Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
FASEB J ; 34(6): 8416-8427, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32350948

RESUMEN

During human erythroid maturation, Hsp70 translocates into the nucleus and protects GATA-1 from caspase-3 cleavage. Failure of Hsp70 to localize to the nucleus was found in Myelodysplastic syndrome (MDS) erythroblasts and can induce dyserythropoiesis, with arrest of maturation and death of erythroblasts. However, the mechanism of the nuclear trafficking of Hsp70 in erythroblasts remains unknown. Here, we found the hematopoietic transcriptional regulator, EDAG, to be a novel binding partner of Hsp70 that forms a protein complex with Hsp70 and GATA-1 during human normal erythroid differentiation. EDAG overexpression blocked the cytoplasmic translocation of Hsp70 induced by EPO deprivation, inhibited GATA-1 degradation, thereby promoting erythroid maturation in an Hsp70-dependent manner. Furthermore, in myelodysplastic syndrome (MDS) patients with dyserythropoiesis, EDAG is dramatically down-regulated, and forced expression of EDAG has been found to restore the localization of Hsp70 in the nucleus and elevate the protein level of GATA-1 to a significant extent. In addition, EDAG rescued the dyserythropoiesis of MDS patients by increasing erythroid differentiation and decreasing cell apoptosis. This study demonstrates the molecular mechanism of Hsp70 nuclear sustaining during erythroid maturation and establishes that EDAG might be a suitable therapeutic target for dyserythropoiesis in MDS patients.


Asunto(s)
Núcleo Celular/metabolismo , Eritroblastos/metabolismo , Eritropoyesis/fisiología , Proteínas HSP70 de Choque Térmico/metabolismo , Síndromes Mielodisplásicos/metabolismo , Proteínas Nucleares/metabolismo , Apoptosis/fisiología , Caspasa 3/metabolismo , Diferenciación Celular/fisiología , Células Cultivadas , Citoplasma/metabolismo , Regulación de la Expresión Génica/fisiología , Enfermedades Hematológicas/metabolismo , Humanos
2.
Environ Sci Technol ; 54(21): 14046-14056, 2020 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-33064470

RESUMEN

Recently, the sulfate radical (SO4•-) has been found to exhibit broad application prospects in various research fields such as chemical, biomedical, and environmental sciences. It has been suggested that SO4•- could be transformed into a more reactive hydroxyl radical (•OH); however, no direct and unequivocal experimental evidence has been reported yet. In this study, using an electron spin resonance (ESR) secondary radical spin-trapping method coupled with the classic spin-trapping agent 5,5-dimethyl-1-pyrroline N-oxide (DMPO) and the typical •OH-scavenging agent dimethyl sulfoxide (DMSO), we found that •OH can be produced from three SO4•--generating systems from weakly acidic (pH = 5.5) to alkaline conditions (optimal at pH = 13.0), while SO4•- is the predominant radical species at pH < 5.5. A comparative study with three typical •OH-generating systems strongly supports the above conclusion. This is the first direct and unequivocal ESR spin-trapping evidence for •OH formation from SO4•- over a wide pH range, which is of great significance to understand and study the mechanism of many SO4•--related reactions and processes. This study also provides an effective and direct method for unequivocally distinguishing •OH from SO4•-.


Asunto(s)
Óxidos N-Cíclicos , Radical Hidroxilo , Espectroscopía de Resonancia por Spin del Electrón , Radicales Libres , Concentración de Iones de Hidrógeno , Marcadores de Spin , Sulfatos
3.
J Org Chem ; 82(24): 13084-13092, 2017 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-29096055

RESUMEN

Pyridinium aldoximes, which are best-known as therapeutic antidotes for organophosphorus chemical warfare nerve-agents and pesticides, have been found to markedly detoxify polyhalogenated quinones, which are a class of carcinogenic intermediates and recently identified disinfection byproducts in drinking water. However, the exact chemical mechanism underlying this detoxication remains unclear. Here we demonstrate that pralidoxime can remarkably facilitate the dechlorination/hydroxylation of the highly toxic tetrachloro-1,4-benzoquinone in two-consecutive steps to generate the much less toxic 2,5-dichloro-3,6-dihydroxy-1,4-benzoquonine, with rate enhancements of up to 180 000-times. On the contrary, no accelerating effect was noticed with O-methylated pralidoxime. The major reaction product from pralidoxime was identified as its corresponding nitrile (2-cyano-1-methylpyridinium chloride). Along with oxygen-18 isotope-labeling studies, a reaction mechanism was proposed in which nucleophilic substitution coupled with an unprecedented double Beckmann fragmentation reaction was responsible for the dramatic enhancement in the detoxification process. This represents the first report of an unusually mild and facile Beckmann-type fragmentation that can occur under normal physiological conditions in two-consecutive steps. The study may have broad biomedical and environmental significance for future investigations of aldoxime therapeutic agents and carcinogenic polyhalogenated quinones.


Asunto(s)
Fase I de la Desintoxicación Metabólica , Compuestos de Pralidoxima/química , Estructura Molecular
4.
Environ Sci Technol ; 51(5): 2934-2943, 2017 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-28128926

RESUMEN

We found recently that intrinsic chemiluminescence (CL) could be produced by all 19 chlorophenolic persistent organic pollutants during environmentally friendly advanced oxidation processes. However, the underlying mechanism for the structure-activity relationship (SAR, i.e., the chemical structures and the CL generation) remains unclear. In this study, we found that, for all 19 chlorophenol congeners tested, the CL increased with an increasing number of chlorine atoms in general; and for chlorophenol isomers (such as the 6 trichlorophenols), the CL decreased in the order of meta- > ortho-/para-Cl-substituents with respect to the -OH group of chlorophenols. Further studies showed that not only chlorinated quinoid intermediates but also, more interestingly, chlorinated semiquinone radicals were produced during the degradation of trichlorophenols by the Fenton reagent; and the type and yield of which were determined by the directing effects, hydrogen bonding, and steric hindrance effect of the OH- and/or Cl-substitution groups. More importantly, a good correlation was observed between the formation of these quinoid intermediates and CL generation, which could fully explain the above SAR findings. This represents the first report on the structure-activity relationship study and the critical role of quinoid and semiquinone radical intermediates, which may have broad chemical and environmental implications for future studies on remediation of other halogenated persistent organic pollutants by advanced oxidation processes.


Asunto(s)
Luminiscencia , Fenoles/química , Clorofenoles/química , Oxidación-Reducción , Relación Estructura-Actividad
5.
Environ Sci Technol ; 49(13): 7940-7, 2015 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-26009932

RESUMEN

The ubiquitous distribution coupled with their carcinogenicity has raised public concerns on the potential risks to both human health and the ecosystem posed by the halogenated aromatic compounds (XAr). Recently, advanced oxidation processes (AOPs) have been increasingly favored as an "environmentally-green" technology for the remediation of such recalcitrant and highly toxic XAr. Here, we show that AOPs-mediated degradation of the priority pollutant pentachlorophenol and all other XAr produces an intrinsic chemiluminescence that directly depends on the generation of the extremely reactive hydroxyl radicals. We propose that the hydroxyl radical-dependent formation of quinoid intermediates and electronically excited carbonyl species is responsible for this unusual chemiluminescence production. A rapid, sensitive, simple, and effective chemiluminescence method was developed to quantify trace amounts of XAr and monitor their real-time degradation kinetics. These findings may have broad biological and environmental implications for future research on this important class of halogenated persistent organic pollutants.


Asunto(s)
Carcinógenos/química , Hidrocarburos Aromáticos/análisis , Hidrocarburos Halogenados/análisis , Luminiscencia , Ácido Edético/química , Ambiente , Peróxido de Hidrógeno/química , Radical Hidroxilo/química , Hierro/química , Cinética , Oxidación-Reducción , Ozono/química , Pentaclorofenol/química
6.
J Pathol ; 230(4): 365-76, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23839903

RESUMEN

The hepatic growth factor hepatopoietin Cn (HPPCn) prevents liver injury induced by carbon tetrachloride in rats. Sphingosine 1-phosphate (S1P) is a bioactive sphingolipid produced by sphingosine kinase (SphK). S1P and S1P receptors (S1PRs) are involved in liver fibrogenesis and oxidative injury. This work sought to understand the mechanism by which SphK/S1P/S1PRs are involved in the protective effects of HPPCn on ethanol-induced liver injury and fibrosis. Transgenic mice with liver-specific overexpression of HPPCn (HPPCn(liver) (+/+)) were generated. Two ethanol feeding protocols were used to assess the protective effect of HPPCn on acute and chronic liver injury in mice. Specific inhibitors of S1PR1, S1PR2 and S1PR3 and siRNA were used to examine the roles of S1PRs in hepatic stellate cell (HSC) activation and hepatocyte apoptosis. Increased HPPCn expression in transgenic mice attenuated fibrosis induced by ethanol and carbon tetrachloride (CCl4). Treatment with recombinant human HPPCn prevented human hepatocyte apoptosis and HSC activation. JTE-013 or S1PR2-siRNA attenuated the effect of HPPCn on HSC activation induced by tumour necrosis factor-α (TNF-α). Consistent with the effect of N,N-dimethylsphingosine (DMS), suramin or S1PR3-siRNA treatment blocked HPPCn-induced Erk1/2 phosphorylation in human hepatocytes. This study demonstrated that HPPCn attenuated oxidative injury and fibrosis induced by ethanol feeding and that the SphK1/S1P/S1PRs signalling pathway contributes to the protective effect of HPPCn on hepatocyte apoptosis and HSC activation.


Asunto(s)
Etanol , Factor de Crecimiento de Hepatocito/metabolismo , Cirrosis Hepática Alcohólica/prevención & control , Hígado/enzimología , Proteínas Nucleares/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Receptores de Lisoesfingolípidos/metabolismo , Animales , Apoptosis , Células Cultivadas , Modelos Animales de Enfermedad , Regulación de la Expresión Génica , Células Estrelladas Hepáticas/enzimología , Células Estrelladas Hepáticas/patología , Factor de Crecimiento de Hepatocito/genética , Humanos , Hígado/efectos de los fármacos , Hígado/patología , Cirrosis Hepática Alcohólica/enzimología , Cirrosis Hepática Alcohólica/etiología , Cirrosis Hepática Alcohólica/genética , Cirrosis Hepática Alcohólica/patología , Lisofosfolípidos/metabolismo , Ratones , Ratones Transgénicos , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Proteínas Nucleares/genética , Estrés Oxidativo , Fosforilación , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Interferencia de ARN , ARN Mensajero/metabolismo , Receptores de Lisoesfingolípidos/antagonistas & inhibidores , Receptores de Lisoesfingolípidos/genética , Transducción de Señal , Esfingosina/análogos & derivados , Esfingosina/metabolismo , Factores de Tiempo , Transfección , Factor de Necrosis Tumoral alfa/metabolismo
7.
Int J Hematol ; 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38814500

RESUMEN

G protein pathway suppressor 2 (GPS2) has been shown to play a pivotal role in human and mouse definitive erythropoiesis in an EKLF-dependent manner. However, whether GPS2 affects human primitive erythropoiesis is still unknown. This study demonstrated that GPS2 positively regulates erythroid differentiation in K562 cells, which have a primitive erythroid phenotype. Overexpression of GPS2 promoted hemin-induced hemoglobin synthesis in K562 cells as assessed by the increased percentage of benzidine-positive cells and the deeper red coloration of the cell pellets. In contrast, knockdown of GPS2 inhibited hemin-induced erythroid differentiation of K562 cells. GPS2 overexpression also enhanced erythroid differentiation of K562 cells induced by cytosine arabinoside (Ara-C). GPS2 induced hemoglobin synthesis by increasing the expression of globin and ALAS2 genes, either under steady state or upon hemin treatment. Promotion of erythroid differentiation of K562 cells by GPS2 mainly relies on NCOR1, as knockdown of NCOR1 or lack of the NCOR1-binding domain of GPS2 potently diminished the promotive effect. Thus, our study revealed a previously unknown role of GPS2 in regulating human primitive erythropoiesis in K562 cells.

8.
Transpl Immunol ; 76: 101763, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36436796

RESUMEN

OBJECTIVES: Gout (GT) belongs to a group of diseases caused by a purine metabolic disorder. GT is an inflammatory disease caused by the local deposition of uric acid in joints or adjacent tissues. The mechanism of GT is not fully explained, especially the involvement of an immune system. The objective of this study was to investigate the change in peripheral CD4+T subsets in acute and chronic GT patients. METHODS: A total of 205 patients with acute and chronic GT and 87 healthy controls (HCs) were enrolled. The medical history improvement, clinical indicators, immune function, and peripheral CD4+T-lymphocyte detected by modified flow cytometry were collected in all subjects. RESULTS: Compared with healthy controls, acute and chronic GT patients remarkably increased the absolute counts of T helper type 1 (Th1) cells (P < 0.05) and decreased the absolute number of Treg cells without significant difference (P > 0.05). In addition, the absolute number and percentage of Th1 cells and Th1/T helper type 2 (Th2) ratio increased significantly, and the ratio of Th2 cells decreased in patients with chronic GT compared to patients with acute GT (P < 0.05). The results of Spearman correlation analysis showed a notably negative correlation between the level of CRP and the absolute counts of peripheral Th1 and Th17 cells in patients with GT, while the levels of CD4+T sunsets had no significant correlation with ESR and uric acid. The course of the disease, the absolute number of Th1 cells, the percentage of Th1 cells and the ratio of Th1/Th2 cells were significantly associated with the progression of the disease, and the course of the disease was an independent risk factor for patients with chronic GT. CONCLUSION: The balance of Th1 and Th2 were involved throughout the whole stages of GT, Th17 cells then become involved in the disease process as the disease progresses.


Asunto(s)
Gota , Ácido Úrico , Humanos , Células TH1 , Células Th2 , Linfocitos T Reguladores , Células Th17
9.
Cell Death Dis ; 14(11): 743, 2023 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-37968261

RESUMEN

BRISC (BRCC3 isopeptidase complex) is a deubiquitinating enzyme that has been linked with inflammatory processes, but its role in liver diseases and the underlying mechanism are unknown. Here, we investigated the pathophysiological role of BRISC in acute liver failure using a mice model induced by D-galactosamine (D-GalN) plus lipopolysaccharide (LPS). We found that the expression of BRISC components was dramatically increased in kupffer cells (KCs) upon LPS treatment in vitro or by the injection of LPS in D-GalN-sensitized mice. D-GalN plus LPS-induced liver damage and mortality in global BRISC-null mice were markedly attenuated, which was accompanied by impaired hepatocyte death and hepatic inflammation response. Constantly, treatment with thiolutin, a potent BRISC inhibitor, remarkably alleviated D-GalN/LPS-induced liver injury in mice. By using bone marrow-reconstituted chimeric mice and cell-specific BRISC-deficient mice, we demonstrated that KCs are the key effector cells responsible for protection against D-GalN/LPS-induced liver injury in BRISC-deficient mice. Mechanistically, we found that hepatic and circulating levels of TNF-α, IL-6, MCP-1, and IL-1ß, as well as TNF-α- and MCP-1-producing KCs, in BRISC-deleted mice were dramatically decreased as early as 1 h after D-GalN/LPS challenge, which occurred prior to the elevation of the liver injury markers. Moreover, LPS-induced proinflammatory cytokines production in KCs was significantly diminished by BRISC deficiency in vitro, which was accompanied by potently attenuated NF-κB activation. Restoration of NF-κB activation by two small molecular activators of NF-κB p65 effectively reversed the suppression of cytokines production in ABRO1-deficient KCs by LPS. In conclusion, BRISC is required for optimal activation of NF-κB-mediated proinflammatory cytokines production in LPS-treated KCs and contributes to acute liver injury. This study opens the possibility to develop new strategies for the inhibition of KCs-driven inflammation in liver diseases.


Asunto(s)
Enfermedad Hepática Crónica Inducida por Sustancias y Drogas , Enfermedad Hepática Inducida por Sustancias y Drogas , Animales , Ratones , FN-kappa B/metabolismo , Lipopolisacáridos/farmacología , Macrófagos del Hígado/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Hígado/metabolismo , Inflamación/metabolismo , Galactosamina , Enfermedad Hepática Inducida por Sustancias y Drogas/genética , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo
10.
Nat Commun ; 14(1): 1827, 2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-37005419

RESUMEN

Several groups of bacteria have complex life cycles involving cellular differentiation and multicellular structures. For example, actinobacteria of the genus Streptomyces form multicellular vegetative hyphae, aerial hyphae, and spores. However, similar life cycles have not yet been described for archaea. Here, we show that several haloarchaea of the family Halobacteriaceae display a life cycle resembling that of Streptomyces bacteria. Strain YIM 93972 (isolated from a salt marsh) undergoes cellular differentiation into mycelia and spores. Other closely related strains are also able to form mycelia, and comparative genomic analyses point to gene signatures (apparent gain or loss of certain genes) that are shared by members of this clade within the Halobacteriaceae. Genomic, transcriptomic and proteomic analyses of non-differentiating mutants suggest that a Cdc48-family ATPase might be involved in cellular differentiation in strain YIM 93972. Additionally, a gene encoding a putative oligopeptide transporter from YIM 93972 can restore the ability to form hyphae in a Streptomyces coelicolor mutant that carries a deletion in a homologous gene cluster (bldKA-bldKE), suggesting functional equivalence. We propose strain YIM 93972 as representative of a new species in a new genus within the family Halobacteriaceae, for which the name Actinoarchaeum halophilum gen. nov., sp. nov. is herewith proposed. Our demonstration of a complex life cycle in a group of haloarchaea adds a new dimension to our understanding of the biological diversity and environmental adaptation of archaea.


Asunto(s)
Halobacteriaceae , Streptomyces , Hifa/genética , Proteómica , Filogenia , ARN Ribosómico 16S/genética , Streptomyces/genética , Halobacteriaceae/genética , Esporas , Diferenciación Celular , Análisis de Secuencia de ADN , China
11.
Adv Ther ; 39(10): 4423-4439, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35960483

RESUMEN

BACKGROUND: Ankylosing spondylitis (AS) is a chronic inflammatory disease. Several proinflammatory cytokines produced by T helper 17 (Th17) cells are involved in the pathogenesis of AS. We performed a meta-analysis to determine the levels of Th17 cells and serum Th17-associated cytokines in patients with AS. METHODS: We determined the levels of Th17 cells and Th17 cytokines in patients with AS using data extracted from published articles retrieved from the PubMed, Embase, Web of Science, Cochrane Library, MEDLINE, Web of Knowledge, Clinical Trials.gov, and FDA.gov. DATABASES: The effect estimates were pooled using a random-effects model. The review protocols were registered on PROSPERO (reference: CRD42021255741) and followed the PRISMA guideline. RESULTS: This meta-analysis included 138 studies. Compared to healthy controls (HCs), patients with AS had a higher proportion of Th17 cells (standardized mean difference [SMD] 2.23, 95% confidence interval [CI] 1.78-2.68; p < 0.001) and levels of proinflammatory cytokines, such as interleukin (IL)-17 (SMD 2.04, 95% CI 1.70-2.38; p < 0.001), IL-21 (SMD 1.77, 95% CI 0.95-2.59; p < 0.001), and IL-23 (SMD 1.11, 95% CI 0.78-1.44; p < 0.001). The subgroup analysis showed higher levels of IL-17+ Th17 cells among peripheral blood mononuclear cells (PBMCs) and CD4+ T cells in patients with AS compared to HCs (SMD 2.26, 95% CI 1.58-2.94 [p < 0.001] and SMD 1.61, 95% CI 0.55-2.67 [p = 0.003], respectively). Patients with AS had higher levels of CD4+IL-17+IFN-γ- Th17 in PBMCs and of CD4+CCR6+CCR4+Th17 in CD4+ T cells compared to HCs (SMD 1.85, 95% CI 1.06-2.64 [p < 0.001] and SMD 7.72, 95% CI 6.55-8.89 [p < 0.001], respectively). No significant differences were observed in the proportions of CD4+IL-17+IFN-γ- Th17 in CD4+ T cells and CD4+CCR6+CCR4+ Th17 in PBMCs (SMD - 0.11, 95% CI - 0.61 to 0.38 [p = 0.650] and SMD 1.32, 95% CI - 0.54 to 3.19 [p = 0.165], respectively). In addition, compared to stable AS, the levels of Th17 cells and IL-17 and IL-23 were significantly higher in active AS (SMD 1.58, 95% CI 0.30-2.85 [p = 0.016], SMD 3.52, 95% CI 0.72-6.33 [p = 0.014], and SMD 5.10, 95% CI 1.83-8.36 [p = 0.002], respectively). CONCLUSIONS: The levels of Th17 cells and serum IL-17, IL-21, and IL-23 were higher in patients with AS than in HCs and, compared with stable AS, they increased more significantly in active AS. These results suggest that Th17 cells and Th17-related cytokines play major roles in AS pathogenesis and are an important target for treatment.


Asunto(s)
Espondilitis Anquilosante , Células Th17 , Citocinas , Humanos , Interleucina-17 , Interleucina-23 , Leucocitos Mononucleares/patología , Células Th17/patología
12.
Adv Sci (Weinh) ; 9(5): e2103838, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34923767

RESUMEN

Hematopoietic stem and progenitor cells (HSPCs) possess the remarkable ability to regenerate the whole blood system in response to ablated stress demands. Delineating the mechanisms that maintain HSPCs during regenerative stresses is increasingly important. Here, it is shown that Hemgn is significantly induced by hematopoietic stresses including irradiation and bone marrow transplantation (BMT). Hemgn deficiency does not disturb steady-state hematopoiesis in young mice. Hemgn-/- HSPCs display defective engraftment activity during BMT with reduced homing and survival and increased apoptosis. Transcriptome profiling analysis reveals that upregulated genes in transplanted Hemgn-/- HSPCs are enriched for gene sets related to interferon gamma (IFN-γ) signaling. Hemgn-/- HSPCs show enhanced responses to IFN-γ treatment and increased aging over time. Blocking IFN-γ signaling in irradiated recipients either pharmacologically or genetically rescues Hemgn-/- HSPCs engraftment defect. Mechanistical studies reveal that Hemgn deficiency sustain nuclear Stat1 tyrosine phosphorylation via suppressing T-cell protein tyrosine phosphatase TC45 activity. Spermidine, a selective activator of TC45, rescues exacerbated phenotype of HSPCs in IFN-γ-treated Hemgn-/- mice. Collectively, these results identify that Hemgn is a critical regulator for successful engraftment and reconstitution of HSPCs in mice through negatively regulating IFN-γ signaling. Targeted Hemgn may be used to improve conditioning regimens and engraftment during HSPCs transplantation.


Asunto(s)
Trasplante de Células Madre Hematopoyéticas , Interferón gamma , Animales , Hematopoyesis , Trasplante de Células Madre Hematopoyéticas/métodos , Células Madre Hematopoyéticas/metabolismo , Interferón gamma/metabolismo , Ratones , Acondicionamiento Pretrasplante
13.
Zhongguo Ying Yong Sheng Li Xue Za Zhi ; 37(3): 230-234, 2021 May.
Artículo en Zh | MEDLINE | ID: mdl-34374232

RESUMEN

Objective: To investigate the obestatin neural projections from arcuate nucleus (ARC) to hippocampus in diabetic rats, and its effects on gastric motility and gastric emptying of rats. Methods: Diabetic model was established by fructose intake combined with streptozotocin injected intraperitoneally in healthy male Wistar rats. Diabetic rats were randomly divided into five groups: control group (NS group), 0.1, 1 and 10 pmol obestatin group, and obestatin + NBI27914 group, with 7 rats in each group. 0.5 µl saline (NS), obestatin (0.1 pmol, 1 pmol, 10 pmol) or the mixture (10 pmol obestatin + 60 pmol NBI27914) was injected into the hippocampus respectively, the gastric motility was recorded immediately after administration, and the gastric emptying was studied 15 min later. ARC-hippocampus obestatin neural pathway and ARC obestatin mRNA expression were compared between normal and diabetic rats with fluorogold (FG) retrograde tracing and immunofluorescence histochemical staining. Results: Compared with normal rats, the number of ARC FG/obestatin double labeled neurons and the expression level of ARC obestatin mRNA were decreased significantly in diabetic rats (P<0.05); Obestatin could inhibit gastric motility and gastric emptying in a dose-dependent manner (P<0.05~0.01) and the effects of obestatin could be partially blocked by NBI27914, an antagonist of corticotropin releasing factor receptor 1 (CRFR1) (P<0.05). Compared with normal rats, the inhibitory effects of obestatin on gastric motility and gastric emptying were significantly decreased in diabetic rats (P<0.05). Conclusion: There is an obestatin neural pathway between ARC and hippocampus, which participates in the regulation of gastric motility and gastric emptying in diabetic rats, and CRFR1 signal pathway is involved in this process. The damage of this neural pathway may participate in gastric motility dysfunction in early stage of diabetes.


Asunto(s)
Diabetes Mellitus Experimental , Ghrelina , Animales , Vaciamiento Gástrico , Motilidad Gastrointestinal , Hipocampo , Masculino , Vías Nerviosas , Ratas , Ratas Wistar
14.
Front Pharmacol ; 12: 711126, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34447310

RESUMEN

The compound [3-(1H-benzimidazol-2-methylene)-5-(2-methylphenylaminosulfo)-2-indolone], known as Indo5, is a novel selective inhibitor of c-Met and Trks, and it is a promising anticancer candidate against hepatocellular carcinoma (HCC). Assessing the pharmacokinetic properties, tissue distribution, and toxicity of Indo5 is critical for its medicinal evaluation. A series of sensitive and specific liquid chromatography-tandem mass spectrometry methods were developed and validated to determine the concentration of Indo5 in rat plasma and tissue homogenates. These methods were then applied to investigate the pharmacokinetics and tissue distribution of Indo5 in rats. After intravenous injection of Indo5, the maximum concentration (Cmax) and the time at which Cmax was reached (Tmax) were 1,565.3 ± 286.2 ng/ml and 1 min, respectively. After oral administration, Cmax and Tmax were 54.7 ± 10.4 ng/ml and 2.0 ± 0.48 h, respectively. We calculated the absolute oral bioavailability of Indo5 in rats to be 1.59%. Following intravenous injection, the concentrations of Indo5 in various tissues showed the following order: liver > kidney ≈ heart > lung ≈ large intestine ≈ small intestine ≈ stomach > spleen > brain ≈ testes; hence, Indo5 distributed highest in the liver and could not cross the blood-brain or blood-testes barriers. Continuous injection of Indo5 for 21 days did not lead to liver injury, considering unchanged ALT and AST levels, normal histological architecture of the liver, and normal number and frequencies of immune cells in the liver, indicating a very low toxicity of Indo5 in vivo. Collectively, our findings provide a comprehensive understanding of the biological actions of Indo5 in vivo and further support its development as an antitumor treatment for HCC patients.

15.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 27(3): 958-963, 2019 Jun.
Artículo en Zh | MEDLINE | ID: mdl-31204961

RESUMEN

OBJECTIVE: To investigate the effects of Listeria monocytogenes infection on hematopoietic stem and progenitor cell (HSPC) composition, cell cycle and cell colony-forming ability in mouse bone marrow. METHODS: The C57BL/6J mice were divided into infected group and control group. The mice in injected group were infected intraperitoneally with 6.7×106 CFU Listeria monocytogenes,while the mice in control group were injecfed with PBS of same volume.The serum levels of IFNγ were detected at different time points. After 24 hours, the HS/PC composition, cell cycle and cell colony-forming ability in bone marrow of mice were measured, and the difference between the control group and the infected group was statistically analyzed. RESULTS: Serum IFNγ levels peaked at 24 hours after infection with Listeria monocytogenes. After 24 h, the proportion of LSK, LSK in S phase, and short-term hematopoietic stem cells (ST-HSC) in the infected group were significantly higher than those in the control group (P<0.001), long-term hematopoietic stem cells (LT-HSC) and the proportion of LT-HSC in S phase were significantly increased (P<0.01), and the cell colony-forming ability of bone marrow significantly decreased (P<0.01). [WTHZ]Conclusion: [WTB1]After infection with Listeria monocytogenes, bone marrow hematopoietic stem cells enter the proliferative state from rest, the cell colony-forming ability decreases, suggesting that Listeria monocytogenes infection can cause hematopoietic stem cell depletion.


Asunto(s)
Trasplante de Células Madre Hematopoyéticas , Células Madre Hematopoyéticas , Animales , Médula Ósea , Células de la Médula Ósea , Diferenciación Celular , Proliferación Celular , Ratones , Ratones Endogámicos C57BL
16.
J Exp Clin Cancer Res ; 38(1): 130, 2019 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-30885237

RESUMEN

BACKGROUND: Human hepatocellular carcinoma (HCC) lacks effective curative therapy and there is an urgent need to develop a novel molecular-targeted therapy for HCC. Selective tyrosine kinase inhibitors have shown promise in treating cancers including HCC. Tyrosine kinases c-Met and Trks are potential therapeutic targets of HCC and strategies to interrupt c-Met and Trks cross-signaling may result in increased effects on HCC inhibition. METHODS: The effects of Indo5 on c-Met and Trks activity were determined with in vitro kinase activity assay, cell-based signaling pathway activation, and kinases-driven cell transformation. The in vivo anti-tumor activity was determined with xenograft mice and liver orthotopic mice models. The co-expression of c-Met and TrkB in 180 pairs of HCC and adjacent normal tissues were detected using immunohistochemical staining. RESULTS: Indo5, a novel lead compound displayed biochemical potency against both c-Met and Trks with selectivity over 13 human kinases. Indo5 abrogated HGF-induced c-Met signaling activation and BDNF/NGF-induced Trks signal activation, c-Met or TrkB-mediated cell transformation and migration. Furthermore, Indo5 significantly decreased the growth of HCC cells in xenograft mice and improved the survival of mice with liver orthotopic tumors. In addition, co-expression of c-Met and TrkB in HCC patients was a predictor of poor prognosis, and combined inhibition of c-Met and TrkB exerted a synergistic suppressive effect on HCC. CONCLUSIONS: These findings indicate that Indo5 is associated with marked suppression of c-Met and Trks co-expressing HCC, supporting its clinical development as an antitumor treatment for HCC patients with co-active c-Met and Trks signaling.


Asunto(s)
Antineoplásicos/uso terapéutico , Carcinoma Hepatocelular/tratamiento farmacológico , Neoplasias Hepáticas/tratamiento farmacológico , Proteínas Proto-Oncogénicas c-met/genética , Pirazoles/uso terapéutico , Pirimidinas/uso terapéutico , Animales , Antineoplásicos/farmacología , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patología , Modelos Animales de Enfermedad , Femenino , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Ratones , Ratones Endogámicos BALB C , Proteínas Proto-Oncogénicas c-met/metabolismo , Pirazoles/farmacología , Pirimidinas/farmacología , Ensayos Antitumor por Modelo de Xenoinjerto
18.
Guang Pu Xue Yu Guang Pu Fen Xi ; 28(11): 2503-6, 2008 Nov.
Artículo en Zh | MEDLINE | ID: mdl-19271476

RESUMEN

The M3 (M = Ca, Sr, Ba) Y2 (BO3)4 : Eu3+ red phosphor was synthesized by firing twice at 800 and 1 050 degrees C each for 4 h and 4 h in air, respectively. Y2O3 (99.9%), Eu2O3 (99.9%), H3BO3 (99.9%), CaCO3 (99.9%), SrCO3 (99.9%), BaCO3 (99.9%), Li2CO3 (99.9%), Na2CO3 (99.9%) and K2CO3 (99.9%) were used as starting materials, and the doping Eu3+ concentration was 3 mol%. The excitation spectrum was measured by a SHIMADZU RF-540 ultraviolet spectrophotometer. The emission spectrum was measured by a SPEX1404 spectrophotometer. All the luminescence characteristics of the phosphors were investigated at room temperature. The emission spectrum of M3 (M = Ca, Sr, Ba) Y2 (BO3)4 : Eu3+ phosphor exhibited a 613 nm red emission corresponding to the electric dipole 55D0 - 7F2 transition of Eu3+ under 365 nm excitation. The excitation spectrum for 613 nm indicates that the phosphor can be effectively excited by ultraviolet (UV) (254, 365 and 400 nm) and blue (470 nm) light. The effect of Li+ , Na+ and K+ on the excitation and emission spectra of M3 (M = Ca, Sr, Ba)Y2 (BO3)4 : Eu3+ phosphor was studied. The results show that the location of the excitation and emission spectrum of M3 (M = Ca, Sr, Ba) Y2 (BO3)4 : Eu3+ phosphor was not influenced by Li+, Na+ and K+. However, the excitation and emission spectrum intensities were greatly influenced by Li+, Na+ and K+, and the emission peak intensities were all enhanced. Under the condition of the same Li+, Na+ and K+ concentration, the emission peak intensities of M3 (M = Ca, Sr, Ba)Y2 (BO3)4 : Eu3+ phosphor were compared, and the result shows that the accretion effect of doping Li+ is the best. The effect of Li+ concentration on the emission peak intensity of Sr3 Y2 (BO3)4 : Eu3+ phosphor was studied. The results show that the emission peak intensity firstly increased with the increasing Li+ concentration, then decreased, and reached the maximum value at 5 mol% Li+, and the maximum value is about twice as much as the Li-undoped one.

19.
Free Radic Biol Med ; 104: 54-63, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28062359

RESUMEN

2,6-Dibromohydroquinone (2,6-DBrHQ) has been identified as an reactive metabolite of many brominated phenolic environmental pollutants such as tetrabromobisphenol-A (TBBPA), bromoxynil and 2,4,6-tribromophenol, and was also found as one of disinfection byproducts in drinking water. In this study, we found that the combination of 2,6-DBrHQ and Cu(II) together could induce synergistic DNA damage as measured by double strand breakage in plasmid DNA and 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) formation, while either of them alone has no effect. 2,6-DBrHQ/Cu(II)-induced DNA damage could be inhibited by the Cu(I)-specific chelating agent bathocuproine disulfonate and catalase, but not by superoxide dismutase, nor by the typical hydroxyl radical (•OH) scavengers such as DMSO and mannitol. Interestingly, we found that Cu(II)/Cu(I) could be combined with DNA to form DNA-Cu(II)/Cu(I) complex by complementary application of low temperature direct ESR, circular dichroism, cyclic voltammetry and oxygen consumption methods; and the highly reactive •OH were produced synergistically by DNA-bound-Cu(I) with H2O2 produced by the redox reactions between 2,6-DBrHQ and Cu(II), which then immediately attack DNA in a site-specific manner as demonstrated by both fluorescent method and by ESR spin-trapping studies. Further DNA sequencing investigations provided more direct evidence that 2,6-DBrHQ/Cu(II) caused preferential cleavage at guanine, thymine and cytosine residues. Based on these data, we proposed that the synergistic DNA damage induced by 2,6-DBrHQ/Cu(II) might be due to the synergistic and site-specific production of •OH near the binding site of copper and DNA. Our findings may have broad biological and environmental implications for future research on the carcinogenic polyhalogenated phenolic compounds.


Asunto(s)
Cobre/toxicidad , Daño del ADN/efectos de los fármacos , Agua Potable , Contaminantes Ambientales/toxicidad , 8-Hidroxi-2'-Desoxicoguanosina , Quelantes/farmacología , Roturas del ADN de Doble Cadena/efectos de los fármacos , Desoxiguanosina/análogos & derivados , Desoxiguanosina/química , Desoxiguanosina/metabolismo , Contaminantes Ambientales/metabolismo , Humanos , Hidroquinonas/metabolismo , Hidroquinonas/toxicidad , Radical Hidroxilo/metabolismo , Radical Hidroxilo/toxicidad , Nitrilos/metabolismo , Nitrilos/toxicidad , Oxidación-Reducción , Fenantrolinas/farmacología , Fenoles/metabolismo , Fenoles/toxicidad , Bifenilos Polibrominados/metabolismo , Bifenilos Polibrominados/toxicidad , Especies Reactivas de Oxígeno , Superóxido Dismutasa/química
20.
Syst Appl Microbiol ; 29(4): 308-14, 2006 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-16337766

RESUMEN

A novel actinomycete strain YIM 33378T was isolated from a soil sample collected from Lijiang, Yunnan Province, China. Based on the results of phenotypic and genotypic characteristics, strain YIM 33378T should be assigned to a new species of the genus Nocardia, for which the name Nocardia lijiangensis sp. nov. is proposed. The type strain is YIM 33378T (= CCTCC AA 204005T = KCTC 19028T). The GenBank accession number for the sequence reported in this paper is AY779043.


Asunto(s)
Nocardia/clasificación , Nocardia/aislamiento & purificación , Microbiología del Suelo , Técnicas de Tipificación Bacteriana , Composición de Base , China , ADN Bacteriano/química , ADN Bacteriano/genética , ADN Ribosómico/química , ADN Ribosómico/genética , Ácidos Grasos/análisis , Ácidos Grasos/aislamiento & purificación , Genes de ARNr/genética , Microscopía Electrónica de Rastreo , Datos de Secuencia Molecular , Nocardia/fisiología , Nocardia/ultraestructura , Filogenia , ARN Bacteriano/genética , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA