Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Infect Drug Resist ; 17: 2541-2554, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38933778

RESUMEN

Background: Carbapenem-resistant Klebsiella pneumoniae (CRKP) infections are a great threat to public health worldwide. Ceftazidime-avibactam (CZA) is an effective ß-lactam/ß-lactamase inhibitors against CRKP. However, reports of resistance to CZA, mainly caused by Klebsiella pneumoniae carbapenemase (KPC) variants, have increased in recent years. In this study, we aimed to describe the resistance characteristics of KPC-12, a novel KPC variant identified from a CZA resistant K. pneumoniae. Methods: The K. pneumoniae YFKP-97 collected from a patient with respiratory tract infection was performed whole-genome sequencing (WGS) on the Illumina NovaSeq 6000 platform. Genomic characteristics were analyzed using bioinformatics methods. Antimicrobial susceptibility testing was conducted by the broth microdilution method. Induction of resistant strain was carried out in vitro as previously described. The G. mellonella killing assay was used to evaluate the pathogenicity of strains, and the conjugation experiment was performed to evaluate plasmid transfer ability. Results: Strain YFKP-97 was a multidrug-resistant clinical ST11-KL47 K. pneumoniae confers high-level resistance to CZA (16/4 µg/mL). WGS revealed that a KPC variant, KPC-12, was carried by the IncFII (pHN7A8) plasmids (pYFKP-97_a and pYFKP-97_b) and showed significantly decreased activity against carbapenems. In addition, there was a dose-dependent effect of bla KPC-12 on its activity against ceftazidime. In vitro inducible resistance assay results demonstrated that the KPC-12 variant was more likely to confer resistance to CZA than the KPC-2 and KPC-3 variants. Discussion: Our study revealed that patients who was not treated with CZA are also possible to be infected with CZA-resistant strains harbored a novel KPC variant. Given that the transformant carrying bla KPC-12 was more likely to exhibit a CZA-resistance phenotype. Therefore, it is important to accurately identify the KPC variants as early as possible.

2.
mSphere ; : e0064324, 2024 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-39311583

RESUMEN

The widespread prevalence and dissemination of antibiotic-resistant bacteria, coupled with the diminishing supply of new antibiotics, emphasize the pressing necessity for the exploration of innovative antibacterial agents. Previously, we detailed the impact of the small-molecule compound CY-158-11 on S. aureus biofilm. By hindering adhesion and PIA-mediated biofilm formation, subinhibitory concentrations of CY-158-11 exhibit antibiofilm activity toward S. aureus. Here, we sought to elucidate the antibacterial activity and mode of action of this compound. Upon CY-158-11 treatment in culture, the inhibition of bacterial growth, coupled with MBC to MIC of >4, indicated that CY-158-11 exerted a bacteriostatic effect. Particularly, CY-158-11 showed strong antibacterial activity against a wide variety of S. aureus, including multidrug-resistant bacteria. We found that CY-158-11 promoted the permeability of cell membrane and propidium iodide absorption as well as caused the dissipation of membrane potential. The effect of CY-158-11 on the mammalian cytoplasmic membrane was measured using hemolytic and cytotoxicity assays, and the skin irritation and systemic toxicity of the drug were measured by injecting the compound into the skin and tail vein of mice. Moreover, CY-158-11 exhibited considerable efficacy in a subcutaneous abscess mouse model of S. aureus infection. In conclusion, CY-158-11 possesses antibacterial properties, including inhibition of bacterial growth, damage to cell membranes, and treatment of skin abscesses, which can be a promising therapeutic option for combating S. aureus. IMPORTANCE: The combination of the rising incidence of antibiotic resistance and the shrinking antibiotic pipeline has raised concern about the postantibiotic era. New antibacterial agents and targets are required to combat S. aureus-associated infections. In this study, we identified a maleimide-diselenide hybrid compound CY-158-11 exhibiting antibacterial activity against S. aureus in vitro and in vivo at relatively low concentrations. Furthermore, the investigation of its mode of action revealed that CY-158-11 can selectively perturb the cytoplasmic membrane of bacteria without harming mammalian cells or mouse organs. Thus, CY-158-11 is a compelling novel drug for development as a new therapy for S. aureus infections.

3.
Adv Sci (Weinh) ; : e2403387, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39018261

RESUMEN

RNA splicing is a dynamic molecular process in response to environmental stimuli and is strictly regulated by the spliceosome. Sm proteins, constituents of the spliceosome, are key components that mediate splicing reactions; however, their potential role in hepatocellular carcinoma (HCC) is poorly understood. In the study, SNRPD2 (PD2) is found to be the most highly upregulated Sm protein in HCC and to act as an oncogene. PD2 modulates DDX39A intron retention together with HNRNPL to sustain the DDX39A short variant (39A_S) expression. Mechanistically, 39A_S can mediate MYC mRNA nuclear export to maintain high MYC protein expression, while MYC in turn potentiates PD2 transcription. Importantly, digitoxin can directly interact with PD2 and has a notable cancer-suppressive effect on HCC. The study reveals a novel mechanism by which DDX39A senses oncogenic MYC signaling and undergoes splicing via PD2 to form a positive feedback loop in HCC, which can be targeted by digitoxin.

4.
Front Oncol ; 12: 980111, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36276157

RESUMEN

Bacteria are important symbionts for humans, which sustain substantial influences on our health. Interestingly, some bastrains have been identified to have therapeutic applications, notably for antitumor activity. Thereby, oncologists have developed various therapeutic models and investigated the potential antitumor mechanisms for bacteria-mediated cancer therapy (BCT). Even though BCT has a long history and exhibits remarkable therapeutic efficacy in pre-clinical animal models, its clinical translation still lags and requires further breakthroughs. This review aims to focus on the established strains of therapeutic bacteria and their antitumor mechanisms, including the stimulation of host immune responses, direct cytotoxicity, the interference on cellular signal transduction, extracellular matrix remodeling, neoangiogenesis, and metabolism, as well as vehicles for drug delivery and gene therapy. Moreover, a brief discussion is proposed regarding the important future directions for this fantastic research field of BCT at the end of this review.

5.
J Chromatogr A ; 1686: 463654, 2022 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-36434830

RESUMEN

Metabolic reprogramming of cancer cells is a hallmark of cancer, in which the polar metabolites involving aerobic glycolysis, pentose phosphate pathway (PPP), tricarboxylic acid (TCA) cycle, and glutaminolysis play a crucial role in the occurrence and development of cancer. Therefore, targeted analysis of the polar metabolites in these pathways is of great value for understanding cancers, finding diagnostic biomarkers, and identifying therapeutic targets. However, it is still challenging to directly determine polar metabolites in these pathways without derivatization due to their diverse chemical properties, isomers, and strong polarity. Herein, a highly selective and sensitive HILIC-MS/MS method was developed for direct determination of the polar metabolites in aerobic glycolysis, PPP, TCA cycle, and glutaminolysis pathways. Without derivatization, 19 polar metabolites and their isomers with carbonyl, carboxyl, or phosphoryl groups in human plasma and cell extracts of prostate cancer (PC) were determined with strong retention and high resolution. This method has been widely verified by measuring linearity, precision, sensitivity, repeatability, matrix effect, and accuracy. The analysis of plasma samples by HILIC-MS/MS revealed distinct PC-specific metabolic signatures compared to a healthy control. In addition, this method could also be used to screen the targets of metabolic inhibitors at the cellular level. We conclude that the developed HILIC-MS/MS method provides a valuable means to study the cancer metabolic reprogramming or energy metabolism in living organisms.


Asunto(s)
Neoplasias de la Próstata , Espectrometría de Masas en Tándem , Humanos , Masculino , Cromatografía Liquida , Metabolismo Energético , Interacciones Hidrofóbicas e Hidrofílicas
6.
Nat Commun ; 13(1): 1363, 2022 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-35296659

RESUMEN

Deregulation of alternative splicing is implicated as a relevant source of molecular heterogeneity in cancer. However, the targets and intrinsic mechanisms of splicing in hepatocarcinogenesis are largely unknown. Here, we report a functional impact of a Splicing Regulatory Glutamine/Lysine-Rich Protein 1 (SREK1) variant and its regulator, Serine/arginine-rich splicing factor 10 (SRSF10). HCC patients with poor prognosis express higher levels of exon 10-inclusive SREK1 (SREK1L). SREK1L can sustain BLOC1S5-TXNDC5 (B-T) expression, a targeted gene of nonsense-mediated mRNA decay through inhibiting exon-exon junction complex binding with B-T to exert its oncogenic role. B-T plays its competing endogenous RNA role by inhibiting miR-30c-5p and miR-30e-5p, and further promoting the expression of downstream oncogenic targets SRSF10 and TXNDC5. Interestingly, SRSF10 can act as a splicing regulator for SREK1L to promote hepatocarcinogenesis via the formation of a SRSF10-associated complex. In summary, we demonstrate a SRSF10/SREK1L/B-T signalling loop to accelerate the hepatocarcinogenesis.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroARNs , Empalme Alternativo/genética , Carcinoma Hepatocelular/genética , Proteínas de Ciclo Celular/metabolismo , Exones/genética , Humanos , Neoplasias Hepáticas/genética , MicroARNs/genética , MicroARNs/metabolismo , Proteína Disulfuro Isomerasas/metabolismo , Proteínas Represoras/genética , Factores de Empalme Serina-Arginina/genética , Factores de Empalme Serina-Arginina/metabolismo , Regulación hacia Arriba
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA