Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Int J Mol Sci ; 23(5)2022 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-35269863

RESUMEN

Low back pain (LBP) has been among the leading causes of disability for the past 30 years. This highlights the need for improvement in LBP management. Many clinical trials focus on developing treatments against degenerative disc disease (DDD). The multifactorial etiology of DDD and associated risk factors lead to a heterogeneous patient population. It comes as no surprise that the outcomes of clinical trials on intradiscal mesenchymal stem cell (MSC) injections for patients with DDD are inconsistent. Intradiscal MSC injections have demonstrated substantial pain relief and significant disability-related improvements, yet they have failed to regenerate the intervertebral disc (IVD). Increasing evidence suggests that the positive outcomes in clinical trials might be attributed to the immunomodulatory potential of MSCs rather than to their regenerative properties. Therefore, patient stratification for inflammatory DDD phenotypes may (i) better serve the mechanisms of action of MSCs and (ii) increase the treatment effect. Modic type 1 changes-pathologic inflammatory, fibrotic changes in the vertebral bone marrow-are frequently observed adjacent to degenerated IVDs in chronic LBP patients and represent a clinically distinct subpopulation of patients with DDD. This review discusses whether degenerated IVDs of patients with Modic type 1 changes should be treated with an intradiscal MSC injection.


Asunto(s)
Degeneración del Disco Intervertebral , Disco Intervertebral , Dolor de la Región Lumbar , Células Madre Mesenquimatosas , Médula Ósea/metabolismo , Humanos , Disco Intervertebral/metabolismo , Degeneración del Disco Intervertebral/metabolismo , Dolor de la Región Lumbar/etiología , Dolor de la Región Lumbar/terapia , Células Madre Mesenquimatosas/metabolismo
2.
Int J Mol Sci ; 22(9)2021 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-34066404

RESUMEN

Intervertebral disc (IVD) degeneration and its medical consequences is still one of the leading causes of morbidity worldwide. To support potential regenerative treatments for degenerated IVDs, we sought to deconvolute the cell composition of the nucleus pulposus (NP) and the annulus fibrosus (AF) of bovine intervertebral discs. Bovine calf tails have been extensively used in intervertebral disc research as a readily available source of NP and AF material from healthy and young IVDs. We used single-cell RNA sequencing (scRNAseq) coupled to bulk RNA sequencing (RNAseq) to unravel the cell populations in these two structures and analyze developmental changes across the rostrocaudal axis. By integrating the scRNAseq data with the bulk RNAseq data to stabilize the clustering results of our study, we identified 27 NP structure/tissue specific genes and 24 AF structure/tissue specific genes. From our scRNAseq results, we could deconvolute the heterogeneous cell populations in both the NP and the AF. In the NP, we detected a notochordal-like cell cluster and a progenitor stem cell cluster. In the AF, we detected a stem cell-like cluster, a cluster with a predominantly fibroblast-like phenotype and a potential endothelial progenitor cluster. Taken together, our results illustrate the cell phenotypic complexity of the AF and NP in the young bovine IVDs.


Asunto(s)
Cóccix/citología , Disco Intervertebral/citología , Análisis de Secuencia de ARN , Análisis de la Célula Individual , Animales , Anillo Fibroso/citología , Bovinos , Agregación Celular , Tamaño de la Célula , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Ontología de Genes , Núcleo Pulposo/citología
3.
Int J Mol Sci ; 22(7)2021 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-33805356

RESUMEN

Chronic low back pain (LBP) remains a challenging condition to treat, and especially to cure. If conservative treatment approaches fail, the current "gold standard" for intervertebral disc degeneration (IDD)-provoked back pain is spinal fusion. However, due to its invasive and destructive nature, the focus of orthopedic research related to the intervertebral disc (IVD) has shifted more towards cell-based therapeutic approaches. They aim to reduce or even reverse the degenerative cascade by mimicking the human body's physiological healing system. The implementation of progenitor and/or stem cells and, in particular, the delivery of mesenchymal stromal cells (MSCs) has revealed significant potential to cure the degenerated/injured IVD. Over the past decade, many research groups have invested efforts to find ways to utilize these cells as efficiently and sustainably as possible. This narrative literature review presents a summary of achievements made with the application of MSCs for the regeneration of the IVD in recent years, including their preclinical and clinical applications. Moreover, this review presents state-of-the-art strategies on how the homing capabilities of MSCs can be utilized to repair damaged or degenerated IVDs, as well as their current limitations and future perspectives.


Asunto(s)
Degeneración del Disco Intervertebral/terapia , Disco Intervertebral/fisiopatología , Trasplante de Células Madre Mesenquimatosas , Regeneración , Animales , Humanos , Disco Intervertebral/lesiones , Degeneración del Disco Intervertebral/fisiopatología
4.
Int J Mol Sci ; 22(24)2021 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-34948441

RESUMEN

Recently, a dysregulation of the Hippo-YAP/TAZ pathway has been correlated with intervertebral disc (IVD) degeneration (IDD), as it plays a key role in cell survival, tissue regeneration, and mechanical stress. We aimed to investigate the influence of different mechanical loading regimes, i.e., under compression and torsion, on the induction and progression of IDD and its association with the Hippo-YAP/TAZ pathway. Therefore, bovine IVDs were assigned to one of four different static or complex dynamic loading regimes: (i) static, (ii) "low-stress", (iii) "intermediate-stress", and (iv) "high-stress" regime using a bioreactor. After one week of loading, a significant loss of relative IVD height was observed in the intermediate- and high-stress regimes. Furthermore, the high-stress regime showed a significantly lower cell viability and a significant decrease in glycosaminoglycan content in the tissue. Finally, the mechanosensitive gene CILP was significantly downregulated overall, and the Hippo-pathway gene MST1 was significantly upregulated in the high-stress regime. This study demonstrates that excessive torsion combined with compression leads to key features of IDD. However, the results indicated no clear correlation between the degree of IDD and a subsequent inactivation of the Hippo-YAP/TAZ pathway as a means of regenerating the IVD.


Asunto(s)
Glicosaminoglicanos/metabolismo , Vía de Señalización Hippo , Disco Intervertebral/metabolismo , Estrés Mecánico , Animales , Bovinos , Disco Intervertebral/fisiología , Degeneración del Disco Intervertebral , Técnicas de Cultivo de Órganos , Transducción de Señal
5.
Int J Mol Sci ; 21(24)2020 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-33322051

RESUMEN

Lower back pain is a leading cause of disability worldwide. The recovery of nucleus pulposus (NP) progenitor cells (NPPCs) from the intervertebral disc (IVD) holds high promise for future cell therapy. NPPCs are positive for the angiopoietin-1 receptor (Tie2) and possess stemness capacity. However, the limited Tie2+ NPC yield has been a challenge for their use in cell-based therapy for regenerative medicine. In this study, we attempted to expand NPPCs from the whole NP cell population by spheroid-formation assay. Flow cytometry was used to quantify the percentage of NPPCs with Tie2-antibody in human primary NP cells (NPCs). Cell proliferation was assessed using the population doublings level (PDL) measurement. Synthesis and presence of extracellular matrix (ECM) from NPC spheroids were confirmed by quantitative Polymerase Chain Reaction (qPCR), immunostaining, and microscopy. Compared with monolayer, the spheroid-formation assay enriched the percentage of Tie2+ in NPCs' population from ~10% to ~36%. Moreover, the spheroid-formation assay also inhibited the proliferation of the Tie2- NPCs with nearly no PDL. After one additional passage (P) using the spheroid-formation assay, NPC spheroids presented a Tie2+ percentage even further by ~10% in the NPC population. Our study concludes that the use of a spheroid culture system could be successfully applied to the culture and expansion of tissue-specific progenitors.


Asunto(s)
Células Madre Adultas/citología , Proliferación Celular , Núcleo Pulposo/citología , Receptor TIE-2/metabolismo , Esferoides Celulares/citología , Adulto , Células Madre Adultas/metabolismo , Células Madre Adultas/fisiología , Células Cultivadas , Proteínas de la Matriz Extracelular/metabolismo , Femenino , Humanos , Masculino , Cultivo Primario de Células/métodos , Receptor TIE-2/genética , Esferoides Celulares/metabolismo , Esferoides Celulares/fisiología
6.
Eur Spine J ; 27(8): 1785-1797, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29789921

RESUMEN

PURPOSE: Comparison of two annulus fibrosus injury models that mimic intervertebral disc (IVD) herniation, enabling the study of IVD behaviour under three loading regimes in a bovine organ culture model. METHODS: An injury was induced by custom-designed cross-incision tool or a 2-mm biopsy punch in IVDs. Discs were cultured for 14 days under (1) complex (compression and torsion), (2) static, and (3) no load. Disc height, mitochondrial activity, DNA and glycosaminoglycan (GAG) contents, and disc stiffness under complex load were determined. Further, gene expression and histology analysis were performed. RESULTS: While both injury models did not change the compressional stiffness of IVDs, cross-incision decreased disc height under complex load. Moreover, under complex load, the biopsy punch injury induced down-regulation of several anabolic, catabol ic, and inflammatory genes, whereas cross-incision did not significantly differ from control discs. However, DNA and GAG contents were in the range of the healthy control discs for both injury models but did show lower contents under no load and static load. Injury side and contralateral side of the IVD showed a similar behaviour on the biochemical assays tested. CONCLUSION: Compressional stiffness, GAG and DNA contents, did not differ between injury models under complex load. This behaviour was partially attributed to the positive influence of complex loading on matrix regeneration and cell viability. However, disc height was reduced for the cross-incision. Relative gene expression changes of the inflammatory and anabolic genes for the biopsy punch approach might indicate that induced damage was too intense to trigger any inflammatory or repair response. These slides can be retrieved under Electronic Supplementary Material.


Asunto(s)
Desplazamiento del Disco Intervertebral/patología , Disco Intervertebral/patología , Técnicas de Cultivo de Órganos/métodos , Animales , Bovinos , Supervivencia Celular/fisiología , Citocinas/metabolismo , ADN/metabolismo , Modelos Animales de Enfermedad , Expresión Génica/fisiología , Glicosaminoglicanos/metabolismo , Disco Intervertebral/metabolismo , Desplazamiento del Disco Intervertebral/metabolismo , Soporte de Peso/fisiología
7.
Int J Mol Sci ; 19(5)2018 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-29693628

RESUMEN

Due to the limited self-repair capacity of articular cartilage, the surgical restoration of defective cartilage remains a major clinical challenge. The cell-based approach, which is known as autologous chondrocyte transplantation (ACT), has limited success, presumably because the chondrocytes acquire a fibroblast-like phenotype in monolayer culture. This unwanted dedifferentiation process is typically addressed by using three-dimensional scaffolds, pellet culture, and/or the application of exogenous factors. Alternative mechanical unloading approaches are suggested to be beneficial in preserving the chondrocyte phenotype. In this study, we examined if the random positioning machine (RPM) could be used to expand chondrocytes in vitro such that they maintain their phenotype. Bovine chondrocytes were exposed to (a) eight days in static monolayer culture; (b) two days in static monolayer culture, followed by six days of RPM exposure; and, (c) eight days of RPM exposure. Furthermore, the experiment was also conducted with the application of 20 mM gadolinium, which is a nonspecific ion-channel blocker. The results revealed that the chondrocyte phenotype is preserved when chondrocytes go into suspension and aggregate to cell clusters. Exposure to RPM rotation alone does not preserve the chondrocyte phenotype. Interestingly, the gene expression (mRNA) of the mechanosensitive ion channel TRPV4 decreased with progressing dedifferentiation. In contrast, the gene expression (mRNA) of the mechanosensitive ion channel TRPC1 was reduced around fivefold to 10-fold in all of the conditions. The application of gadolinium had only a minor influence on the results. This and previous studies suggest that the chondrocyte phenotype is preserved if cells maintain a round morphology and that the ion channel TRPV4 could play a key role in the dedifferentiation process.


Asunto(s)
Diferenciación Celular , Condrocitos/citología , Ingravidez , Animales , Cartílago Articular/citología , Bovinos , Células Cultivadas , Condrocitos/metabolismo , Fenotipo , Estrés Fisiológico , Canales Catiónicos TRPC/genética , Canales Catiónicos TRPC/metabolismo , Canales Catiónicos TRPV/genética , Canales Catiónicos TRPV/metabolismo
8.
Int J Mol Sci ; 19(4)2018 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-29652862

RESUMEN

Spinal fusion is a common surgical procedure to address a range of spinal pathologies, like damaged or degenerated discs. After the removal of the intervertebral disc (IVD), a structural spacer is positioned followed by internal fixation, and fusion of the degenerated segment by natural bone growth. Due to their osteoinductive properties, bone morphogenetic proteins (BMP) are applied to promote spinal fusion. Although spinal fusion is successful in most patients, the rates of non-unions after lumbar spine fusion range from 5% to 35%. Clinical observations and recent studies indicate, that the incomplete removal of disc tissue might lead to failure of spinal fusion. Yet, it is still unknown if a secretion of BMP antagonists in intervertebral disc (IVD) cells could be the reason of inhibition in bone formation. In this study, we co-cultured human primary osteoblasts (OB) and IVD cells i.e., nucleus pulposus (NPC), annulus fibrosus (AFC) and cartilaginous endplate cells (CEPC), to test the possible inhibitory effect from IVD cells on OB. Although we could see a trend in lower matrix mineralization in OB co-cultured with IVD cells, results of alkaline phosphatase (ALP) activity and gene expression of major bone genes were inconclusive. However, in NPC, AFC and CEPC beads, an up-regulation of several BMP antagonist genes could be detected. Despite being able to show several indicators for an inhibition of osteoinductive effects due to IVD cells, the reasons for pseudarthrosis after spinal fusion remain unclear.


Asunto(s)
Fosfatasa Alcalina/metabolismo , Técnicas de Cocultivo/métodos , Disco Intervertebral/citología , Osteoblastos/citología , Adulto , Anciano , Anciano de 80 o más Años , Anillo Fibroso/citología , Calcificación Fisiológica , Células Cultivadas , Femenino , Expresión Génica , Humanos , Masculino , Metaloproteinasas de la Matriz Secretadas/metabolismo , Núcleo Pulposo/citología , Osteoblastos/metabolismo
9.
Knee Surg Sports Traumatol Arthrosc ; 25(8): 2414-2419, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26564213

RESUMEN

PURPOSE: Dynamic intraligamentary stabilization was recently proposed as an option for the treatment of acute ACL ruptures. The aim of this study was to investigate the feasibility of the procedure in mid-substance ACL ruptures and examine whether the additional application of a bilayer collagen I/III membrane would provide for a superior outcome. METHODS: The study group consisted of patients presenting with a mid-substance ACL rupture undergoing dynamic intraligamentary stabilization using the Ligamys™ device along with application of a collagen I/III membrane to the surface of the ACL (group A, n = 23). The control group comprised a matched series of patients presenting with a mid-substance ACL rupture also treated by dynamic intraligamentary stabilization Ligamys™ repair, however, without additional collagen application (group B, n = 33). Patients were evaluated preoperatively and at 24-month follow-up for stability as well as Tegner and Lysholm scores. Knee laxity was measured as a difference in anterior translation (ΔAP) and pivot shift. Any events occurring during the follow-up period of 24 months were documented. Logistic regression of complications was performed, and adjustment undertaken where necessary. RESULTS: A high total complication rate of 78.8 % was noted in group B, compared to group A (8.7 %) (p = 0.002). The addition of a collagen membrane was the only independent prognostic factor associated with reduced complications (OR 8.0, CI 2.0-32.2, p = 0.003, for collagen-free treatment). In group B, 6 patients suffered a re-rupture with subsequent instability requiring secondary hamstring reconstruction surgery, and 11 developed extension loss requiring arthroscopic debridement, whilst in group A, 2 patients required arthroscopic debridement for loss of exension, with no further encountered complication. Median Lysholm score was significantly higher in group A compared to group B (median 100 range 93-100 vs median 95 range 60-100, p = 0.03) at final follow-up. CONCLUSIONS: A high complication rate following ACL Ligamys™ repair of mid-substance ruptures was noted. Application of a collagen membrane to the surface of the ACL resulted in a reduced incidence of extension deficit and re-ruptures. The results indicate that solitary ACL Ligamys™ repair does not present an appropriate treatment modality for mid-substance ACL ruptures. Collage application proved to provide healing benefits with superior clinical outcome after ACL repair. LEVEL OF EVIDENCE: Case control study, Level III.


Asunto(s)
Lesiones del Ligamento Cruzado Anterior/cirugía , Reconstrucción del Ligamento Cruzado Anterior/métodos , Colágeno/administración & dosificación , Membranas Artificiales , Adolescente , Adulto , Ligamento Cruzado Anterior/cirugía , Estudios de Casos y Controles , Estudios de Factibilidad , Femenino , Humanos , Inestabilidad de la Articulación/prevención & control , Articulación de la Rodilla/cirugía , Masculino , Recurrencia , Rotura/prevención & control , Resultado del Tratamiento , Adulto Joven
10.
Eur Spine J ; 25(11): 3450-3455, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-25841359

RESUMEN

PURPOSE: Leakage is the most common complication of percutaneous cement augmentation of the spine. The viscosity of the polymethylmethacrylate (PMMA) cement is strongly correlated with the likelihood of cement leakage. We hypothesized that cement leakage can be reduced by sequential cement injection in a vertebroplasty model. METHODS: A standardized vertebral body substitute model, consisting of aluminum oxide foams coated by acrylic cement with a preformed leakage path, simulating a ventral vein, was developed. Three injection techniques of 6 ml PMMA were assessed: injection in one single step (all-in-one), injection of 1 ml at the first and 5 ml at the second step with 1 min latency in-between (two-step), and sequential injection of 0.5 ml with 1-min latency between the sequences (sequential). Standard PMMA vertebroplasty cement was used; each injection type was tested on ten vertebral body substitute models with two possible leakage paths per model. Leakage was assessed by radiographs using a zonal graduation: intraspongious = no leakage and extracortical = leakage. RESULTS: The leakage rate was significantly lower in the "sequential" technique (2/20 leakages) followed by "two-step" (15/20) and "all-in-one" (20/20) techniques (p < 0.001). The RR for a cement leakage was 10.0 times higher in the "all-in-one" compared to the "sequential" group (95 % confidence intervals 2.7-37.2; p < 0.001). CONCLUSIONS: The sequential cement injection is a simple approach to minimize the risk for leakage. Taking advantage of the temperature gradient between body and room temperature, it is possible to increase the cement viscosity inside the vertebra while keeping it low in the syringe. Using sequential injection of small cement volumes, further leakage paths are blocked before further injection of the low-viscosity cement.


Asunto(s)
Cementos para Huesos/efectos adversos , Modelos Biológicos , Polimetil Metacrilato/uso terapéutico , Complicaciones Posoperatorias/prevención & control , Fracturas de la Columna Vertebral/cirugía , Vertebroplastia , Humanos , Vertebroplastia/efectos adversos , Vertebroplastia/métodos
11.
Eur Spine J ; 24(11): 2402-10, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26215177

RESUMEN

PURPOSE: Mechanical loading is an important parameter that alters the homeostasis of the intervertebral disc (IVD). Studies have demonstrated the role of compression in altering the cellular metabolism, anabolic and catabolic events of the disc, but little is known how complex loading such as torsion-compression affects the IVD cell metabolism and matrix homeostasis. Studying how the duration of torsion affects disc matrix turnover could provide guidelines to prevent overuse injury to the disc and suggest possible beneficial effect of torsion. The aim of the study was to evaluate the biological response of the IVD to different durations of torsional loading. METHODS: Intact bovine caudal IVD were isolated for organ culture in a bioreactor. Different daily durations of torsion were applied over 7 days at a physiological magnitude (±2°) in combination with 0.2 MPa compression, at a frequency of 1 Hz. RESULTS: Nucleus pulpous (NP) cell viability and total disc volume decreased with 8 h of torsion-compression per day. Gene expression analysis suggested a down-regulated MMP13 with increased time of torsion. 1 and 4 h per day torsion-compression tended to increase the glycosaminoglycans/hydroxyproline ratio in the NP tissue group. CONCLUSIONS: Our result suggests that load duration thresholds exist in both torsion and compression with an optimal load duration capable of promoting matrix synthesis and overloading can be harmful to disc cells. Future research is required to evaluate the specific mechanisms for these observed effects.


Asunto(s)
Fenómenos Biomecánicos/fisiología , Disco Intervertebral/fisiología , Técnicas de Cultivo de Órganos/métodos , Animales , Reactores Biológicos , Bovinos
12.
BMC Musculoskelet Disord ; 15: 422, 2014 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-25496082

RESUMEN

BACKGROUND: Notochordal cells (NC) remain in the focus of research for regenerative therapy for the degenerated intervertebral disc (IVD) due to their progenitor status. Recent findings suggested their regenerative action on more mature disc cells, presumably by the secretion of specific factors, which has been described as notochordal cell conditioned medium (NCCM). The aim of this study was to determine NC culture conditions (2D/3D, fetal calf serum, oxygen level) that lead to significant IVD cell activation in an indirect co-culture system under normoxia and hypoxia (2% oxygen). METHODS: Porcine NC was kept in 2D monolayer and in 3D alginate bead culture to identify a suitable culture system for these cells. To test stimulating effects of NC, co-cultures of NC and bovine derived coccygeal IVD cells were conducted in a 1:1 ratio with no direct cell contact between NC and bovine nucleus pulposus cell (NPC) or annulus fibrosus cells (AFC) in 3D alginate beads under normoxia and hypoxia (2%) for 7 and 14 days. As a positive control, NPC and AFC were stimulated with NC-derived conditioned medium (NCCM). Cell activity, glycosaminoglycan (GAG) content, DNA content and relative gene expression was measured. Mass spectrometry analysis of the NCCM was conducted. RESULTS: We provide evidence by flow cytometry that monolayer culture is not favorable for NC culture with respect to maintaining NC phenotype. In 3D alginate culture, NC activated NPC either in indirect co-culture or by addition of NCCM as indicated by the gene expression ratio of aggrecan/collagen type 2. This effect was strongest with 10% fetal calf serum and under hypoxia. Conversely, AFC seemed unresponsive to co-culture with pNC or to the NCCM. Further, the results showed that hypoxia led to decelerated metabolic activity, but did not lead to a significant change in the GAG/DNA ratio. Mass spectrometry identified connective tissue growth factor (CTGF, syn. CCN2) in the NCCM. CONCLUSIONS: Our results confirm the requirement to culture NC in 3D to best maintain their phenotype, preferentially in hypoxia and with the supplementation of FCS in the culture media. Despite these advancements, the ideal culture condition remains to be identified.


Asunto(s)
Medios de Cultivo Condicionados/farmacología , Disco Intervertebral/citología , Disco Intervertebral/metabolismo , Notocorda/citología , Notocorda/metabolismo , Animales , Bovinos , Hipoxia de la Célula/efectos de los fármacos , Hipoxia de la Célula/fisiología , Técnicas de Cocultivo/métodos , Citometría de Flujo/métodos , Humanos , Disco Intervertebral/efectos de los fármacos , Notocorda/efectos de los fármacos , Porcinos
13.
Phys Life Rev ; 48: 205-221, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38377727

RESUMEN

In primary or idiopathic osteoarthritis (OA), it is unclear which factors trigger the shift of articular chondrocyte activity from pro-anabolic to pro-catabolic. In fact, there is a controversy about the aetiology of primary OA, either mechanical or inflammatory. Chondrocytes are mechanosensitive cells, that integrate mechanical stimuli into cellular responses in a process known as mechanotransduction. Mechanotransduction occurs thanks to the activation of mechanosensors, a set of specialized proteins that convert physical cues into intracellular signalling cascades. Moderate levels of mechanical loads maintain normal tissue function and have anti-inflammatory effects. In contrast, mechanical over- or under-loading might lead to cartilage destruction and increased expression of pro-inflammatory cytokines. Simultaneously, mechanotransduction processes can regulate and be regulated by pro- and anti-inflammatory soluble mediators, both local (cells of the same joint, i.e., the chondrocytes themselves, infiltrating macrophages, fibroblasts or osteoclasts) and systemic (from other tissues, e.g., adipokines). Thus, the complex process of mechanotransduction might be altered in OA, so that cartilage-preserving chondrocytes adopt a different sensitivity to mechanical signals, and mechanic stimuli positively transduced in the healthy cartilage may become deleterious under OA conditions. This review aims to provide an overview of how the biochemical exposome of chondrocytes can alter important mechanotransduction processes in these cells. Four principal mechanosensors, i.e., integrins, Ca2+ channels, primary cilium and Wnt signalling (canonical and non-canonical) were targeted. For each of these mechanosensors, a brief summary of the response to mechanical loads under healthy or OA conditions is followed by a concise overview of published works that focus on the further regulation of the mechanotransduction pathways by biochemical factors. In conclusion, this paper discusses and explores how biological mediators influence the differential behaviour of chondrocytes under mechanical loads in healthy and primary OA.


Asunto(s)
Osteoartritis de la Rodilla , Humanos , Osteoartritis de la Rodilla/metabolismo , Condrocitos/metabolismo , Mecanotransducción Celular/fisiología , Citocinas/metabolismo , Citocinas/farmacología , Antiinflamatorios/metabolismo , Antiinflamatorios/farmacología
14.
Gels ; 10(5)2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38786247

RESUMEN

The negatively charged extracellular matrix plays a vital role in intervertebral disc tissues, providing specific cues for cell maintenance and tissue hydration. Unfortunately, suitable biomimetics for intervertebral disc regeneration are lacking. Here, sulfated alginate was investigated as a 3D culture material due to its similarity to the charged matrix of the intervertebral disc. Precursor solutions of standard alginate, or alginate with 0.1% or 0.2% degrees of sulfation, were mixed with primary human nucleus pulposus cells, cast, and cultured for 14 days. A 0.2% degree of sulfation resulted in significantly decreased cell density and viability after 7 days of culture. Furthermore, a sulfation-dependent decrease in DNA content and metabolic activity was evident after 14 days. Interestingly, no significant differences in cell density and viability were observed between surface and core regions for sulfated alginate, unlike in standard alginate, where the cell number was significantly higher in the core than in the surface region. Due to low cell numbers, phenotypic evaluation was not achieved in sulfated alginate biomaterial. Overall, standard alginate supported human NP cell growth and viability superior to sulfated alginate; however, future research on phenotypic properties is required to decipher the biological properties of sulfated alginate in intervertebral disc cells.

15.
Biomedicines ; 12(2)2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38397978

RESUMEN

Low back pain (LBP) is associated with the degeneration of human intervertebral discs (IVDs). Despite progress in the treatment of LBP through spinal fusion, some cases still end in non-fusion after the removal of the affected IVD tissue. In this study, we investigated the hypothesis that the remaining IVD cells secrete BMP inhibitors that are sufficient to inhibit osteogenesis in autologous osteoblasts (OBs) and bone marrow mesenchymal stem cells (MSCs). A conditioned medium (CM) from primary human IVD cells in 3D alginate culture was co-cultured with seven donor-matched OB and MSCs. After ten days, osteogenesis was quantified at the transcript level using qPCR to measure the expression of bone-related genes and BMP antagonists, and at the protein level by alkaline phosphatase (ALP) activity. Additionally, cells were evaluated histologically using alizarin red (ALZR) staining on Day 21. For judging ALP activity and osteogenesis, the Noggin expression in samples was investigated to uncover the potential causes. The results after culture with the CM showed significantly decreased ALP activity and the inhibition of the calcium deposit formation in alizarin red staining. Interestingly, no significant changes were found among most bone-related genes and BMP antagonists in OBs and MSCs. Noteworthy, Noggin was relatively expressed higher in human IVD cells than in autologous OBs or MSCs (relative to autologous OB, the average fold change was in 6.9, 10.0, and 6.3 in AFC, CEPC, and NPC, respectively; and relative to autologous MSC, the average fold change was 2.3, 3.4, and 3.2, in AFC, CEPC, and NPC, respectively). The upregulation of Noggin in residual human IVDs could potentially inhibit the osteogenesis of autologous OB and MSC, thus inhibiting the postoperative spinal fusion after discectomy surgery.

16.
Acta Biomater ; 177: 148-156, 2024 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-38325708

RESUMEN

Bone morphogenic protein 2 (BMP2) is known to induce osteogenesis and is applied clinically to enhance spinal fusion despite adverse effects. BMP2 needs to be used in high doses to be effective due to the presence of BMP2 inhibitors. L51P is a BMP2 analogue that acts by inhibition of BMP2 inhibitors. Here, we hypothesized that mixtures of BMP2 and L51P could achieve better spinal fusion outcomes regarding ossification. To test whether mixtures of both cytokines are sufficient to improve ossification, 45 elderly Wistar rats (of which 21 were males) were assigned to seven experimental groups, all which received spinal fusion surgery, including discectomy at the caudal 4-5 level using an external fixator and a porous ß-tricalcium phosphate (ßTCP) carrier. These ßTCP carriers were coated with varying concentrations of BMP2 and L51P. X-rays were taken immediately after surgery and again six and twelve weeks post-operatively. Histological sections and µCT were analyzed after twelve weeks. Spinal fusion was assessed using X-ray, µCT and histology according to the Bridwell scale by voxel-based quantification and a semi-quantitative histological score, respectively. The results were congruent across modalities and revealed high ossification for high-dose BMP2 (10 µg), while PBS induced no ossification. Low-dose BMP2 (1 µg) or 10 µg L51P alone did not induce relevant bone formation. However, all combinations of low-dose BMP2 with L51P (1 µg + 1/5/10 µg) were able to induce similar ossificationas high-dose BMP2. These results are of high clinical relevance, as they indicate L51P is sufficient to increase the efficacy of BMP2 and thus lower the required dose for spinal fusion. STATEMENT OF SIGNIFICANCE: Spinal fusion surgery is frequently applied to treat spinal pathologies. Bone Morphogenic Protein-2 (BMP2) has been approved by the U .S. Food and Drug Administration (FDA-) and by the "Conformité Européenne" (CE)-label. However, its application is expensive and high concentrations cause side-effects. This research targets the improvement of the efficacy of BMP2 in spinal fusion surgery.


Asunto(s)
Proteína Morfogenética Ósea 2 , Fusión Vertebral , Humanos , Masculino , Ratas , Animales , Anciano , Femenino , Proteína Morfogenética Ósea 2/farmacología , Ratas Wistar , Fusión Vertebral/métodos , Cola (estructura animal) , Osteogénesis , Factor de Crecimiento Transformador beta/farmacología
17.
Biomimetics (Basel) ; 8(2)2023 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-37092404

RESUMEN

Low back pain is often due to degeneration of the intervertebral discs (IVD). It is one of the most common age- and work-related problems in today's society. Current treatments are not able to efficiently restore the full function of the IVD. Therefore, the aim of the present work was to reconstruct the two parts of the intervertebral disc-the annulus fibrosus (AF) and the nucleus pulposus (NP)-in such a way that the natural structural features were mimicked by a textile design. Silk was selected as the biomaterial for realization of a textile IVD because of its cytocompatibility, biodegradability, high strength, stiffness, and toughness, both in tension and compression. Therefore, an embroidered structure made of silk yarn was developed that reproduces the alternating fiber structure of +30° and -30° fiber orientation found in the AF and mimics its lamellar structure. The developed embroidered ribbons showed a tensile strength that corresponded to that of the natural AF. Fiber additive manufacturing with 1 mm silk staple fibers was used to replicate the fiber network of the NP and generate an open porous textile 3D structure that may serve as a reinforcement structure for the gel-like NP.

18.
Materials (Basel) ; 16(8)2023 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-37110008

RESUMEN

Intervertebral disc (IVD) herniation often causes severe pain and is frequently associated with the degeneration of the IVD. As the IVD degenerates, more fissures with increasing size appear within the outer region of the IVD, the annulus fibrosus (AF), favoring the initiation and progression of IVD herniation. For this reason, we propose an AF repair approach based on methacrylated gellan gum (GG-MA) and silk fibroin. Therefore, coccygeal bovine IVDs were injured using a biopsy puncher (⌀ 2 mm) and then repaired with 2% GG-MA as a filler material and sealed with an embroidered silk yarn fabric. Then, the IVDs were cultured for 14 days either without any load, static loading, or complex dynamic loading. After 14 days of culture, no significant differences were found between the damaged and repaired IVDs, except for a significant decrease in the IVDs' relative height under dynamic loading. Based on our findings combined with the current literature that focuses on ex vivo AF repair approaches, we conclude that it is likely that the repair approach did not fail but rather insufficient harm was done to the IVD.

19.
JOR Spine ; 6(4): e1294, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38156054

RESUMEN

The cartilaginous endplates (CEP) are key components of the intervertebral disc (IVD) necessary for sustaining the nutrition of the disc while distributing mechanical loads and preventing the disc from bulging into the adjacent vertebral body. The size, shape, and composition of the CEP are essential in maintaining its function, and degeneration of the CEP is considered a contributor to early IVD degeneration. In addition, the CEP is implicated in Modic changes, which are often associated with low back pain. This review aims to tackle the current knowledge of the CEP regarding its structure, composition, permeability, and mechanical role in a healthy disc, how they change with degeneration, and how they connect to IVD degeneration and low back pain. Additionally, the authors suggest a standardized naming convention regarding the CEP and bony endplate and suggest avoiding the term vertebral endplate. Currently, there is limited data on the CEP itself as reported data is often a combination of CEP and bony endplate, or the CEP is considered as articular cartilage. However, it is clear the CEP is a unique tissue type that differs from articular cartilage, bony endplate, and other IVD tissues. Thus, future research should investigate the CEP separately to fully understand its role in healthy and degenerated IVDs. Further, most IVD regeneration therapies in development failed to address, or even considered the CEP, despite its key role in nutrition and mechanical stability within the IVD. Thus, the CEP should be considered and potentially targeted for future sustainable treatments.

20.
JOR Spine ; 6(1): e1238, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36994456

RESUMEN

Background: In vitro studies using nucleus pulposus (NP) cells are commonly used to investigate disc cell biology and pathogenesis, or to aid in the development of new therapies. However, lab-to-lab variability jeopardizes the much-needed progress in the field. Here, an international group of spine scientists collaborated to standardize extraction and expansion techniques for NP cells to reduce variability, improve comparability between labs and improve utilization of funding and resources. Methods: The most commonly applied methods for NP cell extraction, expansion, and re-differentiation were identified using a questionnaire to research groups worldwide. NP cell extraction methods from rat, rabbit, pig, dog, cow, and human NP tissue were experimentally assessed. Expansion and re-differentiation media and techniques were also investigated. Results: Recommended protocols are provided for extraction, expansion, and re-differentiation of NP cells from common species utilized for NP cell culture. Conclusions: This international, multilab and multispecies study identified cell extraction methods for greater cell yield and fewer gene expression changes by applying species-specific pronase usage, 60-100 U/ml collagenase for shorter durations. Recommendations for NP cell expansion, passage number, and many factors driving successful cell culture in different species are also addressed to support harmonization, rigor, and cross-lab comparisons on NP cells worldwide.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA