Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 114
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 186(4): 786-802.e28, 2023 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-36754049

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease that results from many diverse genetic causes. Although therapeutics specifically targeting known causal mutations may rescue individual types of ALS, these approaches cannot treat most cases since they have unknown genetic etiology. Thus, there is a pressing need for therapeutic strategies that rescue multiple forms of ALS. Here, we show that pharmacological inhibition of PIKFYVE kinase activates an unconventional protein clearance mechanism involving exocytosis of aggregation-prone proteins. Reducing PIKFYVE activity ameliorates ALS pathology and extends survival of animal models and patient-derived motor neurons representing diverse forms of ALS including C9ORF72, TARDBP, FUS, and sporadic. These findings highlight a potential approach for mitigating ALS pathogenesis that does not require stimulating macroautophagy or the ubiquitin-proteosome system.


Asunto(s)
Esclerosis Amiotrófica Lateral , Fosfatidilinositol 3-Quinasas , Animales , Esclerosis Amiotrófica Lateral/tratamiento farmacológico , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/metabolismo , Neuronas Motoras , Mutación , Proteína FUS de Unión a ARN/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Modelos Animales de Enfermedad
2.
Cell ; 184(3): 689-708.e20, 2021 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-33482083

RESUMEN

The most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) is a GGGGCC repeat expansion in the C9orf72 gene. We developed a platform to interrogate the chromatin accessibility landscape and transcriptional program within neurons during degeneration. We provide evidence that neurons expressing the dipeptide repeat protein poly(proline-arginine), translated from the C9orf72 repeat expansion, activate a highly specific transcriptional program, exemplified by a single transcription factor, p53. Ablating p53 in mice completely rescued neurons from degeneration and markedly increased survival in a C9orf72 mouse model. p53 reduction also rescued axonal degeneration caused by poly(glycine-arginine), increased survival of C9orf72 ALS/FTD-patient-induced pluripotent stem cell (iPSC)-derived motor neurons, and mitigated neurodegeneration in a C9orf72 fly model. We show that p53 activates a downstream transcriptional program, including Puma, which drives neurodegeneration. These data demonstrate a neurodegenerative mechanism dynamically regulated through transcription-factor-binding events and provide a framework to apply chromatin accessibility and transcription program profiles to neurodegeneration.


Asunto(s)
Proteína C9orf72/metabolismo , Expansión de las Repeticiones de ADN/genética , Degeneración Nerviosa/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Animales , Proteínas Reguladoras de la Apoptosis/metabolismo , Axones/metabolismo , Proteína C9orf72/genética , Muerte Celular , Células Cultivadas , Corteza Cerebral/patología , Cromatina/metabolismo , Daño del ADN , Modelos Animales de Enfermedad , Drosophila , Ratones Endogámicos C57BL , Degeneración Nerviosa/patología , Estabilidad Proteica , Transcripción Genética , Proteínas Supresoras de Tumor/metabolismo
3.
Cell ; 172(3): 590-604.e13, 2018 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-29373831

RESUMEN

Stress granules (SGs) are transient ribonucleoprotein (RNP) aggregates that form during cellular stress and are increasingly implicated in human neurodegeneration. To study the proteome and compositional diversity of SGs in different cell types and in the context of neurodegeneration-linked mutations, we used ascorbate peroxidase (APEX) proximity labeling, mass spectrometry, and immunofluorescence to identify ∼150 previously unknown human SG components. A highly integrated, pre-existing SG protein interaction network in unstressed cells facilitates rapid coalescence into larger SGs. Approximately 20% of SG diversity is stress or cell-type dependent, with neuronal SGs displaying a particularly complex repertoire of proteins enriched in chaperones and autophagy factors. Strengthening the link between SGs and neurodegeneration, we demonstrate aberrant dynamics, composition, and subcellular distribution of SGs in cells from amyotrophic lateral sclerosis (ALS) patients. Using three Drosophila ALS/FTD models, we identify SG-associated modifiers of neurotoxicity in vivo. Altogether, our results highlight SG proteins as central to understanding and ultimately targeting neurodegeneration.


Asunto(s)
Esclerosis Amiotrófica Lateral/metabolismo , Gránulos Citoplasmáticos/metabolismo , Mapas de Interacción de Proteínas , Ribonucleoproteínas/metabolismo , Estrés Fisiológico , Animales , Drosophila melanogaster , Células HEK293 , Células HeLa , Humanos , Neuronas/metabolismo , Transporte de Proteínas
4.
Cell ; 171(5): 994-1000, 2017 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-29149615

RESUMEN

Eukaryotic translation is tightly regulated to ensure that protein production occurs at the right time and place. Recent studies on abnormal repeat proteins, especially in age-dependent neurodegenerative diseases caused by nucleotide repeat expansion, have highlighted or identified two forms of unconventional translation initiation: usage of AUG-like sites (near cognates) or repeat-associated non-AUG (RAN) translation. We discuss how repeat proteins may differ due to not just unconventional initiation, but also ribosomal frameshifting and/or imperfect repeat DNA replication, expansion, and repair, and we highlight how research on translation of repeats may uncover insights into the biology of translation and its contribution to disease.


Asunto(s)
Enfermedades Neurodegenerativas/genética , Biosíntesis de Proteínas , Animales , Codón Iniciador , Sistema de Lectura Ribosómico , Humanos , Enfermedades Neurodegenerativas/metabolismo , Sistemas de Lectura Abierta , Secuencias Reguladoras de Ácido Ribonucleico , Expansión de Repetición de Trinucleótido
5.
RNA ; 28(2): 123-138, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34848561

RESUMEN

GGGGCC (G4C2) repeat expansion in the first intron of C9ORF72 causes amyotrophic lateral sclerosis and frontotemporal dementia. Repeat-containing RNA is translated into dipeptide repeat (DPR) proteins, some of which are neurotoxic. Using dynamic ribosome profiling, we identified three translation initiation sites in the intron upstream of (G4C2) repeats; these sites are detected irrespective of the presence or absence of the repeats. During translocation, ribosomes appear to be stalled on the repeats. An AUG in the preceding C9ORF72 exon initiates a uORF that inhibits downstream translation. Polysome isolation indicates that unspliced (G4C2) repeat-containing RNA is a substrate for DPR protein synthesis. (G4C2) repeat-containing RNA translation is 5' cap-independent but inhibited by the initiation factor DAP5, suggesting an interplay with uORF function. These results define novel translational mechanisms of expanded (G4C2) repeat-containing RNA in disease.


Asunto(s)
Proteína C9orf72/genética , Iniciación de la Cadena Peptídica Traduccional , ARN Mensajero/química , Ribosomas/metabolismo , Proteína C9orf72/metabolismo , Repeticiones de Dinucleótido , Células HEK293 , Células HeLa , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo
6.
Hum Genet ; 142(8): 1263-1270, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37085629

RESUMEN

Exocytosis is the process by which secretory vesicles fuse with the plasma membrane to deliver materials to the cell surface or to release cargoes to the extracellular space. The exocyst-an evolutionarily conserved octameric protein complex-mediates spatiotemporal control of SNARE complex assembly for vesicle fusion and tethering the secretory vesicles to the plasma membrane. The exocyst participates in diverse cellular functions, including protein trafficking to the plasma membrane, membrane extension, cell polarity, neurite outgrowth, ciliogenesis, cytokinesis, cell migration, autophagy, host defense, and tumorigenesis. Exocyst subunits are essential for cell viability; and mutations or variants in several exocyst subunits have been implicated in human diseases, mostly neurodevelopmental disorders and ciliopathies. These conditions often share common features such as developmental delay, intellectual disability, and brain abnormalities. In this review, we summarize the mutations and variants in exocyst subunits that have been linked to disease and discuss the implications of exocyst dysfunction in other disorders.


Asunto(s)
Enfermedades del Sistema Nervioso , Proteínas de Transporte Vesicular , Humanos , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo , Citoplasma/metabolismo , Membrana Celular/genética , Membrana Celular/metabolismo , Exocitosis/genética , Enfermedades del Sistema Nervioso/genética
7.
Proc Natl Acad Sci U S A ; 116(19): 9628-9633, 2019 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-31019093

RESUMEN

GGGGCC (G4C2) repeat expansion in C9ORF72 is the most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). One class of major pathogenic molecules in C9ORF72-ALS/FTD is dipeptide repeat proteins such as poly(GR), whose toxicity has been well documented in cellular and animal models. However, it is not known how poly(GR) toxicity can be alleviated, especially in patient neurons. Using Drosophila as a model system in an unbiased genetic screen, we identified a number of genetic modifiers of poly(GR) toxicity. Surprisingly, partial loss of function of Ku80, an essential DNA repair protein, suppressed poly(GR)-induced retinal degeneration in flies. Ku80 expression was greatly elevated in flies expressing poly(GR) and in C9ORF72 iPSC-derived patient neurons. As a result, the levels of phosphorylated ATM and P53 as well as other downstream proapoptotic proteins such as PUMA, Bax, and cleaved caspase-3 were all significantly increased in C9ORF72 patient neurons. The increase in the levels of Ku80 and some downstream signaling proteins was prevented by CRISPR-Cas9-mediated deletion of expanded G4C2 repeats. More importantly, partial loss of function of Ku80 in these neurons through CRISPR/Cas9-mediated ablation or small RNAs-mediated knockdown suppressed the apoptotic pathway. Thus, partial inhibition of the overactivated Ku80-dependent DNA repair pathway is a promising therapeutic approach in C9ORF72-ALS/FTD.


Asunto(s)
Esclerosis Amiotrófica Lateral , Proteína C9orf72 , Reparación del ADN , Demencia Frontotemporal , Autoantígeno Ku , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/metabolismo , Animales , Proteínas Reguladoras de la Apoptosis/genética , Proteínas Reguladoras de la Apoptosis/metabolismo , Proteína C9orf72/genética , Proteína C9orf72/metabolismo , Sistemas CRISPR-Cas , Modelos Animales de Enfermedad , Drosophila melanogaster , Demencia Frontotemporal/genética , Demencia Frontotemporal/metabolismo , Autoantígeno Ku/genética , Autoantígeno Ku/metabolismo , Secuencias Repetitivas de Aminoácido
8.
EMBO J ; 36(20): 2931-2950, 2017 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-28916614

RESUMEN

Frontotemporal dementia (FTD), the second most common form of dementia in people under 65 years of age, is characterized by progressive atrophy of the frontal and/or temporal lobes. FTD overlaps extensively with the motor neuron disease amyotrophic lateral sclerosis (ALS), especially at the genetic level. Both FTD and ALS can be caused by many mutations in the same set of genes; the most prevalent of these mutations is a GGGGCC repeat expansion in the first intron of C9ORF72 As shown by recent intensive studies, some key cellular pathways are dysregulated in the ALS-FTD spectrum disorder, including autophagy, nucleocytoplasmic transport, DNA damage repair, pre-mRNA splicing, stress granule dynamics, and others. These exciting advances reveal the complexity of the pathogenic mechanisms of FTD and ALS and suggest promising molecular targets for future therapeutic interventions in these devastating disorders.


Asunto(s)
Esclerosis Amiotrófica Lateral/fisiopatología , Demencia Frontotemporal/fisiopatología , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/terapia , Animales , Fenómenos Fisiológicos Celulares , Demencia Frontotemporal/terapia , Humanos
9.
Nature ; 525(7567): 129-33, 2015 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-26308899

RESUMEN

The GGGGCC (G4C2) repeat expansion in a noncoding region of C9orf72 is the most common cause of sporadic and familial forms of amyotrophic lateral sclerosis and frontotemporal dementia. The basis for pathogenesis is unknown. To elucidate the consequences of G4C2 repeat expansion in a tractable genetic system, we generated transgenic fly lines expressing 8, 28 or 58 G4C2-repeat-containing transcripts that do not have a translation start site (AUG) but contain an open-reading frame for green fluorescent protein to detect repeat-associated non-AUG (RAN) translation. We show that these transgenic animals display dosage-dependent, repeat-length-dependent degeneration in neuronal tissues and RAN translation of dipeptide repeat (DPR) proteins, as observed in patients with C9orf72-related disease. This model was used in a large-scale, unbiased genetic screen, ultimately leading to the identification of 18 genetic modifiers that encode components of the nuclear pore complex (NPC), as well as the machinery that coordinates the export of nuclear RNA and the import of nuclear proteins. Consistent with these results, we found morphological abnormalities in the architecture of the nuclear envelope in cells expressing expanded G4C2 repeats in vitro and in vivo. Moreover, we identified a substantial defect in RNA export resulting in retention of RNA in the nuclei of Drosophila cells expressing expanded G4C2 repeats and also in mammalian cells, including aged induced pluripotent stem-cell-derived neurons from patients with C9orf72-related disease. These studies show that a primary consequence of G4C2 repeat expansion is the compromise of nucleocytoplasmic transport through the nuclear pore, revealing a novel mechanism of neurodegeneration.


Asunto(s)
Transporte Activo de Núcleo Celular/genética , Expansión de las Repeticiones de ADN/genética , Drosophila melanogaster/citología , Drosophila melanogaster/metabolismo , Sistemas de Lectura Abierta/genética , Proteínas/genética , Transporte de ARN/genética , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/patología , Animales , Animales Modificados Genéticamente , Proteína C9orf72 , Drosophila melanogaster/genética , Ojo/metabolismo , Femenino , Demencia Frontotemporal/genética , Demencia Frontotemporal/patología , Células HeLa , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Masculino , Músculos/citología , Músculos/metabolismo , Neuronas/citología , Neuronas/metabolismo , Poro Nuclear/genética , Poro Nuclear/metabolismo , Poro Nuclear/patología , Fenotipo , Biosíntesis de Proteínas , ARN/genética , ARN/metabolismo , Glándulas Salivales/citología , Glándulas Salivales/metabolismo , Glándulas Salivales/patología
10.
Mol Cell ; 52(2): 264-71, 2013 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-24095276

RESUMEN

Phagophore maturation is a key step in the macroautophagy pathway, which is critical in many important physiological and pathological processes. Here we identified Drosophila N-ethylmaleimide-sensitive fusion protein 2 (dNSF2) and soluble NSF attachment protein (Snap) as strong genetic modifiers of mutant CHMP2B, an ESCRT-III component that causes frontotemporal dementia and autophagosome accumulation. Among several SNAP receptor (SNARE) genes, Drosophila syntaxin 13 (syx13) exhibited a strong genetic interaction with mutant CHMP2B. Knockdown of syntaxin 13 (STX13) or its binding partner Vti1a in mammalian cells caused LC3-positive puncta to accumulate and blocks autophagic flux. STX13 was present on LC3-positive phagophores induced by rapamycin and was highly enriched on multilamellar structures induced by dysfunctional ESCRT-III. Loss of STX13 also caused the accumulation of Atg5-positive puncta and the formation of multilamellar structures. These results suggest that STX13 is a genetic modifier of ESCRT-III dysfunction and participates in the maturation of phagophores into closed autophagosomes.


Asunto(s)
Autofagia , Proteínas de Drosophila/metabolismo , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Fagosomas/metabolismo , Proteínas Qa-SNARE/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Animales , Western Blotting , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Complejos de Clasificación Endosomal Requeridos para el Transporte/genética , Anomalías del Ojo/genética , Anomalías del Ojo/metabolismo , Demencia Frontotemporal/genética , Demencia Frontotemporal/metabolismo , Células HEK293 , Células HeLa , Humanos , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Microscopía Confocal , Microscopía Inmunoelectrónica , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Mutación , Proteínas Sensibles a N-Etilmaleimida/genética , Proteínas Sensibles a N-Etilmaleimida/metabolismo , Fagosomas/ultraestructura , Fenotipo , Proteínas Qa-SNARE/genética , Interferencia de ARN , Proteínas de Transporte Vesicular/genética
11.
Hum Mol Genet ; 27(8): 1382-1395, 2018 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-29432529

RESUMEN

Frontotemporal dementia (FTD) is one of the most prevalent forms of early-onset dementia. However, the pathological mechanisms driving neuronal atrophy in FTD remain poorly understood. Here we identify a conserved role for the novel pro-apoptotic protein plenty of SH3s (POSH)/SH3 domain containing ring finger 1 in mediating neuropathology in Drosophila and mammalian models of charged multivesicular body protein 2B (CHMP2BIntron5) associated FTD. Aberrant, AKT dependent, accumulation of POSH was observed throughout the nervous system of both Drosophila and mice expressing CHMP2BIntron5. Knockdown of POSH was shown to be neuroprotective and sufficient to alleviate aberrant neuronal morphology, behavioral deficits and premature-lethality in Drosophila models, as well as dendritic collapse and cell death in CHMP2BIntron5expressing rat primary neurons. POSH knockdown also ameliorated elevated markers of Jun N-terminal kinase and apoptotic cascades in both Drosophila and mammalian models. This study provides the first characterization of POSH as a potential component of an FTD neuropathology, identifying a novel apoptotic pathway with relevance to the FTD spectrum.


Asunto(s)
Proteínas Portadoras/genética , Proteínas del Citoesqueleto/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Demencia Frontotemporal/genética , Proteínas Quinasas JNK Activadas por Mitógenos/genética , Proteínas del Tejido Nervioso/genética , Neuronas/metabolismo , Proteínas de Transporte Vesicular/genética , Animales , Animales Modificados Genéticamente , Apoptosis/genética , Proteínas Portadoras/antagonistas & inhibidores , Proteínas Portadoras/metabolismo , Proteínas del Citoesqueleto/antagonistas & inhibidores , Proteínas del Citoesqueleto/metabolismo , Modelos Animales de Enfermedad , Proteínas de Drosophila/antagonistas & inhibidores , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Demencia Frontotemporal/metabolismo , Demencia Frontotemporal/patología , Regulación de la Expresión Génica , Humanos , Intrones , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Larva/genética , Larva/metabolismo , Longevidad/genética , Ratones , Proteínas del Tejido Nervioso/antagonistas & inhibidores , Proteínas del Tejido Nervioso/metabolismo , Sistema Nervioso/metabolismo , Sistema Nervioso/patología , Neuronas/patología , Cultivo Primario de Células , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Ratas , Transducción de Señal , Proteínas de Transporte Vesicular/metabolismo
12.
EMBO J ; 35(8): 845-65, 2016 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-26869642

RESUMEN

Disturbance of endoplasmic reticulum (ER) proteostasis is a common feature of amyotrophic lateral sclerosis (ALS). Protein disulfide isomerases (PDIs) areERfoldases identified as possibleALSbiomarkers, as well as neuroprotective factors. However, no functional studies have addressed their impact on the disease process. Here, we functionally characterized fourALS-linked mutations recently identified in two majorPDIgenes,PDIA1 andPDIA3/ERp57. Phenotypic screening in zebrafish revealed that the expression of thesePDIvariants induce motor defects associated with a disruption of motoneuron connectivity. Similarly, the expression of mutantPDIs impaired dendritic outgrowth in motoneuron cell culture models. Cellular and biochemical studies identified distinct molecular defects underlying the pathogenicity of thesePDImutants. Finally, targetingERp57 in the nervous system led to severe motor dysfunction in mice associated with a loss of neuromuscular synapses. This study identifiesERproteostasis imbalance as a risk factor forALS, driving initial stages of the disease.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Neuronas Motoras/patología , Procolágeno-Prolina Dioxigenasa/genética , Proteína Disulfuro Isomerasas/genética , Esclerosis Amiotrófica Lateral/patología , Animales , Animales Modificados Genéticamente , Electromiografía , Embrión no Mamífero , Estrés del Retículo Endoplásmico/genética , Humanos , Ratones Noqueados , Mutación , Neuritas/patología , Procolágeno-Prolina Dioxigenasa/metabolismo , Proteína Disulfuro Isomerasas/metabolismo , Pez Cebra/embriología , Pez Cebra/genética
13.
Hum Mol Genet ; 26(11): 2146-2155, 2017 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-28379367

RESUMEN

Mutations in the profilin 1 (PFN1) gene are causative for familial amyotrophic lateral sclerosis (fALS). However, it is still not fully understood how these mutations lead to neurodegeneration. To address this question, we generated a novel Drosophila model expressing human wild-type and ALS-causative PFN1 mutants. We show that at larval neuromuscular junctions (NMJ), motor neuron expression of wild-type human PFN1 increases the number of ghost boutons, active zone density, F-actin content, and the formation of filopodia. In contrast, the expression of ALS-causative human PFN1 mutants causes a less pronounced phenotype, suggesting a loss of function of these mutants in promoting NMJ remodeling. Importantly, expression of human PFN1 in motor neurons results in progressive locomotion defects and shorter lifespan in adult flies, while ALS-causative PFN1 mutants display a less toxic effect. In summary, our study provides evidence that PFN1 is important in regulating NMJ morphology and influences survival and locomotion in Drosophila. Furthermore, our results suggest ALS-causative human PFN1 mutants display a partial loss of function relative to wild-type hPFN1 that may contribute to human disease pathogenesis.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Profilinas/genética , Profilinas/metabolismo , Actinas/metabolismo , Secuencia de Aminoácidos , Esclerosis Amiotrófica Lateral/metabolismo , Animales , Modelos Animales de Enfermedad , Drosophila/metabolismo , Regulación de la Expresión Génica , Humanos , Neuronas Motoras/metabolismo , Mutación , Unión Neuromuscular/metabolismo
14.
PLoS Genet ; 11(5): e1005264, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-26000445

RESUMEN

Intragenic microRNAs (miRNAs), located mostly in the introns of protein-coding genes, are often co-expressed with their host mRNAs. However, their functional interaction in development is largely unknown. Here we show that in Drosophila, miR-92a and miR-92b are embedded in the intron and 3'UTR of jigr1, respectively, and co-expressed with some jigr1 isoforms. miR-92a and miR-92b are highly expressed in neuroblasts of larval brain where Jigr1 expression is low. Genetic deletion of both miR-92a and miR-92b demonstrates an essential cell-autonomous role for these miRNAs in maintaining neuroblast self-renewal through inhibiting premature differentiation. We also show that miR-92a and miR-92b directly target jigr1 in vivo and that some phenotypes due to the absence of these miRNAs are partially rescued by reducing the level of jigr1. These results reveal a novel function of the miR-92 family in Drosophila neuroblasts and provide another example that local negative feedback regulation of host genes by intragenic miRNAs is essential for animal development.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Regulación hacia Abajo , Proteínas de Drosophila/metabolismo , Drosophila/genética , MicroARNs/metabolismo , Células-Madre Neurales/citología , Regiones no Traducidas 3' , Animales , Encéfalo/embriología , Encéfalo/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Drosophila/genética , Regulación del Desarrollo de la Expresión Génica , Larva/genética , Larva/metabolismo , Masculino , MicroARNs/genética , Células-Madre Neurales/metabolismo , Neuroglía/citología , Neuroglía/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Alineación de Secuencia
15.
Hum Mol Genet ; 23(6): 1467-78, 2014 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-24163244

RESUMEN

Progranulin (GRN) mutations causing haploinsufficiency are a major cause of frontotemporal lobar degeneration (FTLD-TDP). Recent discoveries demonstrating sortilin (SORT1) is a neuronal receptor for PGRN endocytosis and a determinant of plasma PGRN levels portend the development of enhancers targeting the SORT1-PGRN axis. We demonstrate the preclinical efficacy of several approaches through which impairing PGRN's interaction with SORT1 restores extracellular PGRN levels. Our report is the first to demonstrate the efficacy of enhancing PGRN levels in iPSC neurons derived from frontotemporal dementia (FTD) patients with PGRN deficiency. We validate a small molecule preferentially increases extracellular PGRN by reducing SORT1 levels in various mammalian cell lines and patient-derived iPSC neurons and lymphocytes. We further demonstrate that SORT1 antagonists and a small-molecule binder of PGRN588₋593, residues critical for PGRN-SORT1 binding, inhibit SORT1-mediated PGRN endocytosis. Collectively, our data demonstrate that the SORT1-PGRN axis is a viable target for PGRN-based therapy, particularly in FTD-GRN patients.


Asunto(s)
Proteínas Adaptadoras del Transporte Vesicular/genética , Endocitosis/efectos de los fármacos , Demencia Frontotemporal/genética , Células Madre Pluripotentes Inducidas/metabolismo , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Piridinas/farmacología , Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Línea Celular Tumoral , Demencia Frontotemporal/patología , Variación Genética , Células HEK293 , Haploinsuficiencia , Humanos , Péptidos y Proteínas de Señalización Intercelular/genética , Linfocitos/metabolismo , Progranulinas , Reproducibilidad de los Resultados
17.
Mol Biol Evol ; 31(7): 1894-901, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24723422

RESUMEN

The first microRNAs (miRNAs) were identified as essential, conserved regulators of gene expression, targeting the same genes across nearly all bilaterians. However, there are also prominent examples of conserved miRNAs whose functions appear to have shifted dramatically, sometimes over very brief periods of evolutionary time. To determine whether the functions of conserved miRNAs are stable or dynamic over evolutionary time scales, we have here defined the neutral turnover rates of short sequence motifs in predicted primate 3'-UTRs. We find that commonly used approaches to quantify motif turnover rates, which use a presence/absence scoring in extant lineages to infer ancestral states, are inherently biased to infer the accumulation of new motifs, leading to the false inference of continually increasing regulatory complexity over time. Using a maximum likelihood approach to reconstruct individual ancestral nucleotides, we observe that binding sites of conserved miRNAs in fact have roughly equal numbers of gain and loss events relative to ancestral states and turnover extremely slowly relative to nearly identical permutations of the same motif. Contrary to case studies showing examples of functional turnover, our systematic study of miRNA binding sites suggests that in primates, the regulatory roles of conserved miRNAs are strongly conserved. Our revised methodology may be used to quantify the mechanism by which regulatory networks evolve.


Asunto(s)
Regiones no Traducidas 3' , MicroARNs/genética , MicroARNs/metabolismo , Primates/genética , Animales , Secuencia de Bases , Sitios de Unión , Secuencia Conservada , Evolución Molecular , Humanos , Funciones de Verosimilitud , Filogenia , Selección Genética
18.
Hum Mol Genet ; 22(2): 218-25, 2013 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-23042786

RESUMEN

TDP-43 is an evolutionarily conserved RNA-binding protein currently under intense investigation for its involvement in the molecular pathogenesis of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). TDP-43 is normally localized in the nucleus, but translocated to the cytoplasm in diseased neurons. The endogenous functions of TDP-43 in the nervous system remain poorly understood. Here, we show that the loss of Drosophila TDP-43 (dTDP-43) results in an increased production of sensory bristles and sensory organ precursor (SOP) cells on the notum of some but not all flies. The location of ectopic SOPs varies among mutant flies. The penetrance of this novel phenotype is dependent on the gender and sensitive to environmental influences. A similar SOP phenotype was also observed on the wing and in the embryos. Overexpression of dTDP-43 causes both loss and ectopic production of SOPs. Ectopic expression of ALS-associated mutant human TDP-43 (hTDP-43(M337V) and hTDP-43(Q331K)) produces a less severe SOP phenotype than hTDP-43(WT), indicating a partial loss of function of mutant hTDP-43. In dTDP-43 mutants, miR-9a expression is significantly reduced. Genetic interaction studies further support the notion that dTDP-43 acts through miR-9a to control the precision of SOP specification. These findings reveal a novel role for endogenous TDP-43 in neuronal specification and suggest that the FTD/ALS-associated RNA-binding protein TDP-43 functions to ensure the robustness of genetic control programs.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Drosophila/genética , Drosophila/metabolismo , Regulación de la Expresión Génica , MicroARNs/genética , Neuronas/metabolismo , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/metabolismo , Animales , Animales Modificados Genéticamente , Proteínas de Unión al ADN/genética , Epistasis Genética , Femenino , Demencia Frontotemporal/genética , Demencia Frontotemporal/metabolismo , Humanos , Masculino , Mutación , Fenotipo , Factores Sexuales
20.
Acta Neuropathol ; 130(4): 525-35, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26031661

RESUMEN

C9ORF72 repeat expansion is the most common genetic mutation in frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS). Abnormal dipeptide repeat proteins (DPRs) generated from repeat-associated non-AUG (RAN) translation of repeat-containing RNAs are thought to be pathogenic; however, the mechanisms are unknown. Here we report that (GR)80 and (PR)80 are toxic in neuronal and non-neuronal cells in Drosophila. In contrast to reported shorter poly(GR) forms, (GR)80 is mostly localized throughout the cytosol without detectable accumulation in the nucleolus, accompanied by suppression of Notch signaling and cell loss in the wing. Some Notch target genes are also downregulated in brains and iPSC-derived cortical neurons of C9ORF72 patients. Increased Notch expression largely suppressed (GR)80-induced cell loss in the wing. When co-expressed in Drosophila, HeLa cells, or human neurons, (GA)80 recruited (GR)80 into cytoplasmic inclusions, partially decreasing the toxicity of (GR)80 and restoring Notch signaling in Drosophila. Thus, different DPRs have opposing roles in cell loss and we identify the Notch pathway as one of the receptor signaling pathways that might be compromised in C9ORF72 FTD/ALS.


Asunto(s)
Expansión de las Repeticiones de ADN , Cuerpos de Inclusión/metabolismo , Neuronas/metabolismo , Proteínas/metabolismo , Receptores Notch/metabolismo , Anciano , Esclerosis Amiotrófica Lateral/genética , Animales , Animales Modificados Genéticamente , Proteína C9orf72 , Muerte Celular/fisiología , Drosophila , Ojo/metabolismo , Ojo/patología , Demencia Frontotemporal/genética , Células HeLa , Humanos , Células Madre Pluripotentes Inducidas/fisiología , Persona de Mediana Edad , Actividad Motora/fisiología , Neuronas/patología , Proteínas/genética , Receptores Notch/genética , Transducción de Señal , Alas de Animales/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA