CRP, and SAA) in stable healthy control (HC), healthy controls who will convert to MCI/AD (HC-Conv) and AD patients (AD). Compared to HC we observed an increased cholesterol/ApoA-I ratio in AD and HC-Conv, as well as an increased ApoD/ApoA-I ratio and a decreased ApoA-II/ApoA-I ratio in AD. Higher cholesterol/ApoA-I ratio was also associated with lower cortical grey matter volume and higher ventricular volume, while higher ApoA-II/ApoA-I and ApoJ/ApoA-I ratios were associated with greater cortical grey matter volume (and for ApoA-II also with greater hippocampal volume) and smaller ventricular volume. Additionally, in a clinical status-independent manner, the ApoE/ApoA-I ratio was significantly lower in APOE ε4 carriers and lowest in APOE ε4 homozygous. Together, these data indicate that in AD patients the composition of HDL is altered, which may affect HDL functionality, and such changes are associated with altered regional brain volumetric data.
Asunto(s)
Enfermedad de Alzheimer , Lipoproteínas HDL , Apolipoproteína A-I/metabolismo , Apolipoproteína A-II/metabolismo , Apolipoproteína C-III/metabolismo , Apolipoproteína E4/metabolismo , Apolipoproteínas E/metabolismo , Encéfalo/metabolismo , Colesterol/metabolismo , Humanos , Lipoproteínas HDL/metabolismo , Lipoproteínas LDL/metabolismoRESUMEN
Traumatic brain injury (TBI) is a risk factor for the later development of neurodegenerative diseases that may have various underlying pathologies. Chronic traumatic encephalopathy (CTE) in particular is associated with repetitive mild TBI (mTBI) and is characterized pathologically by aggregation of hyperphosphorylated tau into neurofibrillary tangles (NFTs). CTE may be suspected when behavior, cognition, and/or memory deteriorate following repetitive mTBI. Exposure to blast overpressure from improvised explosive devices (IEDs) has been implicated as a potential antecedent for CTE amongst Iraq and Afghanistan Warfighters. In this study, we identified biomarker signatures in rats exposed to repetitive low-level blast that develop chronic anxiety-related traits and in human veterans exposed to IED blasts in theater with behavioral, cognitive, and/or memory complaints. Rats exposed to repetitive low-level blasts accumulated abnormal hyperphosphorylated tau in neuronal perikarya and perivascular astroglial processes. Using positron emission tomography (PET) and the [18F]AV1451 (flortaucipir) tau ligand, we found that five of 10 veterans exhibited excessive retention of [18F]AV1451 at the white/gray matter junction in frontal, parietal, and temporal brain regions, a typical localization of CTE tauopathy. We also observed elevated levels of neurofilament light (NfL) chain protein in the plasma of veterans displaying excess [18F]AV1451 retention. These findings suggest an association linking blast injury, tauopathy, and neuronal injury. Further study is required to determine whether clinical, neuroimaging, and/or fluid biomarker signatures can improve the diagnosis of long-term neuropsychiatric sequelae of mTBI.
Asunto(s)
Encefalopatía Traumática Crónica , Tauopatías , Animales , Biomarcadores , Encéfalo , Humanos , Ratas , SíndromeRESUMEN
Objective: Previous in vitro and in vivo World Trade Center particulate matter (WTCPM) exposure studies have provided evidence of exposure-driven oxidative/nitrative stress and inflammation on respiratory tract and aortic tissues. What remains to be fully understood are secondary organ impacts due to WTCPM exposure. This study was designed to test if WTC particle-induced nasal and neurologic tissue injury may result in unforeseen functional and behavioral outcomes.Material and Methods: WTCPM was intranasally administered in mice, evaluating genotypic, histopathologic, and olfaction latency endpoints.Results: WTCPM exposure was found to incite neurologic injury and olfaction latency in intranasally (IN) exposed mice. Single high-dose and repeat low-dose nasal cavity insults from WTCPM dust resulted in significant olfaction delays and enduring olfaction deficits. Anxiety-dependent behaviors also occurred in mice experiencing olfaction loss including significant body weight loss, increased incidence and time spent in hind stretch postures, as well as increased stationary time and decreased exploratory time. Additionally, WTCPM exposure resulted in increased whole brain wet/dry ratios and wet whole brain to body mass ratios that were correlated with exposure and increased exposure dose (p<0.05).Discussion: The potential molecular drivers of WTCPM-driven tissue injury and olfaction latency may be linked to oxidative/nitrative stress and inflammatory cascades in both upper respiratory nasal and brain tissues.Conclusion: Cumulatively, these data provide evidence of WTCPM exposure in relation to tissue damage related to oxidative stress-driven inflammation identified in the nasal cavity, propagated to olfactory bulb tissues and, potentially, over extended periods, to other CNS tissues.
Asunto(s)
Polvo , Ataques Terroristas del 11 de Septiembre , Animales , Ansiedad , Inflamación , Ratones , OlfatoRESUMEN
This commentary offers stories of hope and regeneration in the face of the interconnected crises we face. Those of us in the health sector have the opportunity to undo the false separation that has arisen between the care we offer ourselves and the care we offer our natural spaces. Access to a healthy environment offers myriad health benefits and has been declared a human right. Beyond this, cultivating a sense of kinship with the natural world unlocks further mental health benefits and promotes a deep sense of meaning and vitality. Widespread restoration of nature, combined with the equitable reconnection of people to these restored environments, must become one of the most important aspects of public health in this century. This paper, written from a UK perspective, describes examples where people are already weaving these strands together and offers practical suggestions for healthcare professionals who want to know how this relates to their role and their everyday practice.
Asunto(s)
Salud Mental , Salud Pública , HumanosRESUMEN
Frontotemporal dementia (FTD) covers a spectrum of neurodegenerative disorders with different phenotypes, genetic backgrounds, and pathological states. Its clinicopathological diversity challenges the diagnostic process and the execution of clinical trials, calling for specific diagnostic biomarkers of pathologic FTD types. There is also a need for biomarkers that facilitate disease staging, quantification of severity, monitoring in clinics and observational studies, and for evaluation of target engagement and treatment response in clinical trials. This review discusses current FTD biofluid-based biomarker knowledge taking into account the differing applications. The limitations, knowledge gaps, and challenges for the development and implementation of such markers are also examined. Strategies to overcome these hurdles are proposed, including the technologies available, patient cohorts, and collaborative research initiatives. Access to robust and reliable biomarkers that define the exact underlying pathophysiological FTD process will meet the needs for specific diagnosis, disease quantitation, clinical monitoring, and treatment development.
Asunto(s)
Demencia Frontotemporal , Enfermedades Neurodegenerativas , Humanos , Demencia Frontotemporal/diagnóstico , Demencia Frontotemporal/genética , BiomarcadoresRESUMEN
INTRODUCTION: Microglial TYROBP (DAP12) is a network hub and driver in sporadic late-onset Alzheimer's disease (AD). TYROBP is a cytoplasmic adaptor for TREM2 and other receptors, but little is known about its roles and actions in AD. Herein, we demonstrate that endogenous Tyrobp transcription is specifically increased in recruited microglia. METHODS: Using a novel transgenic mouse overexpressing TYROBP in microglia, we observed a decrease of the amyloid burden and an increase of TAU phosphorylation stoichiometry when crossed with APP/PSEN1 or MAPTP301S mice, respectively. Characterization of these mice revealed Tyrobp-related modulation of apolipoprotein E (Apoe) transcription. We also showed that Tyrobp and Apoe mRNAs were increased in Trem2-null microglia recruited around either amyloid beta deposits or a cortical stab injury. Conversely, microglial Apoe transcription was dramatically diminished when Tyrobp was absent. CONCLUSIONS: Our results provide evidence that TYROBP-APOE signaling does not require TREM2 and could be an initiating step in establishment of the disease-associated microglia (DAM) phenotype.
Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Enfermedad de Alzheimer/metabolismo , Apolipoproteínas E/genética , Glicoproteínas de Membrana/genética , Ratones Transgénicos , Microglía/metabolismo , Receptores Inmunológicos/genética , Enfermedad de Alzheimer/genética , Precursor de Proteína beta-Amiloide/fisiología , Amiloidosis/prevención & control , Animales , Encéfalo/metabolismo , Encéfalo/patología , Modelos Animales de Enfermedad , Humanos , Ratones , Ratones Noqueados , Fosforilación , Presenilina-1/fisiología , Transducción de Señal , Proteínas tau/metabolismoRESUMEN
MicroRNAs are recognized as important regulators of many facets of physiological brain function while also being implicated in the pathogenesis of several neurological disorders. Dysregulation of miR155 is widely reported across a variety of neurodegenerative conditions, including Alzheimer's disease (AD), Parkinson's disease, amyotrophic lateral sclerosis, and traumatic brain injury. In previous work, we observed that experimentally validated miR155 gene targets were consistently enriched among genes identified as differentially expressed across multiple brain tissue and disease contexts. In particular, we found that human herpesvirus-6A (HHV-6A) suppressed miR155, recapitulating reports of miR155 inhibition by HHV-6A in infected T-cells, thyrocytes, and natural killer cells. In earlier studies, we also reported the effects of constitutive deletion of miR155 on accelerating the accumulation of Aß deposits in 4-month-old APP/PSEN1 mice. Herein, we complete the cumulative characterization of transcriptomic, electrophysiological, neuropathological, and learning behavior profiles from 4-, 8- and 10-month-old WT and APP/PSEN1 mice in the absence or presence of miR155. We also integrated human post-mortem brain RNA-sequences from four independent AD consortium studies, together comprising 928 samples collected from six brain regions. We report that gene expression perturbations associated with miR155 deletion in mouse cortex are in aggregate observed to be concordant with AD-associated changes across these independent human late-onset AD (LOAD) data sets, supporting the relevance of our findings to human disease. LOAD has recently been formulated as the clinicopathological manifestation of a multiplex of genetic underpinnings and pathophysiological mechanisms. Our accumulated data are consistent with such a formulation, indicating that miR155 may be uniquely positioned at the intersection of at least four components of this LOAD "multiplex": (1) innate immune response pathways; (2) viral response gene networks; (3) synaptic pathology; and (4) proamyloidogenic pathways involving the amyloid ß peptide (Aß).
Asunto(s)
Enfermedad de Alzheimer/genética , Encéfalo/patología , MicroARNs/genética , Transcriptoma/genética , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/metabolismo , Animales , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Redes Reguladoras de Genes/genética , Humanos , Ratones Transgénicos , Enfermedades del Sistema Nervioso/patología , Placa Amiloide/patologíaRESUMEN
TYROBP/DAP12 forms complexes with ectodomains of immune receptors (TREM2, SIRPß1, CR3) associated with Alzheimer's disease (AD) and is a network hub and driver in the complement subnetwork identified by multi-scale gene network studies of postmortem human AD brain. Using transgenic or viral approaches, we characterized in mice the effects of TYROBP deficiency on the phenotypic and pathological evolution of tauopathy. Biomarkers usually associated with worsening clinical phenotype (i.e., hyperphosphorylation and increased tauopathy spreading) were unexpectedly increased in MAPTP301S;Tyrobp-/- mice despite the improved learning behavior and synaptic function relative to controls with normal levels of TYROBP. Notably, levels of complement cascade initiator C1q were reduced in MAPTP301S;Tyrobp-/- mice, consistent with the prediction that C1q reduction exerts a neuroprotective effect. These observations suggest a model wherein TYROBP-KO-(knock-out)-associated reduction in C1q is associated with normalized learning behavior and electrophysiological properties in tauopathy model mice despite a paradoxical evolution of biomarker signatures usually associated with neurological decline.
Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Enfermedad de Alzheimer/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/fisiología , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/fisiopatología , Precursor de Proteína beta-Amiloide/metabolismo , Animales , Animales Modificados Genéticamente , Encéfalo/metabolismo , Complemento C1q/metabolismo , Complemento C1q/fisiología , Modelos Animales de Enfermedad , Humanos , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/fisiología , Ratones , Ratones Noqueados , Ratones Transgénicos , Microglía/metabolismo , Fenotipo , Fosforilación , Placa Amiloide/metabolismo , Tauopatías/genética , Proteínas tau/metabolismoRESUMEN
Integrative gene network approaches enable new avenues of exploration that implicate causal genes in sporadic late-onset Alzheimer's disease (LOAD) pathogenesis, thereby offering novel insights for drug-discovery programs. We previously constructed a probabilistic causal network model of sporadic LOAD and identified TYROBP/DAP12, encoding a microglial transmembrane signaling polypeptide and direct adapter of TREM2, as the most robust key driver gene in the network. Here, we show that absence of TYROBP/DAP12 in a mouse model of AD-type cerebral Aß amyloidosis (APPKM670/671NL/PSEN1Δexon9) recapitulates the expected network characteristics by normalizing the transcriptome of APP/PSEN1 mice and repressing the induction of genes involved in the switch from homeostatic microglia to disease-associated microglia (DAM), including Trem2, complement (C1qa, C1qb, C1qc, and Itgax), Clec7a and Cst7. Importantly, we show that constitutive absence of TYROBP/DAP12 in the amyloidosis mouse model prevented appearance of the electrophysiological and learning behavior alterations associated with the phenotype of APPKM670/671NL/PSEN1Δexon9 mice. Our results suggest that TYROBP/DAP12 could represent a novel therapeutic target to slow, arrest, or prevent the development of sporadic LOAD. These data establish that the network pathology observed in postmortem human LOAD brain can be faithfully recapitulated in the brain of a genetically manipulated mouse. These data also validate our multiscale gene networks by demonstrating how the networks intersect with the standard neuropathological features of LOAD.
Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/deficiencia , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Amiloidosis/metabolismo , Proteínas de la Membrana/deficiencia , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Enfermedad de Alzheimer/genética , Péptidos beta-Amiloides/genética , Precursor de Proteína beta-Amiloide/genética , Amiloidosis/genética , Animales , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Femenino , Redes Reguladoras de Genes , Humanos , Masculino , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Patología Molecular/métodos , Fenotipo , Placa Amiloide/patología , TranscriptomaRESUMEN
This article was originally published under standard licence, but has now been made available under a CC BY 4.0 license. The PDF and HTML versions of the paper have been modified accordingly.
RESUMEN
The apolipoprotein E4 (ApoE4) allele is the strongest genetic risk factor for developing sporadic Alzheimer's disease (AD). However, the mechanisms underlying the pathogenic nature of ApoE4 are not well understood. In this study, we have found that ApoE proteins are critical determinants of brain phospholipid homeostasis and that the ApoE4 isoform is dysfunctional in this process. We have found that the levels of phosphoinositol biphosphate (PIP2) are reduced in postmortem human brain tissues of ApoE4 carriers, in the brains of ApoE4 knock-in (KI) mice, and in primary neurons expressing ApoE4 alleles compared with those levels in ApoE3 counterparts. These changes are secondary to increased expression of a PIP2-degrading enzyme, the phosphoinositol phosphatase synaptojanin 1 (synj1), in ApoE4 carriers. Genetic reduction of synj1 in ApoE4 KI mouse models restores PIP2 levels and, more important, rescues AD-related cognitive deficits in these mice. Further studies indicate that ApoE4 behaves similar to ApoE null conditions, which fails to degrade synj1 mRNA efficiently, unlike ApoE3 does. These data suggest a loss of function of ApoE4 genotype. Together, our data uncover a previously unidentified mechanism that links ApoE4-induced phospholipid changes to the pathogenic nature of ApoE4 in AD.
Asunto(s)
Enfermedad de Alzheimer/etiología , Enfermedad de Alzheimer/metabolismo , Apolipoproteína E4/metabolismo , Trastornos del Conocimiento/complicaciones , Trastornos del Conocimiento/metabolismo , Fosfolípidos/metabolismo , Anciano , Anciano de 80 o más Años , Animales , Apolipoproteína E4/genética , Astrocitos/metabolismo , Encéfalo/metabolismo , Encéfalo/patología , Estudios de Cohortes , Progresión de la Enfermedad , Femenino , Técnicas de Sustitución del Gen , Homeostasis , Humanos , Masculino , Ratones , Proteínas del Tejido Nervioso , Neuronas/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Monoéster Fosfórico HidrolasasRESUMEN
Conventional genetic approaches and computational strategies have converged on immune-inflammatory pathways as key events in the pathogenesis of late onset sporadic Alzheimer's disease (LOAD). Mutations and/or differential expression of microglial specific receptors such as TREM2, CD33, and CR3 have been associated with strong increased risk for developing Alzheimer's disease (AD). DAP12 (DNAX-activating protein 12)/TYROBP, a molecule localized to microglia, is a direct partner/adapter for TREM2, CD33, and CR3. We and others have previously shown that TYROBP expression is increased in AD patients and in mouse models. Moreover, missense mutations in the coding region of TYROBP have recently been identified in some AD patients. These lines of evidence, along with computational analysis of LOAD brain gene expression, point to DAP12/TYROBP as a potential hub or driver protein in the pathogenesis of AD. Using a comprehensive panel of biochemical, physiological, behavioral, and transcriptomic assays, we evaluated in a mouse model the role of TYROBP in early stage AD. We crossed an Alzheimer's model mutant APP KM670/671NL /PSEN1 Δexon9 (APP/PSEN1) mouse model with Tyrobp -/- mice to generate AD model mice deficient or null for TYROBP (APP/PSEN1; Tyrobp +/- or APP/PSEN1; Tyrobp -/-). While we observed relatively minor effects of TYROBP deficiency on steady-state levels of amyloid-ß peptides, there was an effect of Tyrobp deficiency on the morphology of amyloid deposits resembling that reported by others for Trem2 -/- mice. We identified modulatory effects of TYROBP deficiency on the level of phosphorylation of TAU that was accompanied by a reduction in the severity of neuritic dystrophy. TYROBP deficiency also altered the expression of several AD related genes, including Cd33. Electrophysiological abnormalities and learning behavior deficits associated with APP/PSEN1 transgenes were greatly attenuated on a Tyrobp-null background. Some modulatory effects of TYROBP on Alzheimer's-related genes were only apparent on a background of mice with cerebral amyloidosis due to overexpression of mutant APP/PSEN1. These results suggest that reduction of TYROBP gene expression and/or protein levels could represent an immune-inflammatory therapeutic opportunity for modulating early stage LOAD, potentially leading to slowing or arresting the progression to full-blown clinical and pathological LOAD.
Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Enfermedad de Alzheimer/genética , Encéfalo/patología , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Animales , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Aprendizaje por Laberinto/fisiología , Ratones , Ratones Noqueados , Microglía/metabolismo , Microglía/patología , Mutación , Fosforilación , Proteínas tau/metabolismoRESUMEN
OBJECTIVE: In the present study we explored the psychometric properties of three widely used questionnaires to assess the subjective effects of hallucinogens: the Hallucinogen Rating Scale (HRS), the Mystical Experience Questionnaire (MEQ), and the Addiction Research Center Inventory (ARCI). METHODS: These three questionnaires were administered to a sample of 158 subjects (100 men) after taking ayahuasca, a hallucinogen whose main active component is N,N-dimethyltryptamine (DMT). A confirmatory factorial study was conducted to check the adjustment of previous data obtained via theoretical proposals. When this was not possible, we used an exploratory factor analysis without restrictions, based on tetrachoric and polychoric matrices and correlations. RESULTS: Our results sparsely match the theoretical proposals of the authors, perhaps because previous studies have not always employed psychometric methods appropriate to the data obtained. However, these data should be considered preliminary, pending larger samples to confirm or reject the proposed structures obtained. CONCLUSIONS: It is crucial that instruments of sufficiently precise measurement are utilized to make sense of the information obtained in the study of the subjective effects of psychedelic drugs. Copyright © 2016 John Wiley & Sons, Ltd.
Asunto(s)
Banisteriopsis/química , Alucinógenos/farmacología , N,N-Dimetiltriptamina/farmacología , Encuestas y Cuestionarios , Adulto , Análisis Factorial , Femenino , Alucinógenos/administración & dosificación , Humanos , Masculino , Persona de Mediana Edad , N,N-Dimetiltriptamina/administración & dosificación , Preparaciones de Plantas/administración & dosificación , Preparaciones de Plantas/farmacología , Psicometría , Adulto JovenRESUMEN
INTRODUCTION: Epidemiologic studies have demonstrated an association between diabetes and dementia. Insulin signaling within the brain, in particular within the hypothalamus regulates carbohydrate, lipid, and branched chain amino acid (BCAA) metabolism in peripheral organs such as the liver and adipose tissue. We hypothesized that cerebral amyloidosis impairs central nervous system control of metabolism through disruption of insulin signaling in the hypothalamus, which dysregulates glucose and BCAA homeostasis resulting in increased susceptibility to diabetes. METHODS: We examined whether APP/PS1 mice exhibit increased susceptibility to aging or high-fat diet (HFD)-induced metabolic impairment using metabolic phenotyping and insulin-signaling studies. RESULTS: APP/PS1 mice were more susceptible to high-fat feeding and aging-induced metabolic dysregulation including disrupted BCAA homeostasis and exhibited impaired hypothalamic insulin signaling. DISCUSSION: Our data suggest that AD pathology increases susceptibility to diabetes due to impaired hypothalamic insulin signaling, and that plasma BCAA levels could serve as a biomarker of hypothalamic insulin action in patients with AD.