Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Mol Cell Cardiol ; 52(3): 711-7, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22182733

RESUMEN

Excessive stress, e.g. due to biomechanical overload or ischemia/reperfusion is a potent inductor of cardiomyocyte apoptosis, which contributes to maladaptive remodeling. Despite substantial progress in the understanding of the molecular pathophysiology, many components of the signaling pathways underlying remodeling in general and apoptosis in particular still remain unknown. Recent evidence suggests that microRNAs (miRs) play an important role in the heart's response to increased cardiac stress. To identify novel modulators of stress-dependent remodeling, we conducted a genome-wide miR-screen of mechanically stretched neonatal rat cardiomyocytes (NRCM). Out of 351 miRs, eight were significantly regulated by biomechanical stress, including microRNA-20a, which is part of the miR17-92 cluster. Interestingly, further expression analyses also revealed upregulation of microRNA-20a in an in vitro hypoxia/"reperfusion" model. Given the potential apoptosis-modulating properties of the miR17-92 cluster, we subjected NRCM to hypoxia and subsequent reoxygenation. AdmiR-20a significantly inhibited hypoxia-mediated apoptosis in a dose-dependent fashion, while targeted knockdown of miR-20a in NRCM induced cardiomyocyte apoptosis. Mechanistically, the antiapoptotic effect of miR-20a appears to be mediated through direct targeting and subsequent downregulation of the proapoptotic factor Egln3. Thus, miR-20a is upregulated in acute biomechanical stress as well as hypoxia and inhibits apoptosis in cardiomyocytes. These properties reveal miR-20a as a cardioprotective micro-RNA and a potential target for novel therapeutic strategies to prevent cardiac remodeling.


Asunto(s)
Apoptosis/genética , Proteínas de Unión al ADN/genética , Proteínas Inmediatas-Precoces/genética , MicroARNs/genética , Miocitos Cardíacos/metabolismo , Estrés Fisiológico , Animales , Cardiomegalia/genética , Células Cultivadas , Perfilación de la Expresión Génica , Silenciador del Gen , Prolina Dioxigenasas del Factor Inducible por Hipoxia , MicroARNs/metabolismo , Miocitos Cardíacos/patología , Ratas
2.
J Mol Cell Cardiol ; 49(4): 673-82, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20600098

RESUMEN

To identify new mediators of cardiac hypertrophy, we performed a genome-wide mRNA screen of stretched neonatal rat cardiomyocytes (NRCMs). In addition to known members of the hypertrophic gene program, we found the novel sarcomeric Z-disc LIM protein Lmcd1/Dyxin markedly upregulated. Consistently, Lmcd1 was also induced in several mouse models of myocardial hypertrophy suggesting a causal role in cardiac hypertrophy. We overexpressed Lmcd1 in NRCM, which led to cardiomyocyte hypertrophy and induction of the hypertrophic gene program. Likewise, the calcineurin-responsive gene RCAN1-4 was found significantly upregulated. Conversely, knockdown of Lmcd1 blunted the response to hypertrophic stimuli such as stretch and phenylephrine (PE), suggesting that Lmcd1 is required for the hypertrophic response. Furthermore, PE-mediated activation of calcineurin was completely blocked by knockdown of Lmcd1. To confirm these results in vivo, we generated transgenic mice with cardiac-restricted overexpression of Lmcd1. Despite normal cardiac function, adult transgenic mice displayed significant cardiac hypertrophy, again accompanied by induction of hypertrophic marker genes such as ANF and alpha-skeletal actin. Likewise, Rcan1-4 was found upregulated. Moreover, when crossed with transgenic mice overexpressing constitutionally active calcineurin, Lmcd1 transgenic mice revealed an exacerbated cardiomyopathic phenotype with depressed contractile function and further increased cardiomyocyte hypertrophy. We show that the novel z-disc protein Lmcd1/Dyxin is significantly upregulated in several models of cardiac hypertrophy. Lmcd1/Dyxin potently induces cardiomyocyte hypertrophy both in vitro and in vivo, while knockdown of this molecule prevents hypertrophy. Mechanistically, Lmcd1/Dyxin appears to signal through the calcineurin pathway. Lmcd1/Dyxin may thus represent an attractive target for novel antihypertrophic strategies.


Asunto(s)
Cardiomegalia/metabolismo , Proteínas Portadoras/metabolismo , Adenoviridae/genética , Animales , Fenómenos Biomecánicos , Calcineurina/genética , Calcineurina/metabolismo , Cardiomiopatías/genética , Cardiomiopatías/metabolismo , Proteínas Portadoras/genética , Proteínas Co-Represoras , Proteínas con Dominio LIM , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA