Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Neonatal Screen ; 10(1)2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38248634

RESUMEN

DNAJC12-deficient hyperphenylalaninemia is a recently described inborn error of metabolism associated with hyperphenylalaninemia, neurotransmitter deficiency, and developmental delay caused by biallelic pathogenic variants of the DNAJC12 gene. The loss of the DNAJC12-encoded chaperone results in the destabilization of the biopterin-dependent aromatic amino acid hydroxylases, resulting in deficiencies in dopamine, norepinephrine, and serotonin. We present the case of a patient who screened positive for hyperphenylalaninemia on newborn screening and was discovered to be homozygous for a likely pathogenic variant of DNAJC12. Here, we review the management of DNAJC12-related hyperphenylalaninemia and compare our patient to other reported cases in the literature to investigate how early detection and management may impact clinical outcomes.

2.
JPGN Rep ; 5(2): 213-217, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38756125

RESUMEN

Shwachman-Diamond syndrome (SDS) is a genetic disorder caused by mutations in the Shwachman-Bodian-Diamond syndrome (SBDS) gene. The syndrome is characterized by multiorgan dysfunction primarily involving the bone marrow and exocrine pancreas. Frequently overlooked is the hepatic dysfunction seen in early childhood which tends to improve by adulthood. Here, we report a child who initially presented with failure to thrive and elevated transaminases, and was ultimately diagnosed with SDS. A liver biopsy electron micrograph revealed hepatocytes crowded with numerous small mitochondria, resembling the hepatic architecture from patients with inborn errors of metabolism, including mitochondrial diseases. To our knowledge, this is the first report of the mitochondrial phenotype in an SDS patient. These findings are compelling given the recent cellular and molecular research studies which have identified SBDS as an essential regulator of mitochondrial function and have also implicated SBDS in the maintenance of mitochondrial DNA.

3.
Mol Genet Metab Rep ; 38: 101037, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38173711

RESUMEN

The increasing availability of novel therapies highlights the importance of screening newborns for rare genetic disorders so that they may benefit from early therapy, when it is most likely to be effective. Pilot newborn screening (NBS) studies are a way to gather objective evidence about the feasibility and utility of screening, the accuracy of screening assays, and the incidence of disease. They are also an optimal way to evaluate the complex ethical, legal and social implications (ELSI) that accompany NBS expansion for disorders. ScreenPlus is a consented pilot NBS program that aims to enroll over 100,000 infants across New York City. The initial ScreenPlus panel includes 14 disorders and uses an analyte-based, multi-tiered screening platform in an effort to enhance screening accuracy. Infants who receive an abnormal result are referred to a ScreenPlus provider for confirmatory testing, management, and therapy as needed, along with longitudinal capture of outcome data. Participation in ScreenPlus requires parental consent, which is obtained in active and passive manners. Patient-facing documents are translated into the ten most common languages spoken at our nine pilot hospitals, all of which serve diverse communities. At the time of consent, parents are invited to receive a series of online surveys to capture their opinions about specific ELSI-related topics, such as NBS policy, residual dried blood spot retention, and the types of disorders that should be on NBS panels. ScreenPlus has developed a stakeholder-based, collective funding model that includes federal support in addition to funding from 14 advocacy and industry sponsors, all of which have a particular interest in NBS for at least one of the ScreenPlus disorders. Taken together, ScreenPlus is a model, multi-sponsored pilot NBS program that will provide critical data about NBS for a broad panel of disorders, while gathering key stakeholder opinions to help guide ethically sensitive decision-making about NBS expansion.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA