Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Nucleic Acids Res ; 48(D1): D335-D343, 2020 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-31691821

RESUMEN

The Protein Data Bank in Europe (PDBe), a founding member of the Worldwide Protein Data Bank (wwPDB), actively participates in the deposition, curation, validation, archiving and dissemination of macromolecular structure data. PDBe supports diverse research communities in their use of macromolecular structures by enriching the PDB data and by providing advanced tools and services for effective data access, visualization and analysis. This paper details the enrichment of data at PDBe, including mapping of RNA structures to Rfam, and identification of molecules that act as cofactors. PDBe has developed an advanced search facility with ∼100 data categories and sequence searches. New features have been included in the LiteMol viewer at PDBe, with updated visualization of carbohydrates and nucleic acids. Small molecules are now mapped more extensively to external databases and their visual representation has been enhanced. These advances help users to more easily find and interpret macromolecular structure data in order to solve scientific problems.


Asunto(s)
Bases de Datos de Proteínas , Programas Informáticos , Análisis por Conglomerados , Exactitud de los Datos , Europa (Continente) , Conformación Proteica , Interfaz Usuario-Computador
2.
J Pept Sci ; 27(10): e3353, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34142414

RESUMEN

Helicobacter pylori (H. pylori) infections have been implicated in the development of gastric ulcers and various cancers: however, the success of current therapies is compromised by rising antibiotic resistance. The virulence and pathogenicity of H. pylori is mediated by the type IV secretion system (T4SS), a multiprotein macromolecular nanomachine that transfers toxic bacterial factors and plasmid DNA between bacterial cells, thus contributing to the spread of antibiotic resistance. A key component of the T4SS is the VirB11 ATPase HP0525, which is a hexameric protein assembly. We have previously reported the design and synthesis of a series of novel 8-amino imidazo[1,2-a]pyrazine derivatives as inhibitors of HP0525. In order to improve their selectivity, and potentially develop these compounds as tools for probing the assembly of the HP0525 hexamer, we have explored the design and synthesis of potential bivalent inhibitors. We used the structural details of the subunit-subunit interactions within the HP0525 hexamer to design peptide recognition moieties of the subunit interface. Different methods (cross metathesis, click chemistry, and cysteine-malemide) for bioconjugation to selected 8-amino imidazo[1,2-a]pyrazines were explored, as well as peptides spanning larger or smaller regions of the interface. The IC50 values of the resulting linker-8-amino imidazo[1,2-a]pyrazine derivatives, and the bivalent inhibitors, were related to docking studies with the HP0525 crystal structure and to molecular dynamics simulations of the peptide recognition moieties.


Asunto(s)
Adenosina Trifosfatasas , Helicobacter pylori , Proteínas Bacterianas , Péptidos/farmacología , Pirazinas
3.
Retrovirology ; 13: 28, 2016 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-27107820

RESUMEN

BACKGROUND: HIV-1 capsid influences viral uncoating and nuclear import. Some capsid is detected in the nucleus but it is unclear if it has any function. We reported that the antibiotic Coumermycin-A1 (C-A1) inhibits HIV-1 integration and that a capsid mutation confers resistance to C-A1, suggesting that capsid might affect post-nuclear entry steps. RESULTS: Here we report that C-A1 inhibits HIV-1 integration in a capsid-dependent way. Using molecular docking, we identify an extended binding pocket delimited by two adjacent capsid monomers where C-A1 is predicted to bind. Isothermal titration calorimetry confirmed that C-A1 binds to hexameric capsid. Cyclosporine washout assays in Jurkat CD4+ T cells expressing engineered human TRIMCyp showed that C-A1 causes faster and greater escape from TRIMCyp restriction. Sub-cellular fractionation showed that small amounts of capsid accumulated in the nuclei of infected cells and C-A1 reduced the nuclear capsid. A105S and N74D capsid mutant viruses did not accumulate capsid in the nucleus, irrespective of C-A1 treatment. Depletion of Nup153, a nucleoporin located at the nuclear side of the nuclear pore that binds to HIV-1 capsid, made the virus less susceptible to TRIMCyp restriction, suggesting that Nup153 may help maintain some integrity of the viral core in the nucleus. Furthermore C-A1 increased binding of CPSF6, a nuclear protein, to capsid. CONCLUSIONS: Our results indicate that capsid is involved in post-nuclear entry steps preceding integration.


Asunto(s)
Proteína p24 del Núcleo del VIH/metabolismo , VIH-1/fisiología , Internalización del Virus , Aminocumarinas/metabolismo , Antivirales/metabolismo , Línea Celular , VIH-1/efectos de los fármacos , Humanos
4.
Bioorg Med Chem ; 23(17): 5303-10, 2015 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-26264842

RESUMEN

Soluble guanylate cyclase (sGC) is a haem containing enzyme that regulates cardiovascular homeostasis and multiple mechanisms in the central and peripheral nervous system. Commonly used inhibitors of sGC activity act through oxidation of the haem moiety, however they also bind haemoglobin and this limits their bioavailability for in vivo studies. We have discovered a new class of small molecule inhibitors of sGC and have characterised a compound designated D12 (compound 10) which binds to the catalytic domain of the enzyme with a KD of 11 µM in a SPR assay.


Asunto(s)
Activadores de Enzimas/química , Activadores de Enzimas/farmacología , Guanilato Ciclasa/antagonistas & inhibidores , Quinoxalinas/química , Quinoxalinas/farmacología , Receptores Citoplasmáticos y Nucleares/antagonistas & inhibidores , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/farmacología , Dominio Catalítico , Guanilato Ciclasa/química , Guanilato Ciclasa/metabolismo , Humanos , Simulación del Acoplamiento Molecular , Óxido Nítrico/metabolismo , Receptores Citoplasmáticos y Nucleares/química , Receptores Citoplasmáticos y Nucleares/metabolismo , Guanilil Ciclasa Soluble
5.
Nucleic Acids Res ; 41(Database issue): D483-9, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23203869

RESUMEN

The Structure Integration with Function, Taxonomy and Sequences resource (SIFTS; http://pdbe.org/sifts) is a close collaboration between the Protein Data Bank in Europe (PDBe) and UniProt. The two teams have developed a semi-automated process for maintaining up-to-date cross-reference information to UniProt entries, for all protein chains in the PDB entries present in the UniProt database. This process is carried out for every weekly PDB release and the information is stored in the SIFTS database. The SIFTS process includes cross-references to other biological resources such as Pfam, SCOP, CATH, GO, InterPro and the NCBI taxonomy database. The information is exported in XML format, one file for each PDB entry, and is made available by FTP. Many bioinformatics resources use SIFTS data to obtain cross-references between the PDB and other biological databases so as to provide their users with up-to-date information.


Asunto(s)
Bases de Datos de Proteínas , Proteínas/química , Internet , Anotación de Secuencia Molecular , Conformación Proteica , Proteínas/clasificación , Proteínas/fisiología , Análisis de Secuencia de Proteína , Integración de Sistemas
6.
J Antimicrob Chemother ; 69(4): 1017-26, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24324225

RESUMEN

OBJECTIVES: To identify and to characterize small-molecule inhibitors that target the subunit polymerization of the type 1 pilus assembly in uropathogenic Escherichia coli (UPEC). METHODS: Using an SDS-PAGE-based assay, in silico pre-filtered small-molecule compounds were screened for specific inhibitory activity against the critical subunit polymerization step of the chaperone-usher pathway during pilus biogenesis. The biological activity of one of the compounds was validated in assays monitoring UPEC type 1 pilus biogenesis, type 1 pilus-dependent biofilm formation and adherence to human bladder epithelial cells. The time dependence of the in vivo inhibitory activity and the overall effect of the compound on UPEC growth were determined. RESULTS: N-(4-chloro-phenyl)-2-{5-[4-(pyrrolidine-1-sulfonyl)-phenyl]-[1,3,4]oxadiazol-2-yl sulfanyl}-acetamide (AL1) inhibited in vitro pilus subunit polymerization. In bacterial cultures, AL1 disrupted UPEC type 1 pilus biogenesis and pilus-dependent biofilm formation, and resulted in the reduction of bacterial adherence to human bladder epithelial cells, without affecting bacterial cell growth. Bacterial exposure to the inhibitor led to an almost instantaneous loss of type 1 pili. CONCLUSIONS: We have identified and characterized a small molecule that interferes with the assembly of type 1 pili. The molecule targets the polymerization step during the subunit incorporation cycle of the chaperone-usher pathway. Our discovery provides new insight into the design and development of novel anti-virulence therapies targeting key virulence factors of bacterial pathogens.


Asunto(s)
Antibacterianos/farmacología , Adhesión Bacteriana/efectos de los fármacos , Fimbrias Bacterianas/efectos de los fármacos , Sustancias Macromoleculares/metabolismo , Multimerización de Proteína/efectos de los fármacos , Subunidades de Proteína/metabolismo , Escherichia coli Uropatógena/efectos de los fármacos , Animales , Biopelículas/efectos de los fármacos , Línea Celular , Células Epiteliales/microbiología , Humanos , Escherichia coli Uropatógena/fisiología
7.
Bioorg Med Chem ; 22(22): 6459-70, 2014 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-25438770

RESUMEN

A novel series of 8-amino imidazo[1,2-a]pyrazine derivatives has been developed as inhibitors of the VirB11 ATPase HP0525, a key component of the bacterial type IV secretion system. A flexible synthetic route to both 2- and 3-aryl substituted regioisomers has been developed. The resulting series of imidazo[1,2-a]pyrazines has been used to probe the structure-activity relationships of these inhibitors, which show potential as antibacterial agents.


Asunto(s)
Antibacterianos/química , Proteínas Bacterianas/antagonistas & inhibidores , Imidazoles/química , Pirazinas/química , Antibacterianos/síntesis química , Antibacterianos/metabolismo , Proteínas Bacterianas/metabolismo , Sitios de Unión , Bacterias Gramnegativas/metabolismo , Imidazoles/síntesis química , Imidazoles/metabolismo , Cinética , Simulación del Acoplamiento Molecular , Unión Proteica , Estructura Terciaria de Proteína , Pirazinas/síntesis química , Pirazinas/metabolismo , Relación Estructura-Actividad
8.
Cells ; 11(11)2022 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-35681428

RESUMEN

Inflammation and fibrosis are important components of diseases that contribute to the malfunction of epithelia and endothelia. The Rho guanine nucleotide exchange factor (GEF) GEF-H1/ARHGEF-2 is induced in disease and stimulates inflammatory and fibrotic processes, cell migration, and metastasis. Here, we have generated peptide inhibitors to block the function of GEF-H1. Inhibitors were designed using a structural in silico approach or by isolating an inhibitory sequence from the autoregulatory C-terminal domain. Candidate inhibitors were tested for their ability to block RhoA/GEF-H1 binding in vitro, and their potency and specificity in cell-based assays. Successful inhibitors were then evaluated in models of TGFß-induced fibrosis, LPS-stimulated endothelial cell-cell junction disruption, and cell migration. Finally, the most potent inhibitor was successfully tested in an experimental retinal disease mouse model, in which it inhibited blood vessel leakage and ameliorated retinal inflammation when treatment was initiated after disease diagnosis. Thus, an antagonist that blocks GEF-H1 signaling effectively inhibits disease features in in vitro and in vivo disease models, demonstrating that GEF-H1 is an effective therapeutic target and establishing a new therapeutic approach.


Asunto(s)
Enfermedades de la Retina , Transducción de Señal , Animales , Fibrosis , Inflamación , Ratones , Factores de Intercambio de Guanina Nucleótido Rho/genética , Factores de Intercambio de Guanina Nucleótido Rho/metabolismo
9.
J Biol Chem ; 285(50): 39314-28, 2010 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-20937817

RESUMEN

Chemical genetics is an emerging approach to investigate the biology of host-pathogen interactions. We screened several inhibitors of ATP-dependent DNA motors and detected the gyrase B inhibitor coumermycin A1 (C-A1) as a potent antiretroviral. C-A1 inhibited HIV-1 integration and gene expression from acutely infected cell, but the two activities mapped to distinct targets. Target discovery identified Hsp90 as the C-A1 target affecting viral gene expression. Chromatin immunoprecipitation revealed that Hsp90 associates with the viral promoter and may directly regulate gene expression. Molecular docking suggested that C-A1 binds to two novel pockets at the C terminal domain of Hsp90. C-A1 inhibited Hsp90 dimer formation, suggesting that it impairs viral gene expression by preventing Hsp90 dimerization at the C terminus. The inhibition of HIV-1 integration imposed by C-A1 was independent of Hsp90 and mapped to the capsid protein, and a point mutation at residue 105 made the virus resistant to this block. HIV-1 susceptibility to the integration block mediated by C-A1 was influenced by cyclophilin A. Our chemical genetic approach revealed an unexpected function of capsid in HIV-1 integration and provided evidence for a role of Hsp90 in regulating gene expression in mammalian cells. Both activities were amenable to inhibition by small molecules and represent novel antiretroviral drug targets.


Asunto(s)
Proteínas de la Cápside/química , VIH-1/metabolismo , Proteínas HSP90 de Choque Térmico/química , Inhibidores de Topoisomerasa II , Aminocumarinas/química , Ciclofilina A/química , Girasa de ADN/química , Girasa de ADN/metabolismo , Dimerización , Células HeLa , Humanos , Mutagénesis Sitio-Dirigida , Unión Proteica , Conformación Proteica , Estructura Terciaria de Proteína
10.
J Clin Invest ; 124(9): 4039-51, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25105365

RESUMEN

The endothelium plays a fundamental role in maintaining vascular homeostasis by releasing factors that regulate local blood flow, systemic blood pressure, and the reactivity of leukocytes and platelets. Accordingly, endothelial dysfunction underpins many cardiovascular diseases, including hypertension, myocardial infarction, and stroke. Herein, we evaluated mice with endothelial-specific deletion of Nppc, which encodes C-type natriuretic peptide (CNP), and determined that this mediator is essential for multiple aspects of vascular regulation. Specifically, disruption of CNP leads to endothelial dysfunction, hypertension, atherogenesis, and aneurysm. Moreover, we identified natriuretic peptide receptor-C (NPR-C) as the cognate receptor that primarily underlies CNP-dependent vasoprotective functions and developed small-molecule NPR-C agonists to target this pathway. Administration of NPR-C agonists promotes a vasorelaxation of isolated resistance arteries and a reduction in blood pressure in wild-type animals that is diminished in mice lacking NPR-C. This work provides a mechanistic explanation for genome-wide association studies that have linked the NPR-C (Npr3) locus with hypertension by demonstrating the importance of CNP/NPR-C signaling in preserving vascular homoeostasis. Furthermore, these results suggest that the CNP/NPR-C pathway has potential as a disease-modifying therapeutic target for cardiovascular disorders.


Asunto(s)
Endotelio Vascular/fisiología , Homeostasis , Péptido Natriurético Tipo-C/fisiología , Animales , Aneurisma de la Aorta/etiología , Aterosclerosis/etiología , Plaquetas/fisiología , Presión Sanguínea , Calcio/metabolismo , Femenino , Leucocitos/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Músculo Liso Vascular/metabolismo , Ratas , Vasodilatación/efectos de los fármacos
11.
Methods Mol Biol ; 1008: 479-99, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23729264

RESUMEN

The discovery of novel biologically active small molecules is now a technologically and economically viable proposition for academic and small biotechnology laboratories wishing to build on their biological research into target proteins. Such small molecules may be useful reagents for further biological research or may form the basis for early-stage drug discovery. The availability of specialized virtual screening software to filter large molecular libraries into manageable numbers of compounds for biological assays is the driving force for finding novel ligands. The main focus of this chapter is the basis and use of molecular field methods to assess the interactions that may be made by small molecules. Molecular field based measures of capability and similarity of interaction may be used to discover novel ligands and expand ligand series for potential use as future therapies.


Asunto(s)
Simulación del Acoplamiento Molecular , Proteínas/química , Bibliotecas de Moléculas Pequeñas/química , Programas Informáticos , Sitios de Unión , Descubrimiento de Drogas , Ensayos Analíticos de Alto Rendimiento , Humanos , Enlace de Hidrógeno , Cinética , Ligandos , Unión Proteica , Conformación Proteica , Electricidad Estática , Termodinámica
12.
J Med Chem ; 52(9): 2694-707, 2009 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-19341281

RESUMEN

We report the discovery of a new class of neuroprotective voltage-dependent sodium channel modulators exemplified by (5-(1-benzyl-1H-indazol-3-yl)-1,2,4-oxadiazol-3-yl)methanamine 11 (CFM1178). The compounds were inhibitors of [(14)C]guanidinium ion flux in rat forebrain synaptosomes and displaced binding of the sodium channel ligand [(3)H]BW202W92. 11 and the corresponding N(2)-benzyl isomer, 38 (CFM6058), demonstrated neuroprotective activity in hippocampal slices comparable to sipatrigine. CYP450 enzyme inhibition observed with 11 was reduced with 38. In electrophysiological experiments on dissociated hippocampal neurons, these two compounds caused use- and voltage-dependent block of sodium currents. Sodium channel isoform profiling against Na(v)1.1-1.8 demonstrated that the standard sodium channel blocker lamotrigine had modest activity against Na(v)1.1, while sipatrigine was generally more potent and less selective. 11 and 38 showed potent activity against Na(v)1.6, pointing to pharmacological block of this isoform being consistent with the neuroprotective effect. 38 also showed use dependent block of Na(v)1.6 in HEK cells.


Asunto(s)
Hipocampo/citología , Indazoles/farmacología , Neuronas/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Bloqueadores de los Canales de Sodio/farmacología , Canales de Sodio/metabolismo , Animales , Inhibidores Enzimáticos del Citocromo P-450 , Sistema Enzimático del Citocromo P-450/metabolismo , Diseño de Fármacos , Fenómenos Electrofisiológicos , Hipocampo/efectos de los fármacos , Indazoles/química , Masculino , Neuronas/metabolismo , Fármacos Neuroprotectores/química , Isoformas de Proteínas/antagonistas & inhibidores , Isoformas de Proteínas/metabolismo , Relación Estructura-Actividad Cuantitativa , Ratas , Ratas Wistar , Bloqueadores de los Canales de Sodio/química
13.
Bioorg Med Chem Lett ; 17(14): 3953-6, 2007 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-17543521

RESUMEN

An efficient process for the discovery of inhibitors of DDAH enzymes, without the requirement for high throughput screening, is described. Physicochemical filtering of a 308,000-compound library according to drug likeness followed by reciprocal nearest neighbour selection produced a representative subset of 35,000 compounds. Virtual screening on a dual processor PC using FlexX, followed by biological screening, identified two hit series. Similarity searches of commercial databases and chemical re-synthesis of pure compounds resulted in SR445 as an inhibitor of Pseudomonas aeruginosa DDAH at 2 microM.


Asunto(s)
Amidohidrolasas/antagonistas & inhibidores , Inhibidores Enzimáticos/farmacología , Pseudomonas aeruginosa/enzimología , Modelos Moleculares
14.
Genome Res ; 14(5): 925-8, 2004 May.
Artículo en Inglés | MEDLINE | ID: mdl-15078858

RESUMEN

Ensembl (http://www.ensembl.org/) is a bioinformatics project to organize biological information around the sequences of large genomes. It is a comprehensive source of stable automatic annotation of individual genomes, and of the synteny and orthology relationships between them. It is also a framework for integration of any biological data that can be mapped onto features derived from the genomic sequence. Ensembl is available as an interactive Web site, a set of flat files, and as a complete, portable open source software system for handling genomes. All data are provided without restriction, and code is freely available. Ensembl's aims are to continue to "widen" this biological integration to include other model organisms relevant to understanding human biology as they become available; to "deepen" this integration to provide an ever more seamless linkage between equivalent components in different species; and to provide further classification of functional elements in the genome that have been previously elusive.


Asunto(s)
Biología Computacional/tendencias
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA