RESUMEN
AP2/ERF transcription factor family plays an important role in plant development and stress responses. Previous studies have shed light on the evolutionary trajectory of the AP2 and DREB subfamilies. However, knowledge about the evolutionary history of the ERF subfamily in angiosperms still remains limited. In this study, we performed a comprehensive analysis of the ERF subfamily from 107 representative angiosperm species by combining phylogenomic and synteny network approaches. We observed that the expansion of the ERF subfamily was driven not only by whole-genome duplication (WGD) but also by tandem duplication (TD) and transposition duplication events. We also found multiple transposition events in Poaceae, Brassicaceae, Poales, Brassicales, and Commelinids. These events may have had notable impacts on copy number variation and subsequent functional divergence of the ERF subfamily. Moreover, we observed a number of ancient tandem duplications occurred in the ERF subfamily across angiosperms, e.g., in Subgroup IX, IXb originated from ancient tandem duplication events within IXa. These findings together provide novel insights into the evolution of this important transcription factor family.
Asunto(s)
Brassicaceae , Magnoliopsida , Magnoliopsida/genética , Variaciones en el Número de Copia de ADN , Poaceae , Factores de Transcripción/genéticaRESUMEN
The pentatricopeptide repeat (PPR) gene family is one of the largest gene families in land plants. However, current knowledge about the evolution of the PPR gene family remains largely limited. In this study, we performed a comparative genomic analysis of the PPR gene family in O. sativa and its wild progenitor, O. rufipogon, and outlined a comprehensive landscape of gene duplications. Our findings suggest that the majority of PPR genes originated from dispersed duplications. Although segmental duplications have only expanded approximately 11.30% and 13.57% of the PPR gene families in the O. sativa and O. rufipogon genomes, we interestingly obtained evidence that segmental duplication promotes the structural diversity of PPR genes through incomplete gene duplications. In the O. sativa and O. rufipogon genomes, 10 (~33.33%) and 22 pairs of gene duplications (~45.83%) had non-PPR paralogous genes through incomplete gene duplication. Segmental duplications leading to incomplete gene duplications might result in the acquisition of domains, thus promoting functional innovation and structural diversification of PPR genes. This study offers a unique perspective on the evolution of PPR gene structures and underscores the potential role of segmental duplications in PPR gene structural diversity.
Asunto(s)
Duplicación de Gen , Oryza , Oryza/genética , Genes de Plantas , Genómica , Filogenia , Evolución MolecularRESUMEN
Polyploidy, or whole-genome duplication (WGD), serves as a key innovation in plant evolution and is an important genomic feature for all eukaryotes. Neopolyploids have to overcome difficulties in meiosis, genomic alterations, changes of gene expression, and epigenomic reorganization. However, the underlying mechanisms for these processes are poorly understood. One of the most interesting aspects is that genome doubling events increase the dosage of all genes. Unlike allopolyploids entangled by both hybridization and polyploidization, autopolyploids, especially artificial lines, in relatively uniform genetic background offer a model system to understand mechanisms of genome-dosage effects. To investigate DNA methylation effects in response to WGD rather than hybridization, we produced autotetraploid rice with its diploid donor, Oryza sativa ssp. indica cv. Aijiaonante, both of which were independently self-pollinated over 48 generations, and generated and compared their comprehensive transcriptomes, base pair-resolution methylomes, and siRNAomes. DNA methylation variation of transposable elements (TEs) was observed as widespread in autotetraploid rice, in which hypermethylation of class II DNA transposons was predominantly noted in CHG and CHH contexts. This was accompanied by changes of 24-nt siRNA abundance, indicating the role of the RNA-directed DNA methylation pathway. Our results showed that the increased methylation state of class II TEs may suppress the expression of neighboring genes in autotetraploid rice that has obtained double alleles, leading to no significant differences in transcriptome alterations for most genes from its diploid donor. Collectively, our findings suggest that chromosome doubling induces methylation variation in TEs that affect gene expression and may become a "genome shock" response factor to help neoautopolyploids adapt to genome-dosage effects.
Asunto(s)
Metilación de ADN/genética , Elementos Transponibles de ADN/genética , Regulación de la Expresión Génica de las Plantas , Oryza/genética , Poliploidía , Cromosomas de las Plantas/genética , Diploidia , Perfilación de la Expresión Génica , Ontología de Genes , Genes de Plantas , Anotación de Secuencia Molecular , Oryza/citología , Fenotipo , ARN Interferente Pequeño/metabolismoRESUMEN
Comparative genomic analyses among closely related species can greatly enhance our understanding of plant gene and genome evolution. We report de novo-assembled AA-genome sequences for Oryza nivara, Oryza glaberrima, Oryza barthii, Oryza glumaepatula, and Oryza meridionalis. Our analyses reveal massive levels of genomic structural variation, including segmental duplication and rapid gene family turnover, with particularly high instability in defense-related genes. We show, on a genomic scale, how lineage-specific expansion or contraction of gene families has led to their morphological and reproductive diversification, thus enlightening the evolutionary process of speciation and adaptation. Despite strong purifying selective pressures on most Oryza genes, we documented a large number of positively selected genes, especially those genes involved in flower development, reproduction, and resistance-related processes. These diversifying genes are expected to have played key roles in adaptations to their ecological niches in Asia, South America, Africa and Australia. Extensive variation in noncoding RNA gene numbers, function enrichment, and rates of sequence divergence might also help account for the different genetic adaptations of these rice species. Collectively, these resources provide new opportunities for evolutionary genomics, numerous insights into recent speciation, a valuable database of functional variation for crop improvement, and tools for efficient conservation of wild rice germplasm.
Asunto(s)
Adaptación Fisiológica/genética , Interacción Gen-Ambiente , Genoma de Planta , Oryza/genética , África , Secuencia de Aminoácidos , Asia , Australia , Secuencia de Bases , Diploidia , Evolución Molecular , Dosificación de Gen , Genes de Plantas , Variación Genética , MicroARNs/genética , Datos de Secuencia Molecular , Familia de Multigenes , Oryza/clasificación , Filogenia , Proteínas de Plantas/genética , ARN de Planta/genética , Selección Genética , Alineación de Secuencia , Homología de Secuencia , América del Sur , Especificidad de la EspecieRESUMEN
BACKGROUND: Camellia taliensis is one of the most important wild relatives of cultivated tea tree, C. sinensis. The species extensively occupies mountainous habitats representing a wide-range abiotic tolerance and biotic resistance and thus harbors valuable gene resources that may greatly benefit genetic improvement of cultivated tea tree. However, owning to a large genome size of ~3 Gb and structurally complex genome, there are fairly limited genetic information and particularly few genomic resources publicly available for this species. To better understand the key pathways determining tea flavor and enhance tea tree breeding programs, we performed a high-throughput transcriptome sequencing for C. taliensis. RESULTS: In this study, approximate 241.5 million high-quality paired-end reads, accounting for ~24 Gb of sequence data, were generated from tender shoots, young leaves, flower buds and flowers using Illumina HiSeq 2000 platform. De novo assembly with further processing and filtering yielded a set of 67,923 transcripts with an average length of 685 bp and an N50 of 995 bp. Based on sequence similarity searches against public databases, a total of 39,475 transcripts were annotated with gene descriptions, conserved protein domains or gene ontology (GO) terms. Candidate genes for major metabolic pathways involved in tea quality were identified and experimentally validated using RT-qPCR. Further gene expression profiles showed that they are differentially regulated at different developmental stages. To gain insights into the evolution of these genes, we aligned them to the previously cloned orthologous genes in C. sinensis, and found that considerable nucleotide variation within several genes involved in important secondary metabolic biosynthesis pathways, of which flavone synthase II gene (FNSII) is the most variable between these two species. Moreover, comparative analyses revealed that C. taliensis shows a remarkable expansion of LEA genes, compared to C. sinensis, which might contribute to the observed stronger stress resistance of C. taliensis. CONCLUSION: We reported the first large-coverage transcriptome datasets for C. taliensis using the next-generation sequencing technology. Such comprehensive EST datasets provide an unprecedented opportunity for identifying genes involved in several major metabolic pathways and will accelerate functional genomic studies and genetic improvement efforts of tea trees in the future.
Asunto(s)
Redes y Vías Metabólicas/genética , Té/genética , Transcriptoma/genética , Bases de Datos Genéticas , Flores/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Secuenciación de Nucleótidos de Alto Rendimiento , Anotación de Secuencia Molecular , Análisis de Secuencia de ADN , Té/crecimiento & desarrolloRESUMEN
BACKGROUND/AIMS: Physiological mechanical stretch in vivo helps to maintain the quiescent contractile differentiation of vascular smooth muscle cells (VSMCs), but the underlying mechanisms are still unclear. Here, we investigated the effects of SIRT1 in VSMC differentiation in response to mechanical cyclic stretch. METHODS AND RESULTS: Rat VSMCs were subjected to 10%-1.25Hz-cyclic stretch in vitro using a FX-4000T system. The data indicated that the expression of contractile markers, including α-actin, calponin and SM22α, was significantly enhanced in VSMCs that were subjected to cyclic stretch compared to the static controls. The expression of SIRT1 and FOXO3a was increased by the stretch, but the expression of FOXO4 was decreased. Decreasing SIRT1 by siRNA transfection attenuated the stretch-induced expression of contractile VSMC markers and FOXO3a. Furthermore, increasing SIRT1 by either treatment with activator resveratrol or transfection with a plasmid to induce overexpression increased the expression of FOXO3a and contractile markers, and decreased the expression of FOXO4 in VSMCs. Similar trends were observed in VSMCs of SIRT1 (+/-) knockout mice. The overexpression of FOXO3a promoted the expression of contractile markers in VSMCs, while the overexpression of FOXO4 demonstrated the opposite effect. CONCLUSION: Our results indicated that physiological cyclic stretch promotes the contractile differentiation of VSMCs via the SIRT1/FOXO pathways and thus contributes to maintaining vascular homeostasis.
Asunto(s)
Diferenciación Celular , Factores de Transcripción Forkhead/metabolismo , Miocitos del Músculo Liso/citología , Sirtuina 1/metabolismo , Estrés Mecánico , Animales , Antiinflamatorios no Esteroideos/farmacología , Proteínas de Unión al Calcio/metabolismo , Proteínas de Ciclo Celular , Diferenciación Celular/efectos de los fármacos , Células Cultivadas , Proteína Forkhead Box O3 , Ratones , Ratones Noqueados , Proteínas de Microfilamentos/metabolismo , Contracción Muscular , Proteínas Musculares/metabolismo , Miocitos del Músculo Liso/efectos de los fármacos , Miocitos del Músculo Liso/metabolismo , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Ratas , Resveratrol , Sirtuina 1/antagonistas & inhibidores , Sirtuina 1/genética , Estilbenos/farmacología , Regulación hacia Arriba/efectos de los fármacos , CalponinasRESUMEN
BACKGROUND: Camellia is an economically and phylogenetically important genus in the family Theaceae. Owing to numerous hybridization and polyploidization, it is taxonomically and phylogenetically ranked as one of the most challengingly difficult taxa in plants. Sequence comparisons of chloroplast (cp) genomes are of great interest to provide a robust evidence for taxonomic studies, species identification and understanding mechanisms that underlie the evolution of the Camellia species. RESULTS: The eight complete cp genomes and five draft cp genome sequences of Camellia species were determined using Illumina sequencing technology via a combined strategy of de novo and reference-guided assembly. The Camellia cp genomes exhibited typical circular structure that was rather conserved in genomic structure and the synteny of gene order. Differences of repeat sequences, simple sequence repeats, indels and substitutions were further examined among five complete cp genomes, representing a wide phylogenetic diversity in the genus. A total of fifteen molecular markers were identified with more than 1.5% sequence divergence that may be useful for further phylogenetic analysis and species identification of Camellia. Our results showed that, rather than functional constrains, it is the regional constraints that strongly affect sequence evolution of the cp genomes. In a substantial improvement over prior studies, evolutionary relationships of the section Thea were determined on basis of phylogenomic analyses of cp genome sequences. CONCLUSIONS: Despite a high degree of conservation between the Camellia cp genomes, sequence variation among species could still be detected, representing a wide phylogenetic diversity in the genus. Furthermore, phylogenomic analysis was conducted using 18 complete cp genomes and 5 draft cp genome sequences of Camellia species. Our results support Chang's taxonomical treatment that C. pubicosta may be classified into sect. Thea, and indicate that taxonomical value of the number of ovaries should be reconsidered when classifying the Camellia species. The availability of these cp genomes provides valuable genetic information for accurately identifying species, clarifying taxonomy and reconstructing the phylogeny of the genus Camellia.
Asunto(s)
Camellia/genética , Genoma del Cloroplasto , Camellia/clasificación , Camellia/citología , ADN de Plantas/genética , Evolución Molecular , Orden Génico , Variación Genética , Repeticiones de Microsatélite , Datos de Secuencia Molecular , FilogeniaRESUMEN
The evolution of genes and genomes after polyploidization has been the subject of extensive studies in evolutionary biology and plant sciences. While a significant number of duplicated genes are rapidly removed during a process called fractionation, which operates after the whole-genome duplication (WGD), another considerable number of genes are retained preferentially, leading to the phenomenon of biased gene retention. However, the evolutionary mechanisms underlying gene retention after WGD remain largely unknown. Through genome-wide analyses of sequence and functional data, we comprehensively investigated the relationships between gene features and the retention probability of duplicated genes after WGDs in six plant genomes, Arabidopsis (Arabidopsis thaliana), poplar (Populus trichocarpa), soybean (Glycine max), rice (Oryza sativa), sorghum (Sorghum bicolor), and maize (Zea mays). The results showed that multiple gene features were correlated with the probability of gene retention. Using a logistic regression model based on principal component analysis, we resolved evolutionary rate, structural complexity, and GC3 content as the three major contributors to gene retention. Cluster analysis of these features further classified retained genes into three distinct groups in terms of gene features and evolutionary behaviors. Type I genes are more prone to be selected by dosage balance; type II genes are possibly subject to subfunctionalization; and type III genes may serve as potential targets for neofunctionalization. This study highlights that gene features are able to act jointly as primary forces when determining the retention and evolution of WGD-derived duplicated genes in flowering plants. These findings thus may help to provide a resolution to the debate on different evolutionary models of gene fates after WGDs.
Asunto(s)
Evolución Molecular , Flores/genética , Duplicación de Gen/genética , Genes Duplicados/genética , Genes de Plantas/genética , Magnoliopsida/genética , Modelos Logísticos , Anotación de Secuencia Molecular , Análisis de Componente Principal , Duplicaciones Segmentarias en el Genoma/genética , Selección Genética , Sintenía/genéticaRESUMEN
Rapid radiations have long been regarded as the most challenging issue for elucidating poorly resolved phylogenies in evolutionary biology. The eight diploid AA- genome species in the genus Oryza represent a typical example of a closely spaced series of recent speciation events in plants. However, questions regarding when and how they diversified have long been an issue of extensive interest but remain a mystery. Here, a data set comprising >60 kb of 53 singleton fragments and 16 intergenic regions is used to perform phylogenomic analyses of all eight AA- genome species plus four diploid Oryza species with BB-, CC-, EE- and GG- genomes. We fully reconstruct phylogenetic relationships of AA- genome species with confidence. Oryza meridionalis, native to Australia, is found to be the earliest divergent lineage around 2.93 mya, whereas O. punctata, a BB- genome species, serves as the best outgroup to distinguish their phylogenetic relationships. They separated from O. punctata approximately 9.11 mya during the Miocene epoch, and subsequently radiated to generate the entire AA- genome lineage diversity. The success in resolving the phylogeny of AA- genome species highlights the potential of phylogenomics to determine their divergence and evolutionary histories.
Asunto(s)
Núcleo Celular/genética , ADN Intergénico/genética , Genoma de Planta , Oryza/genética , Filogenia , Diploidia , Análisis de Secuencia de ADNRESUMEN
Camellia crapnelliana Tutch., belonging to the Theaceae family, is an excellent landscape tree species with high ornamental values. It is particularly an important woody oil-bearing plant species with high ecological, economic, and medicinal values. Here, we first report the chromosome-scale reference genome of C. crapnelliana with integrated technologies of SMRT, Hi-C and Illumina sequencing platforms. The genome assembly had a total length of ~2.94 Gb with contig N50 of ~67.5 Mb, and ~96.34% of contigs were assigned to 15 chromosomes. In total, we predicted 37,390 protein-coding genes, ~99.00% of which could be functionally annotated. The chromosome-scale genome of C. crapnelliana will become valuable resources for understanding the genetic basis of the fatty acid biosynthesis, and greatly facilitate the exploration and conservation of C. crapnelliana.
Asunto(s)
Camellia , Genoma de Planta , Camellia/genética , Cromosomas de las Plantas/genética , Secuenciación de Nucleótidos de Alto RendimientoRESUMEN
OBJECTIVE: To investigate the effect of 20/4Hz transcutaneous auricular vagus nerve stimulation (taVNS) on anxiety symptoms in Parkinson's disease (PD) and the potential neural mechanism. METHODS: In the current randomized, double-blind, sham-controlled trial, 30 PD patients with anxiety (PD-A), 30 PD patients without anxiety (PD-nA), and 30 healthy controls (HCs) were enrolled. PD-A patients were randomly (1:1) allotted to real taVNS stimulation group (RS) or sham stimulation group (SS) to explore the efficacy of a two-week treatment of taVNS to promote anxiety recovery. Simultaneously, all participants were measured activation in the bilateral prefrontal cortex during verbal fluency task (VFT) using functional near-infrared spectroscopy. RESULTS: PD-A patients showed significantly decreased oxyhemoglobin in the left triangle part of the inferior frontal gyrus (IFG) during VFT, which was negatively related to the severity of anxiety symptoms. After two-week treatment of taVNS, the interaction of group and time had significant effect on HAMA scores (F = 18.476, p < 0.001, η2 = 0.398). In RS group, compared with baseline, HAMA scores decreased significantly in the post-treatment and follow-up condition (both p < 0.001). Meanwhile, in RS group, HAMA scores were lower than those in SS group in the post-treatment and follow-up condition (p = 0.006, <0.001, respectively). Furthermore, the 20/4Hz taVNS remarkably ameliorated anxiety symptoms in PD patients, directly correlated with the increased activation of the left triangle part of the IFG during VFT in RS group. CONCLUSION: Our results depicted that taVNS could ameliorate the anxiety symptoms of PD-A patients and regulated the function of the left triangle part of the IFG.
Asunto(s)
Ansiedad , Enfermedad de Parkinson , Corteza Prefrontal , Estimulación Eléctrica Transcutánea del Nervio , Estimulación del Nervio Vago , Humanos , Enfermedad de Parkinson/terapia , Enfermedad de Parkinson/fisiopatología , Enfermedad de Parkinson/psicología , Enfermedad de Parkinson/complicaciones , Masculino , Femenino , Estimulación del Nervio Vago/métodos , Persona de Mediana Edad , Método Doble Ciego , Ansiedad/terapia , Ansiedad/fisiopatología , Estimulación Eléctrica Transcutánea del Nervio/métodos , Corteza Prefrontal/fisiopatología , Anciano , Espectroscopía Infrarroja Corta , Resultado del TratamientoRESUMEN
Background: Biologists have long debated the drivers of the genome size evolution and variation ever since Darwin. Assumptions for the adaptive or maladaptive consequences of the associations between genome sizes and environmental factors have been proposed, but the significance of these hypotheses remains controversial. Eragrostis is a large genus in the grass family and is often used as crop or forage during the dry seasons. The wide range and complex ploidy levels make Eragrostis an excellent model for investigating how the genome size variation and evolution is associated with environmental factors and how these changes can ben interpreted. Methods: We reconstructed the Eragrostis phylogeny and estimated genome sizes through flow cytometric analyses. Phylogenetic comparative analyses were performed to explore how genome size variation and evolution is related to their climatic niches and geographical ranges. The genome size evolution and environmental factors were examined using different models to study the phylogenetic signal, mode and tempo throughout evolutionary history. Results: Our results support the monophyly of Eragrostis. The genome sizes in Eragrostis ranged from ~0.66 pg to ~3.80 pg. We found that a moderate phylogenetic conservatism existed in terms of the genome sizes but was absent from environmental factors. In addition, phylogeny-based associations revealed close correlations between genome sizes and precipitation-related variables, indicating that the genome size variation mainly caused by polyploidization may have evolved as an adaptation to various environments in the genus Eragrostis. Conclusion: This is the first study to take a global perspective on the genome size variation and evolution in the genus Eragrostis. Our results suggest that the adaptation and conservatism are manifested in the genome size variation, allowing the arid species of Eragrostis to spread the xeric area throughout the world.
RESUMEN
BACKGROUND: As one of the most important but seriously endangered wild relatives of the cultivated tea, Camellia taliensis harbors valuable gene resources for tea tree improvement in the future. The knowledge of genetic variation and population structure may provide insights into evolutionary history and germplasm conservation of the species. RESULTS: Here, we sampled 21 natural populations from the species' range in China and performed the phylogeography of C. taliensis by using the nuclear PAL gene fragment and chloroplast rpl32-trnL intergenic spacer. Levels of haplotype diversity and nucleotide diversity detected at rpl32-trnL (h = 0.841; π = 0.00314) were almost as high as at PAL (h = 0.836; π = 0.00417). Significant chloroplast DNA population subdivision was detected (GST = 0.988; NST = 0.989), suggesting fairly high genetic differentiation and low levels of recurrent gene flow through seeds among populations. Nested clade phylogeographic analysis of chlorotypes suggests that population genetic structure in C. taliensis has been affected by habitat fragmentation in the past. However, the detection of a moderate nrDNA population subdivision (GST = 0.222; NST = 0.301) provided the evidence of efficient pollen-mediated gene flow among populations and significant phylogeographical structure (NST > GST; P < 0.01). The analysis of PAL haplotypes indicates that phylogeographical pattern of nrDNA haplotypes might be caused by restricted gene flow with isolation by distance, which was also supported by Mantel's test of nrDNA haplotypes (r = 0.234, P < 0.001). We found that chlorotype C1 was fixed in seven populations of Lancang River Region, implying that the Lancang River might have provided a corridor for the long-distance dispersal of the species. CONCLUSIONS: We found that C. taliensis showed fairly high genetic differentiation resulting from restricted gene flow and habitat fragmentation. This phylogeographical study gives us deep insights into population structure of the species and conservation strategies for germplasm sampling and developing in situ conservation of natural populations.
Asunto(s)
Camellia/genética , Variación Genética , Genética de Población , Filogeografía , China , Conservación de los Recursos Naturales , ADN de Cloroplastos/genética , ADN de Plantas/genética , Especies en Peligro de Extinción , Evolución Molecular , Flujo Génico , Haplotipos , Análisis de Secuencia de ADNRESUMEN
Shear stress imposed by blood flow is crucial for differentiation of endothelial progenitor cells (EPCs). Histone deacetylase SIRT1 has been shown to play a pivotal role in many physiological processes. However, association of SIRT1 expression with shear stress-induced EPC differentiation remains to be elucidated. The present study was designed to determine the effect of SIRT1 on EPC differentiation induced by shear stress, and to seek the underlying mechanisms. Human umbilical cord blood-derived EPCs were exposed to laminar shear stress of 15 dyn/cm(2) by parallel plate flow chamber system. Shear stress enhanced EPC differentiation toward endothelial cells (ECs) while inhibited to smooth muscle cells (SMCs). The expressions of phospho-Akt, SIRT1 and histone H3 acetylation (Ac-H3) in EPCs were detected after exposure to shear stress for 2, 6, 12, and 24 h, respectively. Shear stress significantly activated Akt phosphorylation, augmented SIRT1 expression and downregulated Ac-H3. SIRT1 siRNA in EPCs diminished the expression of EC markers, but increased the expression of SMC markers, and resulted in upregulation of Ac-H3. Whereas, resveratrol, an activator of SIRT1, had the opposite effects on both EPC differentiation and histone H3 acetylation. Wortmannin, an inhibitor of PI3-kinase, suppressed endothelial differentiation of EPCs, decreased SIRT1, and upregulated Ac-H3 expression. In addition, SIRT1 promoted tube formation of EPCs in matrix gels. These results provided a mechanobiological basis of shear stress-induced EPC differentiation into ECs and suggest that PI3k/Akt-SIRT1-Ac-H3 pathway is crucial in such a process.
Asunto(s)
Diferenciación Celular , Células Endoteliales/citología , Sirtuina 1/metabolismo , Células Madre/citología , Estrés Mecánico , Acetilación , Androstadienos/farmacología , Biomarcadores/metabolismo , Fenómenos Biomecánicos , Linaje de la Célula , Forma de la Célula , Células Cultivadas , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Sangre Fetal/citología , Regulación de la Expresión Génica , Histonas/genética , Histonas/metabolismo , Humanos , Miocitos del Músculo Liso/citología , Miocitos del Músculo Liso/metabolismo , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Fosforilación , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Resveratrol , Sirtuina 1/genética , Células Madre/efectos de los fármacos , Células Madre/metabolismo , Estilbenos/farmacología , Factores de Tiempo , WortmaninaRESUMEN
Genome size variation and evolutionary forces behind have been long pursued in flowering plants. The genus Oryza, consisting of approximately 25 wild species and two cultivated rice, harbors eleven extant genome types, six of which are diploid (AA, BB, CC, EE, FF, and GG) and five of which are tetraploid (BBCC, CCDD, HHJJ, HHKK, and KKLL). To obtain the most comprehensive knowledge of genome size variation in the genus Oryza, we performed flow cytometry experiments and estimated genome sizes of 166 accessions belonging to 16 non-AA genome Oryza species. k-mer analyses were followed to verify the experimental results of the two accessions for each species. Our results showed that genome sizes largely varied fourfold in the genus Oryza, ranging from 279 Mb in Oryza brachyantha (FF) to 1,203 Mb in Oryza ridleyi (HHJJ). There was a 2-fold variation (ranging from 570 to 1,203 Mb) in genome size among the tetraploid species, while the diploid species had 3-fold variation, ranging from 279 Mb in Oryza brachyantha (FF) to 905 Mb in Oryza australiensis (EE). The genome sizes of the tetraploid species were not always two times larger than those of the diploid species, and some diploid species even had larger genome sizes than those of tetraploids. Nevertheless, we found that genome sizes of newly formed allotetraploids (BBCC-) were almost equal to totaling genome sizes of their parental progenitors. Our results showed that the species belonging to the same genome types had similar genome sizes, while genome sizes exhibited a gradually decreased trend during the evolutionary process in the clade with AA, BB, CC, and EE genome types. Comparative genomic analyses further showed that the species with different rice genome types may had experienced dissimilar amplification histories of retrotransposons, resulting in remarkably different genome sizes. On the other hand, the closely related rice species may have experienced similar amplification history. We observed that the contents of transposable elements, long terminal repeats (LTR) retrotransposons, and particularly LTR/Gypsy retrotransposons varied largely but were significantly correlated with genome sizes. Therefore, this study demonstrated that LTR retrotransposons act as an active driver of genome size variation in the genus Oryza.
RESUMEN
Eleusine coracana (L.) Gaertn. is a kind of highly adaptable cereal crop with a high nutritional value with the reputation of 'black pearl'. In this study, we sequenced, assembled and characterized the complete chloroplast genome of the grass species. The circular genome of E. coracana was 135,137 bp in length, which comprised two inverted repeat (IRa and IRb) regions of 20,919 bp in length separated by a large single copy (LSC) region of 80,663 bp and a small single copy (SSC) region of 12,636 bp. The total GC content of the E. coracana chloroplast genome was â¼38.13%. A total of 108 functional genes were predicted, including 76 protein-coding genes, 28 tRNA genes, and four rRNA genes. Our phylogenomic analysis of all protein-coding genes further revealed that E. coracana is closely related to Bouteloua curtipendula and B. gracilis, and they are together positioned in the subfamily Chloridoideae clade of the grass family.
RESUMEN
Bonia amplexicaulis (L.C.Chia, H.L.Fung & Y.L.Yang) N.H.Xia is a member of the Bambusoideae subfamily in Poaceae. In this study, we sequenced, assembled and characterized the complete chloroplast genome of B. amplexicaulis. The complete chloroplast genome was 139,935 bp in size, including a large single copy region of 83,453 bp, a small single-copy region of 12,860 bp and a pair of reverse repeats of 21,811 bp in size. The annotation of the B. amplexicaulis chloroplast genome indicates that it contained 83 protein-coding genes, 36 tRNA genes and 8 rRNA genes. Our phylogenetic analysis of all protein-coding genes from the 36 complete chroloplast grass genomes using Cyperus rotundus as outgroup showed that B. amplexicaulis is closely related to Otatea glauca and Pariana campestris to form the Bambusoideae lineage of the grass family.
RESUMEN
Arundo formosana Hack. belongs to the Arundionideae subfamily of Poaceae. In this study, we sequenced and assembled the complete chloroplast genome of A. formosana. The complete chloroplast genome was 136,919 bp in size, including a large single copy region of 82,039 bp, a small single-copy region of 12,108 bp and a pair of reverse repeats of 21,386 bp in size. The annotation of A. formosana indicates that it contained 81 protein-coding genes, 47 tRNA and 8 rRNA. Our phylogenetic analysis of the 36 grass complete chroloplast genomes of protein-coding genes using Cyperus rotundus as outgroup showed that A. formosana is closely related to Crinipes species to form the Arundionideae lineage of the grass family.
RESUMEN
Bromus catharticus Vahl. belongs to the Pooideae subfamily of Poaceae. In this study, we sequenced and assembled the complete chloroplast genome of B. catharticus. The complete chloroplast genome was 134,718 bp in size, including a large single-copy region of 80,540 bp, a small single-copy region of 11,806 bp and a pair of reverse repeats of 21,186 bp in size. The annotation of B. catharticus indicates that it contained 89 protein-coding genes, 47 tRNA genes and eight rRNA genes. Our phylogenetic analysis of all protein-coding genes of the 36 grass complete chroloplast genomes using Cyperus rotundus as outgroup showed that B. catharticus is closely related to the Koeleria and Avena species to form the Pooideae lineage of the grass family.
RESUMEN
Bamboos are important nontimber forest plants widely distributed in the tropical and subtropical regions of Asia, Africa, America, and Pacific islands. They comprise the Bambusoideae in the grass family (Poaceae), including approximately 1700 described species in 127 genera. In spite of the widespread uses of bamboo for food, construction, and bioenergy, the gene repertoire of bamboo still remains largely unexplored. Raddia distichophylla (Schrad. ex Nees) Chase, belonging to the tribe Olyreae (Bambusoideae, Poaceae), is a diploid herbaceous bamboo with only slightly lignified stems. In this study, we report a draft genome assembly of the â¼589 Mb whole-genome sequence of R. distichophylla with a contig N50 length of 86.36 Kb. Repeat sequences account for â¼49.08% of the genome assembly, of which LTR retrotransposons occupy â¼35.99% of the whole genome. A total of 30,763 protein-coding genes were annotated in the R. distichophylla genome with an average transcript size of 2887 bp. Access to this herbaceous bamboo genome sequence will provide novel insights into biochemistry, molecular marker-assisted breeding programs, and germplasm conservation for bamboo species worldwide.