Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Med Virol ; 96(8): e29830, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39072764

RESUMEN

In the current antiretroviral landscape, continuous efforts are still needed to search for novel chemotypes of human immunodeficiency virus type 1 (HIV-1) inhibitors with improved drug resistance profiles and favorable drug-like properties. Herein, we report the design, synthesis, biological characterization, and druggability evaluation of a class of non-nucleoside reverse transcriptase inhibitors. Guided by the available crystallographic information, a series of novel indolylarylsulfone derivatives were rationally discovered via the substituent decorating strategy to fully explore the chemical space of the entrance channel. Among them, compound 11h bearing the cyano-substituted benzyl moiety proved to be the most effective inhibitor against HIV-1 wild-type and mutant strains (EC50 = 0.0039-0.338 µM), being far more potent than or comparable to etravirine and doravirine. Besides, 11h did not exhibit cytotoxicity at the maximum test concentration. Meanwhile, the binding target of 11h was further confirmed to be reverse transcriptase (IC50 = 0.055 µM). Preliminary structure-activity relationship were discussed to guide further optimization work. Molecular docking and dynamics simulation studies were investigated in detail to rationalize the biological evaluation results. Further drug-likeness assessment indicated that 11h possessed excellent physicochemical properties. Moreover, no apparent hERG blockade liability and cytochrome P450 inhibition were observed for 11h. Notably, 11h was characterized by favorable in vitro metabolic stability with moderate clearance rates and long half-lives in human plasma and liver microsomes. Overall, 11h holds great promise as an ideal Anti-HIV-1 lead compound due to its potent antiviral efficacy, low toxicity, and favorable drug-like profiles.


Asunto(s)
Fármacos Anti-VIH , Diseño de Fármacos , VIH-1 , Simulación del Acoplamiento Molecular , Inhibidores de la Transcriptasa Inversa , Sulfonas , VIH-1/efectos de los fármacos , Humanos , Fármacos Anti-VIH/farmacología , Fármacos Anti-VIH/síntesis química , Fármacos Anti-VIH/química , Relación Estructura-Actividad , Sulfonas/farmacología , Sulfonas/síntesis química , Sulfonas/química , Inhibidores de la Transcriptasa Inversa/farmacología , Inhibidores de la Transcriptasa Inversa/síntesis química , Inhibidores de la Transcriptasa Inversa/química , Transcriptasa Inversa del VIH/antagonistas & inhibidores , Transcriptasa Inversa del VIH/metabolismo
2.
Eur J Med Chem ; 265: 116069, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38160620

RESUMEN

Viral infections are amongst the most prevalent diseases that pose a significant threat to human health. Targeting viral proteins or host factors represents two primary strategies for the development of antiviral drugs. In contrast to virus-targeting antivirals (VTAs), host-targeting antivirals (HTAs) offer advantages in terms of overcoming drug resistance and effectively combating a wide range of viruses, including newly emerging ones. Therefore, targeting host factors emerges as an extremely promising strategy with the potential to address critical challenges faced by VTAs. In recent years, extensive research has been conducted on the discovery and development of HTAs, leading to the approval of maraviroc, a chemokine receptor type 5 (CCR5) antagonist used for the treatment of HIV-1 infected individuals, with several other potential treatments in various stages of development for different viral infections. This review systematically summarizes advancements made in medicinal chemistry regarding various host targets and classifies them into four distinct catagories based on their involvement in the viral life cycle: virus attachment and entry, biosynthesis, nuclear import and export, and viral release.


Asunto(s)
VIH-1 , Virosis , Humanos , Virosis/tratamiento farmacológico , Maraviroc/farmacología , Maraviroc/uso terapéutico , Proteínas Virales/farmacología , Antivirales/farmacología , Antivirales/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA