Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Anal Chem ; 95(19): 7475-7486, 2023 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-37126482

RESUMEN

Sialic acid isomers attached in either α2,3 or α2,6 linkage to glycan termini confer distinct chemical, biological, and pathological properties, but they cannot be distinguished by mass differences in traditional mass spectrometry experiments. Multiple derivatization strategies have been developed to stabilize and facilitate the analysis of sialic acid isomers and their glycoconjugate carriers by high-performance liquid chromatography, capillary electrophoresis, and mass spectrometry workflows. Herein, a set of novel derivatization schemes are described that result in the introduction of bioorthogonal click chemistry alkyne or azide groups into α2,3- and α2,8-linked sialic acids. These chemical modifications were validated and structurally characterized using model isomeric sialic acid conjugates and model protein carriers. Use of an alkyne-amine, propargylamine, as the second amidation reagent effectively introduces an alkyne functional group into α2,3-linked sialic acid glycoproteins. In tissues, serum, and cultured cells, this allows for the detection and visualization of N-linked glycan sialic acid isomers by imaging mass spectrometry approaches. Formalin-fixed paraffin-embedded prostate cancer tissues and pancreatic cancer cell lines were used to characterize the numbers and distribution of alkyne-modified α2,3-linked sialic acid N-glycans. An azide-amine compound with a poly(ethylene glycol) linker was evaluated for use in histochemical staining. Formalin-fixed pancreatic cancer tissues were amidated with the azide amine, reacted with biotin-alkyne and copper catalyst, and sialic acid isomers detected by streptavidin-peroxidase staining. The direct chemical introduction of bioorthogonal click chemistry reagents into sialic acid-containing glycans and glycoproteins provides a new glycomic tool set to expand approaches for their detection, labeling, visualization, and enrichment.


Asunto(s)
Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Humanos , Ácidos Siálicos/química , Polisacáridos/química , Línea Celular Tumoral
2.
Proc Natl Acad Sci U S A ; 113(51): 14793-14798, 2016 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-27930335

RESUMEN

Chromosome instability (CIN) is the most striking feature of human cancers. However, how CIN drives tumor progression to metastasis remains elusive. Here we studied the role of chromosome content changes in generating the phenotypic dynamics that are required for metastasis. We isolated epithelial and mesenchymal clones from human carcinoma cell lines and showed that the epithelial clones were able to generate mesenchymal variants, which had the potential to further produce epithelial revertants autonomously. The successive acquisition of invasive mesenchymal and then epithelial phenotypes recapitulated the steps in tumor progression to metastasis. Importantly, the generation of mesenchymal variants from clonal epithelial populations was associated with subtle changes in chromosome content, which altered the chromosome transcriptome and influenced the expression of genes encoding intercellular junction (IJ) proteins, whereas the loss of chromosome 10p, which harbors the ZEB1 gene, was frequently detected in epithelial variants generated from mesenchymal clones. Knocking down these IJ genes in epithelial cells induced a mesenchymal phenotype, whereas knocking down the ZEB1 gene in mesenchymal cells induced an epithelial phenotype, demonstrating a causal role of chromosome content changes in phenotypic determination. Thus, our studies suggest a paradigm of tumor metastasis: primary epithelial carcinoma cells that lose chromosomes harboring IJ genes acquire an invasive mesenchymal phenotype, and subsequent chromosome content changes such as loss of 10p in disseminated mesenchymal cells generate epithelial variants, which can be selected for to generate epithelial tumors during metastatic colonization.


Asunto(s)
Inestabilidad Cromosómica , Metástasis de la Neoplasia , Neoplasias/patología , Aneuploidia , Biomarcadores de Tumor , Línea Celular Tumoral , Clonación Molecular , Progresión de la Enfermedad , Células Epiteliales/patología , Transición Epitelial-Mesenquimal/genética , Epitelio/patología , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Hibridación Fluorescente in Situ , Cariotipificación , Mesodermo/patología , Neoplasias/genética , Fenotipo
3.
Mol Carcinog ; 56(2): 722-734, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27434882

RESUMEN

Tumor cell invasion through the extracellular matrix is facilitated by the secretion of lysosome-associated proteases. As a common mechanism for secretion, lysosomes must first traffic to the cell periphery (anterograde trafficking), consistent with invasive cells often containing lysosomes closer to the plasma membrane compared to non-invasive cells. Epithelial to mesenchymal transition (EMT) is a transcriptionally driven program that promotes an invasive phenotype, and Zeb1 is one transcription factor that activates the mesenchymal gene expression program. The role of lysosome trafficking in EMT-driven invasion has not been previously investigated. We found that cells with increased levels of Zeb1 displayed lysosomes located closer to the cell periphery and demonstrated increased protease secretion and invasion in 3-dimensional (3D) cultures compared to their epithelial counterparts. Additionally, preventing anterograde lysosome trafficking via pharmacological inhibition of Na+/H+ exchanger 1 (NHE1) or shRNA depletion of ADP-ribosylation like protein 8b (Arl8b) reversed the invasive phenotype of mesenchymal cells, thus supporting a role for lysosome positioning in EMT-mediated tumor cell invasion. Immunoblot revealed that expression of Na+/H+ exchanger 1 correlated with Zeb1 expression. Furthermore, we found that the transcription factor Zeb1 binds to the Na+/H+ exchanger 1 promoter, suggesting that Zeb1 directly controls Na+/H+ transcription. Collectively, these results provide insight into a novel mechanism regulating Na+/H+ exchanger 1 expression and support a role for anterograde lysosome trafficking in Zeb1-driven cancer progression. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Proteínas de Transporte de Catión/genética , Invasividad Neoplásica/genética , Neoplasias de la Próstata/genética , Intercambiadores de Sodio-Hidrógeno/genética , Regulación hacia Arriba , Homeobox 1 de Unión a la E-Box con Dedos de Zinc/metabolismo , Línea Celular Tumoral , Movimiento Celular , Transición Epitelial-Mesenquimal , Regulación Neoplásica de la Expresión Génica , Humanos , Lisosomas/genética , Lisosomas/metabolismo , Lisosomas/patología , Masculino , Invasividad Neoplásica/patología , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , Intercambiador 1 de Sodio-Hidrógeno , Activación Transcripcional , Homeobox 1 de Unión a la E-Box con Dedos de Zinc/genética
4.
bioRxiv ; 2023 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-36711795

RESUMEN

Outcomes following tumor resection vary dramatically among patients with pancreatic cancer. A challenge in defining predictive biomarkers is to discern within the complex tumor tissue the specific subpopulations and relationships that drive recurrence. Multiplexed immunofluorescence is valuable for such studies when supplied with markers of relevant subpopulations and analysis methods to sort out the intra-tumor relationships that are informative of tumor behavior. We hypothesized that the glycan biomarkers CA19-9 and STRA, which detect separate subpopulations of cancer cells, define intra-tumoral features associated with recurrence. We probed this question using automated signal thresholding and spatial cluster analysis applied to the immunofluorescence images of the STRA and CA19-9 glycan biomarkers in whole-block tumor sections. The tumors (N = 22) displayed extreme diversity between them in the amounts of the glycans and in the levels of spatial clustering, but neither the amounts nor the clusters of the individual and combined glycans associated with recurrence. The combined glycans, however, marked divergent types of spatial clusters, alternatively only STRA, only CA19-9, or both. The co-occurrence of more than one cluster type within a tumor associated significantly with disease recurrence, in contrast to the independent occurrence of each type of cluster. In addition, intra-tumoral regions with heterogeneity in biomarker clusters spatially aligned with pathology-confirmed cancer cells, whereas regions with homogeneous biomarker clusters aligned with various non-cancer cells. Thus, the STRA and CA19-9 glycans are markers of distinct and co-occurring subpopulations of cancer cells that in combination are associated with recurrence. Furthermore, automated signal thresholding and spatial clustering provides a tool for quantifying intra-tumoral subpopulations that are informative of outcome.

5.
Front Oncol ; 13: 1135405, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37124496

RESUMEN

Introduction: Outcomes following tumor resection vary dramatically among patients with pancreatic ductal adenocarcinoma (PDAC). A challenge in defining predictive biomarkers is to discern within the complex tumor tissue the specific subpopulations and relationships that drive recurrence. Multiplexed immunofluorescence is valuable for such studies when supplied with markers of relevant subpopulations and analysis methods to sort out the intra-tumor relationships that are informative of tumor behavior. We hypothesized that the glycan biomarkers CA19-9 and STRA, which detect separate subpopulations of cancer cells, define intra-tumoral features associated with recurrence. Methods: We probed this question using automated signal thresholding and spatial cluster analysis applied to the immunofluorescence images of the STRA and CA19-9 glycan biomarkers in whole-block sections of PDAC tumors collected from curative resections. Results: The tumors (N = 22) displayed extreme diversity between them in the amounts of the glycans and in the levels of spatial clustering, but neither the amounts nor the clusters of the individual and combined glycans associated with recurrence. The combined glycans, however, marked divergent types of spatial clusters, alternatively only STRA, only CA19-9, or both. The co-occurrence of more than one cluster type within a tumor associated significantly with disease recurrence, in contrast to the independent occurrence of each type of cluster. In addition, intra-tumoral regions with heterogeneity in biomarker clusters spatially aligned with pathology-confirmed cancer cells, whereas regions with homogeneous biomarker clusters aligned with various non-cancer cells. Conclusion: Thus, the STRA and CA19-9 glycans are markers of distinct and co-occurring subpopulations of cancer cells that in combination are associated with recurrence. Furthermore, automated signal thresholding and spatial clustering provides a tool for quantifying intra-tumoral subpopulations that are informative of outcome.

6.
Biotechnol Biofuels Bioprod ; 15(1): 31, 2022 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-35300735

RESUMEN

BACKGROUND: To further optimize the mechanochemical pretreatment process, a combined wet alkaline mechanical pretreatment of corn stover was proposed with a short time and less chemical consumption at room temperature. RESULTS: The combined alkaline mechanical pretreatment significantly enhanced enzymatic hydrolysis resulting a highest glucose yield (YG) of 91.9% with 3% NaOH and ball milling (BM) for 10 min. At this optimal condition, 44.4% lignin was removed and major portion of cellulose was retained (86.6%). The prehydrolysate contained by-products such as monosaccharides, oligosaccharides, acetic acid, and lignin but no furfural and 5-HMF. The alkaline concentration showed a significant impact on glucose yield, while the BM time was less important. Quantitative correlation analysis showed that YG (%) = 0.68 × BM time (min) + 19.27 × NaOH concentration (%) + 13.71 (R2 = 0.85), YG = 6.35 × glucan content - 231.84 (R2 = 0.84), and YG = - 14.22 × lignin content + 282.70 (R2 = 0.87). CONCLUSION: The combined wet alkaline mechanical pretreatment at room temperature had a boosting effect on the yield of enzymatic hydrolysis with short treatment time and less chemical consumption. The impact of the physical and chemical properties of corn stover pretreated with different BM times and/or different NaOH concentrations on the subsequent enzymatic hydrolysis was investigated, which would be beneficial to illustrate the effective mechanism of the mechanochemical pretreatment method.

7.
Front Plant Sci ; 13: 986763, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36237511

RESUMEN

Straw return is an effective method for disposing agricultural residues. It not only utilizes agricultural waste but also improves soil. In the current review, different crop straw and its characteristics were highlighted, and patterns of straw return were explored (including straw return, straw biochar return, and their combined with fertilizer return), as well as their environmental impacts were outlined. In addition, the effects of straw return and straw biochar amendment on soil properties [e.g., pH, soil organic carbon (SOC), soil nitrogen (N)/phosphorus (P)/potassium (K), soil enzyme activities, and soil microbes] were discussed. Information collected from this review proposed that straw return and straw biochar return or in combination with fertilizer is an applicable way for improving soil fertility and enhancing crop production. Straw return is beneficial to soil physicochemical properties and soil microbial features. The rice straw has positive impacts on crop growth. However, there are different climate types, soil types and crops in China, meaning that the future research need long-term experiment to assess the complex interactions among straw, soil, and plant eco-systems. Accordingly, this review aims to provide available information on the application of straw return in terms of different patterns of its to justify and to expand their effective promotion.

8.
Bioresour Technol ; 326: 124786, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33548818

RESUMEN

In order to compare the effect of different mechanical-chemical coupling treatment on wheat straw and provide guidance for the subsequent preparation of cellulose nanomaterials, this paper systematically explored the impact of different scale mechanical fragmentation coupling various NaOH concentration treatment on the lignocellulosic components, micromorphology and cellulose crystal structure of wheat straw. The results showed that the relationship between hemicellulose and lignin removal with NaOH concentration can be expressed as exponential function Y = ai(1-exp(-biX)), and micro-nano-scale ball-milling coupling NaOH treatment can facilitate the removal of hemicellulose and lignin. Micromorphology analysis found that wet ball milling coupling NaOH one-step treatment can disintegrate cellulose fiber into crosslinked network structure of cellulose microfibrils. XRD results indicated that wet ball milling with NaOH solution was contributed to retaining cellulose crystal structure and conducive to cellulose crystalline transformation. In conclusion, wet ball milling coupling NaOH simultaneous treatment can be a promising pretreatment for cellulose nanomaterials preparation.


Asunto(s)
Celulosa , Triticum , Hidrólisis , Lignina , Hidróxido de Sodio
9.
Clin Cancer Res ; 27(1): 226-236, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-33093149

RESUMEN

PURPOSE: A subset of pancreatic ductal adenocarcinomas (PDACs) is highly resistant to systemic chemotherapy, but no markers are available in clinical settings to identify this subset. We hypothesized that a glycan biomarker for PDACs called sialylated tumor-related antigen (sTRA) could be used for this purpose. EXPERIMENTAL DESIGN: We tested for differences between PDACs classified by glycan expression in multiple systems: sets of cell lines, organoids, and isogenic cell lines; primary tumors; and blood plasma from human subjects. RESULTS: The sTRA-expressing models tended to have stem-like gene expression and the capacity for mesenchymal differentiation, in contrast to the nonexpressing models. The sTRA cell lines also had significantly increased resistance to seven different chemotherapeutics commonly used against pancreatic cancer. Patients with primary tumors that were positive for a gene expression classifier for sTRA received no statistically significant benefit from adjuvant chemotherapy, in contrast to those negative for the signature. In another cohort, based on direct measurements of sTRA in tissue microarrays, the patients who were high in sTRA again had no statistically significant benefit from adjuvant chemotherapy. Furthermore, a blood plasma test for the sTRA glycan identified the PDACs that showed rapid relapse following neoadjuvant chemotherapy. CONCLUSIONS: This research demonstrates that a glycan biomarker could have value to detect chemotherapy-resistant PDAC in clinical settings. This capability could aid in the development of stratified treatment plans and facilitate biomarker-guided trials targeting resistant PDAC.


Asunto(s)
Antineoplásicos/farmacología , Biomarcadores de Tumor/sangre , Carcinoma Ductal Pancreático/tratamiento farmacológico , Recurrencia Local de Neoplasia/epidemiología , Neoplasias Pancreáticas/tratamiento farmacológico , Antígenos de Carbohidratos Asociados a Tumores/sangre , Antígenos de Carbohidratos Asociados a Tumores/inmunología , Antineoplásicos/uso terapéutico , Biomarcadores de Tumor/inmunología , Carcinoma Ductal Pancreático/sangre , Carcinoma Ductal Pancreático/inmunología , Carcinoma Ductal Pancreático/mortalidad , Línea Celular Tumoral , Supervivencia sin Enfermedad , Resistencia a Antineoplásicos/inmunología , Humanos , Concentración 50 Inhibidora , Biopsia Líquida , Recurrencia Local de Neoplasia/inmunología , Recurrencia Local de Neoplasia/prevención & control , Neoplasias Pancreáticas/sangre , Neoplasias Pancreáticas/inmunología , Neoplasias Pancreáticas/mortalidad , Polisacáridos/sangre , Polisacáridos/inmunología , Medición de Riesgo/métodos
10.
Bioresour Technol ; 312: 123535, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32454440

RESUMEN

In order to explore the effects of different mechanical fragmentation on cellulose separation and cellulose polymorphic transformation of wheat straw during alkali treatment, one coarse milled (CM) and two ball milled wheat straw samples (BM30 and BM120) were treated with different NaOH concentrations (1%-10%), and the lignocellulosic compositions and crystalline-structural various were quantitative and qualitative characterized. The quantitative equations between cellulose content and NaOH concentration of different mechanical treated samples were YCM = 69.8-35.1exp(-0.64X)), YBM30 = 71.3-35.1exp(-0.86X)) and YBM120 = 73.5-35.1exp(-1.82X)). The enhancement effect of cellulose separation with the increasing mechanical fragmentation intensity is mainly due to the increasing hemicellulose solubilization. X-ray diffraction results reveals that the NaOH concentration required for cellulose crystalline transformation of CM, BM30 and BM120 is 10%, 8% and 2%, respectively. In conclusion, mechanical fragmentation contributes to cellulose separation and cellulose crystalline transformation under lower NaOH concentration.


Asunto(s)
Celulosa , Triticum , Álcalis , Hidróxido de Sodio , Difracción de Rayos X
11.
Bioresour Technol ; 286: 121364, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31026715

RESUMEN

In this work, the deconstruction mechanism of corn stover cell wall polymers during ball milling was evaluated. The characterization showed that ball milling not only brought about the dissociation of the cross-linked cellulose-hemicellulose-lignin complex but also led to the depolymerization of the cell-wall polymers especially the carbohydrates. Micromorphology characterization revealed that mechanical treatment disrupted the orderly fibrillar matrices with a porous structure. The breakage of ß-1,4 glycosidic bonds in cellulose and the decomposition of arabinoxylans indicated the modification in polysaccharide chains. The degradation of lignin-carbohydrate complex (LCC) linkages and the cleavage of ß-O-4' linkages in lignin approved the partial degradation of lignin. In conclusion, mechanochemistry is an efficient force to make the polymers in plant fibers more digestible.


Asunto(s)
Lignina , Polímeros , Pared Celular , Celulosa
12.
Bioresour Technol ; 273: 70-76, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30415071

RESUMEN

Straw biomass is a promising adsorbent for the removal of heavy metals. To improve its Pb(II) adsorption capacity and elucidate competition of adsorption mechanisms (e.g., ion exchange and precipitation), the Pb(II) adsorption mechanisms for wheat straw (WS-CK), wheat straw-biochar (WS-BC), and ball-milled wheat straw-biochar (WS-BC + BM) samples were investigated in detail by EDX, XRD, and FTIR. The results implied that the Pb(II) adsorption capacities at an adsorbent dosage of 0.2 g/L onto WS-CK, WS-BC, and WS-BC + BM were 46.33, 119.55, and 134.68 mg/g, respectively. This indicates that carbonization and ball milling are efficient techniques for improving the adsorption capacity of Pb(II) onto wheat straw, as WS-BC and WS-BC + BM exhibited adsorption capacities comparable to other commonly used bioadsorbents. Carbonization contributed significantly to precipitation (e.g., PbCO3 and Pb3(CO3)2(OH)2). Furthermore, competition existed between ion exchange and precipitation during the Pb(II) adsorption process. With relative lower adsorbent dosages, carbonization and ball milling enhanced ion exchange capacity.


Asunto(s)
Carbono/metabolismo , Plomo/metabolismo , Triticum/metabolismo , Adsorción , Biomasa , Carbón Orgánico , Intercambio Iónico
13.
Sci Total Environ ; 692: 479-489, 2019 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-31351290

RESUMEN

To determine the quantitative correlations between physicochemical characteristics and Pb(II) adsorption amounts of biochar fractions, we prepared wheat straw-derived biochar under various carbonization temperatures (300-900 °C). The different fractions of the wheat straw-derived biochar, water-soluble material (WM), acid-soluble material (AM), and organic material (OM), were acquired. The ash content, ultimate analysis, pH, ion strength (IS), cation exchange capacity (CEC), and acidic functional groups (AFG) were characterized. The Pb(II) adsorption amounts of different biochars and their fractions were determined. The results revealed that the proportions of biochar fractions (WM, AM, and OM) varied with various carbonization temperatures. The maximum Pb(II) adsorption amount of wheat straw-derived biochar (qTotal) was 157.95 ±â€¯0.13 mg/g obtained at 800 °C, and the quantitative correlations between Pb(II) adsorption amount (q) and carbonization temperature (T) can be elaborated by qTotal = 170.72-336.62exp(-0.0035T) (R2 = 0.97), qWM = 106.18-390.10exp(-0.0046T) (R2 = 0.98), qAM = 496.16-477.74exp(-0.0001T) (R2 = 0.79), and qOM = 1.80 + 34.69exp(-0.0038T) (R2 = 0.85). For rate of contribution (RC) for Pb(II) adsorption, when T < 400 °C, the order was AM (60.72 ±â€¯7.33%) > OM (23.41 ±â€¯7.33%) > WM (15.87 ±â€¯0.30%); however, when T ≥ 400 °C, the order was WM (52.31 ±â€¯0.85% - 67.65 ±â€¯2.99%) > AM (29.65 ±â€¯0.46% - 35.77 ±â€¯0.12%) > OM (2.30 ±â€¯0.47% - 12.02 ±â€¯2.43%). Moreover, qWM and qAM exhibited significant positive linear correlations with ash (qWM = 9.92Ash - 123.65, and qAM = 2.13Ash - 0.49), qTotal was predominantly affected by ash content (qTotal = 10.97 Ash - 95.49). The EDX, XRD, and FTIR analysis results further clarified that ion exchange and precipitation were the main adsorption mechanisms for Pb(II) adsorption by wheat straw-derived biochar.


Asunto(s)
Carbón Orgánico/análisis , Plomo/química , Triticum/química , Adsorción , Animales , Calor , Incineración
14.
Clin Cancer Res ; 25(9): 2745-2754, 2019 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-30617132

RESUMEN

PURPOSE: The CA19-9 biomarker is elevated in a substantial group of patients with pancreatic ductal adenocarcinoma (PDAC), but not enough to be reliable for the detection or diagnosis of the disease. We hypothesized that a glycan called sTRA (sialylated tumor-related antigen) is a biomarker for PDAC that improves upon CA19-9. EXPERIMENTAL DESIGN: We examined sTRA and CA19-9 expression and secretion in panels of cell lines, patient-derived xenografts, and primary tumors. We developed candidate biomarkers from sTRA and CA19-9 in a training set of 147 plasma samples and used the panels to make case-control calls, based on predetermined thresholds, in a 50-sample validation set and a blinded, 147-sample test set. RESULTS: The sTRA glycan was produced and secreted by pancreatic tumors and models that did not produce and secrete CA19-9. Two biomarker panels improved upon CA19-9 in the training set, one optimized for specificity, which included CA19-9 and 2 versions of the sTRA assay, and another optimized for sensitivity, which included 2 sTRA assays. Both panels achieved statistical improvement (P < 0.001) over CA19-9 in the validation set, and the specificity-optimized panel achieved statistical improvement (P < 0.001) in the blinded set: 95% specificity and 54% sensitivity (75% accuracy), compared with 97%/30% (65% accuracy). Unblinding produced further improvements and revealed independent, complementary contributions from each marker. CONCLUSIONS: sTRA is a validated serological biomarker of PDAC that yields improved performance over CA19-9. The new panels may enable surveillance for PDAC among people with elevated risk, or improved differential diagnosis among patients with suspected pancreatic cancer.


Asunto(s)
Antígenos de Carbohidratos Asociados a Tumores/sangre , Biomarcadores de Tumor/sangre , Antígeno CA-19-9/sangre , Carcinoma Ductal Pancreático/diagnóstico , Ácido N-Acetilneuramínico/química , Neoplasias Pancreáticas/diagnóstico , Anciano , Animales , Carcinoma Ductal Pancreático/sangre , Estudios de Casos y Controles , Femenino , Estudios de Seguimiento , Humanos , Masculino , Ratones , Persona de Mediana Edad , Neoplasias Pancreáticas/sangre , Pronóstico , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
15.
Clin Cancer Res ; 13(20): 6049-55, 2007 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-17947467

RESUMEN

PURPOSE: Aberrant c-Met expression has been implicated in most types of human cancer. We are developing Met-directed imaging and therapeutic agents. EXPERIMENTAL DESIGN: To seek peptides that bind specifically to receptor Met, the Met-expressing cell lines S114 and SK-LMS-1 were used for biopanning with a random peptide phage display library. Competition ELISA, fluorescence-activated cell sorting analysis, an internalization assay, and a cell proliferation assay were used to characterize a Met-binding peptide in vitro. To evaluate the utility of the peptide as a diagnostic agent in vivo, 125I-labeled peptide was injected i.v. into nude mice bearing s.c. xenografts of the Met-expressing and hepatocyte growth factor (HGF)/scatter factor-expressing SK-LMS-1/HGF, and total body scintigrams were obtained between 1 and 24 h postinjection. RESULTS: One Met-binding peptide (YLFSVHWPPLKA), designated Met-pep1, reacts with Met on the cell surface and competes with HGF/scatter factor binding to Met in a dose-dependent manner. Met-pep1 is internalized by Met-expressing cells after receptor binding. Met-pep1 inhibits human leiomyosarcoma SK-LMS-1 cell proliferation in vitro. In SK-LMS-1 mouse xenografts, tumor-associated activity was imaged as early as 1 h postinjection and remained visible in some animals as late as 24 h postinjection. CONCLUSIONS: Met-pep1 specifically interacts with Met: it is internalized by Met-expressing cells and inhibits tumor cell proliferation in vitro; it is a potential diagnostic agent for tumor imaging.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , Biblioteca de Péptidos , Proteínas Proto-Oncogénicas c-met/metabolismo , Animales , Proliferación Celular , Relación Dosis-Respuesta a Droga , Ensayo de Inmunoadsorción Enzimática , Citometría de Flujo , Factor de Crecimiento de Hepatocito/metabolismo , Humanos , Ratones , Ratones Desnudos , Células 3T3 NIH , Trasplante de Neoplasias , Péptidos/química
16.
Bioresour Technol ; 241: 214-219, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28570886

RESUMEN

To investigate the change of structure and physicochemical properties of wheat straw in ball milling process at cellular scale, a series of wheat straws samples with different milling time were produced using an ultrafine vibration ball mill. A multitechnique approach was used to analyze the variation of wheat straw properties. The results showed that the characteristics of wheat straw powder displayed regular changes as a function of the milling time, i.e., the powder underwent the inversion of breakage to agglomerative regime during wheat straw ball milling process. The crystallinity index, bulk density and water retention capacity of wheat straw were exponential relation with ball milling time. Moreover, ball milling continually converted macromolecules of wheat straw cell wall into water-soluble substances resulting in the water extractives proportional to milling time.


Asunto(s)
Eliminación de Residuos , Triticum , Agua
17.
Bioresour Technol ; 241: 262-268, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28575789

RESUMEN

Mechanical fragmentation is an important pretreatment in the biomass biotransformation process. Mechanical fragmentation at the tissue scale significantly reduced the particle size of rice straw but did not significantly change its crystalline properties; the increase in the glucose yield was limited from 28.75% (95.55mg/g substrate) to 35.29% (115.28mg/g substrate). Mechanical fragmentation at the cellular scale destroyed the cell wall structure and reduced its crystalline properties. Thus, the glucose yield also showed a significant increase from 35.29% (115.28mg/g substrate) to 81.71% (287.07mg/g of substrate). The quantitative equations among the particle size, crystalline properties and glucose yield (mg/g substrate) are as follows: CrI=44.14×[1-exp(-0.03658×D50)] and CP=(8.403×logD50-24.1836)/(1-4.225/D50^0.5); GY=-5.636CrI+343.7 and GY=-14.62CP+512.1; and GY=97.218+247.5×exp(-0.03824×D50). The quantitative correlations among the mechanical fragmentation scales and crystalline properties can determine the effect and mechanism of mechanical fragmentation on biomass and can further promote the construction of a cost-competitive biotransformation process for biomass.


Asunto(s)
Glucosa , Oryza , Biomasa , Reactores Biológicos , Pared Celular , Hidrólisis
18.
Oncogene ; 24(23): 3697-707, 2005 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-15782129

RESUMEN

Induction of the urokinase-type plasminogen activator (uPA) by hepatocyte growth factor/scatter factor (HGF/SF) plays an important role in tumor cell invasion and metastasis that is mediated through the Met receptor tyrosine kinase. Geldanamycins (GA) are antitumor drugs that bind and inhibit HSP90 chaperone activity at nanomolar concentrations (nM-GAi) by preventing proper folding and functioning of certain oncoproteins. Previously, we have shown that a subset of GA derivatives exhibit exquisite potency, inhibiting HGF/SF-induced uPA-plasmin activation at femtomolar concentrations (fM-GAi) in canine MDCK cells. Here, we report that (1) inhibition of HGF/SF-induced uPA activity by fM-GAi is not uncommon, in that several human tumor glioblastoma cell lines (DBTRG, U373 and SNB19), as well as SK-LMS-1 human leiomyosarcoma cells are also sensitive to fM-GAi; (2) fM-GAi drugs only display inhibitory activity against HGF/SF-induced uPA activity (rather than basal activity), and only when the observed magnitude of uPA activity induction by HGF/SF is at least 1.5 times basal uPA activity; and (3) not only do fM-GAi derivatives strongly inhibit uPA activity but they also block MDCK cell scattering and in vitro invasion of human glioblastoma cells at similarly low drug concentrations. These effects of fM-GAi drugs on the Met-activated signaling pathway occur at concentrations well below those required to measurably affect Met expression or cell proliferation. We also examined the effect of Radicicol (RA), a drug with higher affinity than GA for HSP90. RA displays uPA activity inhibition at nanomolar levels, but not at lower concentrations, indicating that HSP90 is not likely the fM-GAi molecular target. Thus, we show that certain GA drugs (fM-GAi) in an HGF/SF-dependent manner block uPA-plasmin activation in tumor cells at femtomolar levels. This inhibition can also be observed in scattering and in vitro invasion assays. Our findings also provide strong circumstantial evidence for a novel non-HSP90 molecular target that is involved in HGF/SF-mediated tumor cell invasion.


Asunto(s)
Antibióticos Antineoplásicos/farmacología , Factor de Crecimiento de Hepatocito/antagonistas & inhibidores , Quinonas/farmacología , Activador de Plasminógeno de Tipo Uroquinasa/antagonistas & inhibidores , Animales , Benzoquinonas , Línea Celular , Perros , Proteínas HSP90 de Choque Térmico/metabolismo , Humanos , Lactamas Macrocíclicas , Invasividad Neoplásica , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Proto-Oncogénicas c-met , Receptores de Factores de Crecimiento/metabolismo
19.
Bioresour Technol ; 205: 159-65, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26826955

RESUMEN

In this work, corncob samples at different scales, i.e., plant scale (>1mm), tissue scale (500-100µm) and cellular scale (50-30µm), were produced to investigate the impact and mechanisms of different mechanical fragmentations on microstructure features and enzymatic hydrolysis. The results showed that the microstructure features and enzymatic hydrolysis of corncob samples, either at a plant scale or tissue scale, did not change significantly. Conversely, corncob samples at a cellular scale exhibited some special properties, i.e., an increase in the special surface area with the inner mesopores and macropores exposed to the surface; breakage of crystalline cellulose and linkages in polysaccharides; and a higher proportion of polysaccharides on the surface, which significantly enhanced enzymatic digestibility resulting in a 98.3% conversion yield of cellulose to glucose which is the highest conversion ever reported. In conclusion, mechanical fragmentation at the cellular scale is an effective pretreatment for corncob.


Asunto(s)
Biotecnología/métodos , Glucosa/metabolismo , Zea mays/química , Zea mays/ultraestructura , Celulasas/química , Celulasas/metabolismo , Celulosa/química , Celulosa/metabolismo , Glucosa/química , Hidrólisis , Microscopía Electrónica de Rastreo , Tamaño de la Partícula , Polisacáridos/química , Espectroscopía Infrarroja por Transformada de Fourier , Propiedades de Superficie , Difracción de Rayos X
20.
Oncogene ; 23(30): 5193-202, 2004 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-15122328

RESUMEN

A strict regulation of hepatocyte growth factor/scatter factor (HGF/SF)-Met signaling is essential for its appropriate function. Several negative regulators of Met signaling have been identified. Here we report that human Spry2 is induced by HGF/SF and negatively regulates HGF/SF-Met signaling. We show that overexpression of Spry2 inhibits cell proliferation, anchorage-independent cell growth, and migration in wound-healing and in vitro invasion assays. Measured in an electric cell-substrate impedance sensing biosensor, cell movement is restricted, because Spry2 dramatically facilitates cell attachment and spreading by enhancing focal adhesions and increasing stress fibers. An analysis of cell cycle distribution shows, unexpectedly, that Spry2-GFP cells are polyploid. Thus, as with FGF and EGF receptors, Spry2-GFP tempers downstream Met signaling in addition to its pronounced effect on cell adhesion, and it has properties suitable to be considered a tumor-suppressor protein.


Asunto(s)
División Celular , Movimiento Celular , Regulación Neoplásica de la Expresión Génica , Factor de Crecimiento de Hepatocito/metabolismo , Mitógenos/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Técnicas Biosensibles , Western Blotting , Carcinoma de Células Renales/metabolismo , Carcinoma de Células Renales/patología , Adhesión Celular , Línea Celular Tumoral , Colágeno/metabolismo , Combinación de Medicamentos , Adhesiones Focales , Proteínas Fluorescentes Verdes , Factor de Crecimiento de Hepatocito/farmacología , Humanos , Laminina/metabolismo , Leiomiosarcoma/metabolismo , Leiomiosarcoma/patología , Proteínas Luminiscentes/metabolismo , Mitógenos/farmacología , Invasividad Neoplásica , Poliploidía , Proteoglicanos/metabolismo , Proteínas Proto-Oncogénicas c-met/metabolismo , Transducción de Señal , Fibras de Estrés
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA