Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Adv Sci (Weinh) ; : e2400633, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38894590

RESUMEN

Carrier dynamics detection in different dimensions (space, time, and energy) with high resolutions plays a pivotal role in the development of modern semiconductor devices, especially in low-dimensional, high-speed, and ultrasensitive devices. Here, a femtosecond electron-based versatile microscopy is reported that combines scanning ultrafast electron microscopy (SUEM) imaging and time-resolved cathodoluminescence (TRCL) detection, which allows for visualizing and decoupling different dynamic processes of carriers involved in surface and bulk in semiconductors with unprecedented spatiotemporal and energetic resolutions. The achieved spatial resolution is better than 10 nm, and the temporal resolutions for SUEM imaging and TRCL detection are ≈500 fs and ≈4.5 ps, respectively, representing state-of-the-art performance. To demonstrate its unique capability, the surface and bulk carrier dynamics involved in n-type gallium arsenide (GaAs) are directly tracked and distinguished. It is revealed, in real time and space, that hot carrier cooling, defect trapping, and interband-/defect-assisted radiative recombination in the energy domain result in ordinal super-diffusion, localization, and sub-diffusion of carriers at the surface, elucidating the crucial role of surface states on carrier dynamics. The study not only gives a comprehensive physical picture of carrier dynamics in GaAs, but also provides a powerful platform for exploring complex carrier dynamics in semiconductors for promoting their device performance.

2.
iScience ; 26(11): 108296, 2023 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-38026186

RESUMEN

Mixed-dimensional heterostructures have drawn significant attention due to their intriguing physical properties and potential applications in electronic and optoelectronic nanodevices. However, limited by the lattice matching, the preparation of heterostructures is experimentally difficult and the underlying growth mechanism has not been well established. Here, we report a three-step seeding epitaxial growth strategy for synthesizing mixed-dimensional heterostructures of one-dimensional microwire (MW) and two-dimensional atomic thin film. Our growth strategy has successfully realized direct epitaxial growth of WSe2 film on WOx MW and significantly improves the quality of the epitaxial WSe2 monolayer, which is evidenced by the remarkably enhanced photoluminescence (PL). More intriguingly, the as-synthesized WOx MWs exhibit a strong nonlinear optical response due to the enhancement effect of the core (WOx)-shell (WSe2) nanocavity. Our work provides a feasible route for direct growth of WOx-based mixed-dimensional heterostructures, which possess potential applications in high-performance optoelectronic devices.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA