Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Biomed Environ Sci ; 30(5): 323-332, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28549488

RESUMEN

OBJECTIVE: To investigate microwave-induced morphological and functional injury of natural killer (NK) cells and uncover their mechanisms. METHODS: NK-92 cells were exposed to 10, 30, and 50 mW/cm2 microwaves for 5 min. Ultrastructural changes, cellular apoptosis and cell cycle regulation were detected at 1 h and 24 h after exposure. Cytotoxic activity was assayed at 1 h after exposure, while perforin and NKG2D expression were detected at 1 h, 6 h, and 12 h after exposure. To clarify the mechanisms, phosphorylated ERK (p-ERK) was detected at 1 h after exposure. Moreover, microwave-induced cellular apoptosis and cell cycle regulation were analyzed after blockade of ERK signaling by using U0126. RESULTS: Microwave-induced morphological and ultrastructural injury, dose-dependent apoptosis (P < 0.001) and cell cycle arrest (P < 0.001) were detected at 1 h after microwave exposure. Moreover, significant apoptosis was still detected at 24 h after 50 mW/cm2 microwave exposure (P < 0.01). In the 30 mW/cm2 microwave exposure model, microwaves impaired the cytotoxic activity of NK-92 cells at 1 h and down regulated perforin protein both at 1 h and 6 h after exposure (P < 0.05). Furthermore, p-ERK was down regulated at 1 h after exposure (P < 0.05), while ERK blockade significantly promoted microwave-induced apoptosis (P < 0.05) and downregulation of perforin (P < 0.01). CONCLUSION: Microwave dose-dependently induced morphological and functional injury in NK-92 cells, possibly through ERK-mediated regulation of apoptosis and perforin expression.


Asunto(s)
Apoptosis/efectos de la radiación , Ciclo Celular/efectos de la radiación , Células Asesinas Naturales/efectos de la radiación , Microondas/efectos adversos , Línea Celular , Relación Dosis-Respuesta en la Radiación , Regulación hacia Abajo , Humanos , Sistema de Señalización de MAP Quinasas , Subfamilia K de Receptores Similares a Lectina de Células NK/genética , Subfamilia K de Receptores Similares a Lectina de Células NK/metabolismo , Transducción de Señal
2.
Biomed Environ Sci ; 30(12): 927-931, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29335064

RESUMEN

Little information is available about the effects of exposure to pulsed microwaves on neuronal Ca2+ signaling under non-thermal conditions. In this study, rat pheochromocytoma (PC12) cells were exposed to pulsed microwaves for 6 min at a specific absorption rate (SAR) of 4 W/kg to assess possible real-time effects. During microwave exposure, free calcium dynamics in the cytosol, mitochondria, and nucleus of cells were monitored by time-lapse microfluorimetry using a genetically encoded calcium indicator (ratiometric-pericam, ratiometric-pericam-mt, and ratiometric-pericam-nu). We established a waveguide-based real-time microwave exposure system under accurately controlled environmental and dosimetric conditions and found no significant changes in the cytosolic, mitochondrial, or nuclear calcium levels in PC12 cells. These findings suggest that no dynamic changes occurred in [Ca2+]c, [Ca2+]m, or [Ca2+]n of PC12 cells at the non-thermal level.


Asunto(s)
Calcio/metabolismo , Núcleo Celular/efectos de la radiación , Citosol/efectos de la radiación , Microondas , Mitocondrias/efectos de la radiación , Animales , Núcleo Celular/metabolismo , Citosol/metabolismo , Microscopía Confocal , Mitocondrias/metabolismo , Células PC12 , Ratas
3.
Pathobiology ; 82(5): 181-94, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26337368

RESUMEN

Recent studies have highlighted the important role of the postsynaptic NMDAR-PSD95-CaMKII pathway for synaptic transmission and related neuronal injury. Here, we tested changes in the components of this pathway upon microwave-induced neuronal structure and function impairments. Ultrastructural and functional changes were induced in hippocampal neurons of rats and in PC12 cells exposed to microwave radiation. We detected abnormal protein and mRNA expression, as well as posttranslational modifications in the NMDAR-PSD95-CaMKII pathway and its associated components, such as synapsin I, following microwave radiation exposure of rats and PC12 cells. Thus, microwave radiation may induce neuronal injury via changes in the molecular organization of postsynaptic density and modulation of the biochemical cascade that potentiates synaptic transmission.


Asunto(s)
Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Hipocampo/efectos de la radiación , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de la Membrana/metabolismo , Microondas/efectos adversos , Neuronas/efectos de la radiación , Receptores de N-Metil-D-Aspartato/metabolismo , Animales , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/genética , Homólogo 4 de la Proteína Discs Large , Hipocampo/química , Hipocampo/citología , Hipocampo/ultraestructura , Péptidos y Proteínas de Señalización Intracelular/genética , Masculino , Proteínas de la Membrana/genética , Neuronas/metabolismo , Neuronas/ultraestructura , Células PC12 , Densidad Postsináptica/efectos de la radiación , Procesamiento Proteico-Postraduccional/genética , Procesamiento Proteico-Postraduccional/efectos de la radiación , Ratas , Receptores de N-Metil-D-Aspartato/fisiología , Transducción de Señal , Transmisión Sináptica/efectos de la radiación
4.
Biomed Environ Sci ; 28(1): 72-5, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25566864

RESUMEN

To observe microwave induced dynamic pathological changes in the sinus nodes, wistar rats were exposed to 0, 5, 10, 50 mW/cm2 microwave. In 10 and 50 mW/cm2 groups, disorganized sinoatrial node cells, cell swelling, cytoplasmic condensation, nuclear pyknosis, and anachromasis, swollen, and empty mitochondria, and blurred and focally dissolved myofibrils could be detected from 1 to 28 d, while reduced parenchymal cells, increased collagen fibers, and extracellular matrix remodeling of interstitial cells were observed from 6 to 12 months. In conclusion, 10 and 50 mW/cm2 microwave could cause structural damages in the sinoatrial node and extracellular matrix remodeling in rats.


Asunto(s)
Microondas/efectos adversos , Nodo Sinoatrial/efectos de la radiación , Animales , Matriz Extracelular/patología , Matriz Extracelular/efectos de la radiación , Masculino , Ratas , Ratas Wistar , Nodo Sinoatrial/patología
5.
Biomed Environ Sci ; 28(1): 13-24, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25566859

RESUMEN

OBJECTIVE: The aim of this study is to investigate whether microwave exposure would affect the N-methyl-D-aspartate receptor (NMDAR) signaling pathway to establish whether this plays a role in synaptic plasticity impairment. METHODS: 48 male Wistar rats were exposed to 30 mW/cm2 microwave for 10 min every other day for three times. Hippocampal structure was observed through H&E staining and transmission electron microscope. PC12 cells were exposed to 30 mW/cm2 microwave for 5 min and the synapse morphology was visualized with scanning electron microscope and atomic force microscope. The release of amino acid neurotransmitters and calcium influx were detected. The expressions of several key NMDAR signaling molecules were evaluated. RESULTS: Microwave exposure caused injury in rat hippocampal structure and PC12 cells, especially the structure and quantity of synapses. The ratio of glutamic acid and gamma-aminobutyric acid neurotransmitters was increased and the intracellular calcium level was elevated in PC12 cells. A significant change in NMDAR subunits (NR1, NR2A, and NR2B) and related signaling molecules (Ca2+/calmodulin-dependent kinase II gamma and phosphorylated cAMP-response element binding protein) were examined. CONCLUSION: 30 mW/cm2 microwave exposure resulted in alterations of synaptic structure, amino acid neurotransmitter release and calcium influx. NMDAR signaling molecules were closely associated with impaired synaptic plasticity.


Asunto(s)
Hipocampo/citología , Microondas , Plasticidad Neuronal/efectos de la radiación , Neuronas/efectos de la radiación , Receptores de N-Metil-D-Aspartato/metabolismo , Transducción de Señal/efectos de la radiación , Animales , Regulación de la Expresión Génica/efectos de la radiación , Neurotransmisores/metabolismo , Células PC12 , Ratas , Receptores de N-Metil-D-Aspartato/genética , Transducción de Señal/fisiología , Factores de Tiempo
6.
Biomed Environ Sci ; 27(3): 204-7, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24709101

RESUMEN

This paper is aimed to study the effect of ADL on expression of ß1-AR and M2-AchR in myocardial cells of rats exposed to microwave radiation. Immunohistochemistry, Western blot and image analysis were used to detect the expression of ß1-AR and M2-AchR in myocardial cells at 7 and 14 d after microwave exposure. The results show that the expression level was higher in microwave exposure group and 0.75 g/(kg•d) ADL group than in sham operation group and significantly lower in 1.5 and 3.0 g/(kg•d) ADL groups than in microwave group. So we have a conclusion that the expression of ß1-AR and M2-AchR is down-regulated in myocardial cells of rats exposed to microwave radiation. ADL can protect rats against microwave-induced heart tissue injury.


Asunto(s)
Medicamentos Herbarios Chinos/farmacología , Corazón/efectos de los fármacos , Microondas/efectos adversos , Miocardio/metabolismo , Receptor Muscarínico M2/metabolismo , Receptores Adrenérgicos beta 1/metabolismo , Animales , Regulación hacia Abajo/efectos de los fármacos , Masculino , Miocardio/citología , Sustancias Protectoras/farmacología , Ratas Wistar
7.
Anal Bioanal Chem ; 404(1): 69-78, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22706401

RESUMEN

There has been growing public concern regarding exposure to microwave fields as a potential human health hazard. This study aimed to identify sensitive biochemical indexes for the detection of injury induced by microwave exposure. Male Wistar rats were exposed to microwaves for 6 min per day, 5 days per week over a period of 1 month at an average power density of 5 mW/cm(2) (specific absorption rate of 2.1 W/kg). Urine specimens were collected over 24 h in metabolic cages at 7 days, 21 days, 2 months, and 6 months after exposure. (1)H NMR spectroscopy data were analyzed using multivariate statistical techniques. Urine metabolic profiles of rats after long-term microwave exposure were significantly differentiated from those of sham-treated controls using principal component analysis or partial least squares discriminant analysis. Significant differences in low molecular weight metabolites (acetate, succinate, citrate, ketoglutarate, glucose, taurine, phenylalanine, tyrosine, and hippurate) were identified in the 5 mW/cm(2) microwave exposure group compared with the sham-treated controls at 7 days, 21 days, and 2 months. Metabolites returned to normal levels by 6 months after exposure. These data indicated that these metabolites were related to the perturbations of energy metabolism particularly in the tricarboxylic acid cycle, and the metabolism of amino acids, monoamines, and choline in urine represent potential indexes for the detection of injury induced by long-term microwave exposure.


Asunto(s)
Espectroscopía de Resonancia Magnética/métodos , Metaboloma , Metabolómica/métodos , Microondas/efectos adversos , Orina/química , Animales , Humanos , Masculino , Ratas , Ratas Wistar , Factores de Tiempo
8.
Biomed Environ Sci ; 25(2): 182-8, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22998825

RESUMEN

OBJECTIVE: To analyze the effects of long-term microwave exposure on hippocampal structure and function in the rat. METHODS: Experiments were performed on 184 male Wistar rats (three exposure groups and a sham group). Microwaves were applied daily for 6 min over 1 month at average power densities of 2.5, 5, and 10 mW/cm2. Learning and memory abilities were assessed by Morris water maze. High performance liquid chromatography was used to detect neurotransmitter concentrations in the hippocampus. Hippocampal structures were observed by histopathological analysis. RESULTS: Following long-term microwave exposure there was a significant decrease in learning and memory activity in the 7 d, 14 d, and 1 m in all three microwave exposure groups. Neurotransmitter concentrations of four amino acids (glutamate, aspartic acid, glycine, and gamma-aminobutyric acid) in hippocampus were increased in the 2.5 and 5 mW/cm2 groups and decreased in the 10 mW/cm2 group. There was evidence of neuronal degeneration and enlarged perivascular spaces in the hippocampus in the microwave exposure groups. Further, mitochondria became swollen and cristae were disordered. The rough endoplasmic reticulum exhibited sacculated distension and there was a decrease in the quantity of synaptic vesicles. CONCLUSION: These data suggest that the hippocampus can be injured by long-term microwave exposure, which might result in impairment of cognitive function due to neurotransmitter disruption.


Asunto(s)
Cognición , Hipocampo/fisiopatología , Microondas , Animales , Cromatografía Líquida de Alta Presión , Hipocampo/patología , Hipocampo/efectos de la radiación , Aprendizaje , Masculino , Memoria , Microscopía Electrónica de Transmisión , Ratas , Ratas Wistar
9.
Zhonghua Nan Ke Xue ; 17(3): 214-8, 2011 Mar.
Artículo en Zh | MEDLINE | ID: mdl-21485541

RESUMEN

OBJECTIVE: To investigate the effect of long-term microwave radiation on male reproduction in rats. METHODS: A total of 100 male Wistar rats were exposed to microwave radiation with average power density of 0, 2.5, 5 and 10 mW/cm2 for 4 weeks, 5 times a week and 6 minutes per time. Changes in serum testosterone, testicular index, histology and ultrastructure, and the percentage of teratospermia in the epididymis were observed dynamically at 6 h, 7 d, 14 d, 28 d and 60 d after the exposure. RESULTS: There was a significant decrease in serum testosterone concentration at 28 d after microwave radiation at 2.5, 5 and 10 mW/cm2 ([10.20 +/- 4.31] ng/ml, [5.56 +/- 3.47] ng/ml and [7.53 +/- 4.54] ng/ml) and at 60 d at 10 mW/cm2 ( [15.95 +/- 9.54] ng/ml), as compared with the control group ([23.35 +/- 8.06] ng/ml and [31.40 +/- 9.56] ng/ml) (P < 0.05 or P < 0.01). No significant changes were found in the testis index at 6 h -60 d after microwave radiation at the three doses, but different degrees of degeneration, necrosis and shedding of spermatogenic cells, thinning of spermatogenic epithelia, and decrease or deletion of spermatozoa were observed, and more obvious at 28 d and 60 d. Swelling and cavitation of mitochondria in all spermatogenic cells, agglutination and margin translocation of nuclear chromatin in the spermatogonial and Leydig cells were seen at 7 d and 60 d after 5 mW/cm2 microwave radiation. The rate of teratospermia of the epididymis was increased, more obviously at 7 d after 2.5, 5 mW/cm2, 60 d after 5 mW/cm2, and 7 d, 28 d and 60 d after 10 mW/cm2 microwave radiation (P < 0.05 or P < 0.01). CONCLUSION: Long-term microwave radiation may cause injury to male reproduction, which is positively correlated with the radiation dose, and has an obvious late effect.


Asunto(s)
Microondas/efectos adversos , Reproducción/efectos de la radiación , Cabeza del Espermatozoide/efectos de la radiación , Testículo/efectos de la radiación , Animales , Relación Dosis-Respuesta en la Radiación , Masculino , Ratas , Ratas Wistar
10.
Artículo en Zh | MEDLINE | ID: mdl-21972535

RESUMEN

OBJECTIVE: To study the protective effects of AduoLa Fuzhenglin(ADL) on the heart injury induced by microwave exposure in rats. METHODS: One hundred forty male Wistar rats were divided randomly into 5 groups: control, microwave radiation, 0.75 g x kg(-1) d(-1) ADL, 1.50 g x kg(-1) d(-1) ADL and 3.00 g x kg(-1) d(-1) ADL pretreatment groups. Rats in three ADL pretreatment groups were administrated by ADL per day for 2w then exposed to 30 mW/cm2 microwaves for 15 min. The left ventricle blood of rats was obtained at 7 d and 14 d after exposure to microwaves, and the blood Ca2+, AST and CK were detected with Coulter automatic biochemical analyzer, then the histological changes and ultrastructure of heart were observed under light and electron microscopes. RESULTS: At 7 d and 14 d after exposure to microwaves, the blood Ca2+, AST and CK concentrations significantly increased (P<0.05 or P<0.01) as compared with controls; Heart muscle fibers showed wavilness, endotheliocyte karyopyknosis, anachromasis; The mitochondria swelling and cavitation, intercalary dies blurred in radiation groups. The changes in 0.75 g x kg(-1) d(-1) ADL pretreatment group were similar to the radiation group, but in 1.50 g x kg(-1)d(-1) and 3.00 g x kg(-1) d(-1) ADL pretreatment groups, above indexes of rats significantly reduced as compared with microwaves group (P<0.05); also the blood Ca2+, AST, CK contents were significantly lower than those in microwave group (P<0.05); The heart showed a tendency to improve. CONCLUSION: Microwave radiation (30 mW/cm2) can cause the blood Ca2+, AST and CK turbulence, and heart injury in the histology and ultrastructure; ADL at the dosages of 1.50 g x kg(-1) d(-1) and 3.00 g x kg(-1) d(-1) has a protective effects on the heart injury induced by microwave in rats.


Asunto(s)
Medicamentos Herbarios Chinos/farmacología , Corazón/efectos de la radiación , Microondas/efectos adversos , Miocardio/patología , Animales , Aspartato Aminotransferasas/sangre , Calcio/sangre , Creatina Quinasa/sangre , Corazón/efectos de los fármacos , Masculino , Mitocondrias Cardíacas/efectos de la radiación , Mitocondrias Cardíacas/ultraestructura , Ratas , Ratas Wistar
11.
Gut ; 59(6): 817-26, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19880967

RESUMEN

BACKGROUND: Human hepassocin (HPS) was originally detected by subtractive and differential cDNA cloning as a liver-specific gene that was markedly upregulated during liver regeneration. Previous studies suggested that HPS showed mitogenic activity on isolated hepatocytes in vitro. However, its in vivo functions remained largely unknown. Therefore, the function of recombinant human HPS during liver regeneration and chemically induced liver injury was investigated. METHODS: The proliferation of primary hepatocytes was examined by [(3)H]thymidine incorporation and immunohistological staining of proliferating cell nuclear antigen (PCNA). RNA interference was performed to knock down the endogenous expression of HPS. The proliferation of L02 cells was examined by MTS assay. The phosphorylation of ERK1/2 (extracellular signal-regulated kinase 1/2) was investigated by western blotting analysis. Assessment of liver injury (histology, serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels) and of apoptosis, by TUNEL (terminal deoxynucleotidyl transferase-mediated dUTP nick-end labelling) assay, was performed. RESULTS: Purified recombinant human HPS showed specific mitogenic activity on primary hepatocytes and normal liver cell lines in a mitogen-activated protein kinase (MAPK)-dependent manner and stimulated the proliferation of hepatocytes in rats with 70% partial hepatectomy. Administration of HPS to rats after d-galactose and carbon tetrachloride (CCl(4)) treatment protected against liver injury (minimal liver necrosis, depressed ALT and AST levels, and decreased lethality), reduced apoptosis and enhanced proliferation. Knock-down of endogenous HPS in vivo enhanced the liver injury induced by d-galactose by increasing the apoptosis and elevating ALT and AST levels. CONCLUSIONS: HPS is a hepatic growth factor which can accelerate hepatocyte proliferation in vivo and protect against liver injury. These data point to the potential interest of HPS in the treatment of fulminant hepatic failure.


Asunto(s)
Hepatocitos/efectos de los fármacos , Fallo Hepático Agudo/tratamiento farmacológico , Proteínas de Neoplasias/uso terapéutico , Animales , Apoptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Enfermedad Hepática Inducida por Sustancias y Drogas/tratamiento farmacológico , Enfermedad Hepática Inducida por Sustancias y Drogas/etiología , Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Modelos Animales de Enfermedad , Fibrinógeno , Hepatocitos/patología , Humanos , Fallo Hepático Agudo/patología , Regeneración Hepática/efectos de los fármacos , Masculino , Proteína Quinasa 1 Activada por Mitógenos/fisiología , Proteína Quinasa 3 Activada por Mitógenos/fisiología , Proteínas de Neoplasias/farmacología , Interferencia de ARN , Ratas , Ratas Wistar , Proteínas Recombinantes/farmacología , Proteínas Recombinantes/uso terapéutico
13.
Zhonghua Nan Ke Xue ; 16(1): 10-3, 2010 Jan.
Artículo en Zh | MEDLINE | ID: mdl-20180397

RESUMEN

OBJECTIVE: To explore the changes in the expressions of the tight junction related protein occludin and junctional adhesion molecule-1 (JAM-1) of the blood-testis barrier and their significance in rats after microwave radiation. METHODS: Eighty male Wistar rats were exposed to microwave radiation with average power density of 0, 10, 30 and 100 mW/cm2 for five minutes, and dynamic changes in the expressions of testicular occludin and JAM-1 were observed by Western blot and image analysis at 6 h, 1 d, 3 d, 7 d and 14 d after the radiation. RESULTS: There was a significant down-regulation in the expression of the occludin protein at 3 - 7 d, 6 h - 7 d and 6 h - 14 d (P < 0. 05), as well as in that of JAM-1 at 3 - 7 d, 1 - 7 d and 1-14 d (P < 0.05) after exposure to 10, 30 and 100 mW/cm2 microwave radiation. CONCLUSION: The decreased protein expressions of occludin and JAM-1 may play an important role in the microwave radiation induced-damage to the blood-testis barrier.


Asunto(s)
Moléculas de Adhesión Celular/metabolismo , Proteínas de la Membrana/metabolismo , Microondas , Testículo/metabolismo , Testículo/efectos de la radiación , Animales , Barrera Hematotesticular/metabolismo , Barrera Hematotesticular/efectos de la radiación , Regulación hacia Abajo , Masculino , Ocludina , Ratas , Ratas Wistar
14.
Artículo en Zh | MEDLINE | ID: mdl-20137297

RESUMEN

OBJECTIVE: To explore whether microwave radiation may cause injury of primary cultured Sertoli cells. METHODS: The model of primary cultured Sertoli cells in vitro was established, which was radiated by microwave with average power density 0, 30 and 100 mW/cm(2) for five minutes. The changes of cell cycle, apoptosis and death, and intracellular Ca2+ concentration in the Sertoli cells were measured at sixth hours through Annexin V-PI double labeling and Fluo-3-AM labeling, flow cytometry combined with laser scanning confocal microscopy after microwave exposure. RESULTS: The numbers of Sertoli cells were obviously reduced in G0-G1 and G2-M phase (62.57% +/- 3.22% and 8.25% +/- 1.75%) and increased in S phase (29.17% +/- 4.87%) compared with the control groups (79.18% +/- 0.24%, 11.17% +/- 0.50% and 9.64% +/- 0.62%) (P < 0.05 or P < 0.01), but the changes of rate of apoptosis and death and intracellular Ca2+ concentration showed no difference at 6 h after exposure to 30 mW/cm(2) microwave. There was a significant increase in the Sertoli cell counts of G0-G1 phase (87.69% +/- 1.32%), and decrease in the Sertoli cell counts of G2-M and S phase (7.41% +/- 0.60% and 4.87% +/- 0.91%) (P < 0.01). There was also a significant increase in intracellular Ca2+ concentration and rate of apoptosis and death (P < 0.05 or P < 0.01) at 6 h after exposure to 100 mW/cm(2) microwave. CONCLUSION: 100 mW/cm(2) microwave radiation may cause growth inhibition and increase of apoptosis and death in the primary cultured Sertoli cells. The increase of intracellular Ca2+ concentration is one of the injury mechanisms.


Asunto(s)
Microondas/efectos adversos , Células de Sertoli/efectos de la radiación , Animales , Apoptosis/efectos de la radiación , Calcio/metabolismo , Ciclo Celular/efectos de la radiación , Células Cultivadas , Masculino , Ratas , Ratas Wistar , Células de Sertoli/metabolismo , Células de Sertoli/patología
15.
Artículo en Zh | MEDLINE | ID: mdl-20137298

RESUMEN

OBJECTIVE: To investigate the expression of aquaporin 4 (AQP4) after microwave exposure and the correlation with the brain injury by radiation. METHODS: 70 male rats were exposed to microwave whose average power density was 0, 10, 30 and 100 mW/cm(2) respectively. Rats were sacrificed at 6 h, 1 d, 3 d and 7 d after exposure. Immunohistochemistry and Western blot were used to detect the expression of AQP4 in protein level in rat hippocampus, and the expression of AQP4 in gene level was measured by in situ hybridization and RT-PCR. RESULTS: The expression of AQP4 in rat hippocampus was abnormal after 10, 30, 100 mW/cm(2) microwave exposure. The protein level showed increased at first and then recovered at 10 and 30 mW/cm(2) groups, while increased progressively in 100 mW/cm(2) group within 14 d (P < 0.01). The gene expression of AQP4 was increased (0.51 +/- 0.02) at the beginning (6 h) and then regained after 10 mW/cm(2) microwave exposure, while in 30 and 100 mW/cm(2) groups, it rose to the peak at 7 d (0.46 +/- 0.02 and 0.43 +/- 0.08) and didn't get back (P = 0.004; P = 0.012). CONCLUSION: Microwave radiation can increase the expression of AQP4 in rat hippocampus. The change might participate in the process of increasing permeability of blood-brain barrier and lead to the brain edema after microwave radiation.


Asunto(s)
Acuaporina 4/metabolismo , Hipocampo/metabolismo , Microondas/efectos adversos , Animales , Acuaporina 4/genética , Hipocampo/efectos de la radiación , Masculino , Ratas , Ratas Wistar
16.
Mil Med Res ; 6(1): 22, 2019 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-31331385

RESUMEN

BACKGROUND: The exogenous application of low-intensity electric stimulation (ES) may mimic a natural endogenous bioelectric current and accelerate the repair process of skin wounds. This study designed a novel microcurrent dressing (MCD) and evaluated its potential effects on wound healing in a rat skin defect model. METHODS: First, wireless ES was integrated into a medical cotton cushion to fabricate the MCD, and its electrical property was examined by using a universal power meter. Then, animal experiments were conducted to evaluate the MCD's effect. Forty-five rats were randomized into control (Con) group, Vaseline gauze (VG) group and MCD group. A full-thickness round skin incision 1.5 cm in diameter was made on the back of each animal. Apart from routine disinfection, the Con rats were untreated, whereas the other two groups were treated with VG or MCD. On days 3, 7 and 14 post injury, the wound areas were observed and measured using image analysis software following photography, and the skin samples were harvested from wound tissue. Then, histopathological morphology was observed routinely by hematoxylin and eosin (HE) staining; tumor necrosis factor α (TNF-α) and interleukin (IL)-1ß expression were detected by Western blotting. Vascular endothelial growth factor (VEGF) and epidermal growth factor (EGF) expression were detected with immunohistochemistry. RESULTS: The MCD generated a sf electric potential greater than 0.95 V. Animal experiments showed that the wound-healing rate in the MCD group was significantly increased compared with the Con and VG groups (P < 0.05 or P < 0.01). Histopathological observation revealed an alleviated inflammatory response, induced vascular proliferation and accelerated epithelization in the MCD group. Moreover, samples from the MCD group expressed reduced TNF-α and IL-1ß levels and increased VEGF and EGF levels compared with those of the other two groups (P < 0.05 or P < 0.01). However, no significant difference was noted between the Con and VG groups at each time point. CONCLUSIONS: The MCD generates a stable and lasting ES and significantly promotes wound healing by reducing inflammation duration and increasing growth factors expression. Thus, MCD may act as a promising biomaterial device for skin wound healing.


Asunto(s)
Vendajes , Estimulación Eléctrica/instrumentación , Cicatrización de Heridas , Animales , Factor de Crecimiento Epidérmico/metabolismo , Interleucina-1beta/metabolismo , Masculino , Ratas , Ratas Wistar , Factor de Necrosis Tumoral alfa/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo
17.
Biomed Environ Sci ; 32(3): 189-198, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30987693

RESUMEN

OBJECTIVE: To estimate the detrimental effects of shortwave exposure on rat hippocampal structure and function and explore the underlying mechanisms. METHODS: One hundred Wistar rats were randomly divided into four groups (25 rats per group) and exposed to 27 MHz continuous shortwave at a power density of 5, 10, or 30 mW/cm2 for 6 min once only or underwent sham exposure for the control. The spatial learning and memory, electroencephalogram (EEG), hippocampal structure and Nissl bodies were analysed. Furthermore, the expressions of N-methyl-D-aspartate receptor (NMDAR) subunits (NR1, NR2A, and NR2B), cAMP responsive element-binding protein (CREB) and phosphorylated CREB (p-CREB) in hippocampal tissue were analysed on 1, 7, and 14 days after exposure. RESULTS: The rats in the 10 and 30 mW/cm2 groups had poor learning and memory, disrupted EEG oscillations, and injured hippocampal structures, including hippocampal neurons degeneration, mitochondria cavitation and blood capillaries swelling. The Nissl body content was also reduced in the exposure groups. Moreover, the hippocampal tissue in the 30 mW/cm2 group had increased expressions of NR2A and NR2B and decreased levels of CREB and p-CREB. CONCLUSION: Shortwave exposure (27 MHz, with an average power density of 10 and 30 mW/cm2) impaired rats' spatial learning and memory and caused a series of dose-dependent pathophysiological changes. Moreover, NMDAR-related CREB pathway suppression might be involved in shortwave-induced structural and functional impairments in the rat hippocampus.


Asunto(s)
Proteína de Unión a Elemento de Respuesta al AMP Cíclico/genética , Electroencefalografía/efectos de la radiación , Hipocampo/efectos de la radiación , Memoria/efectos de la radiación , Cuerpos de Nissl/efectos de la radiación , Ondas de Radio/efectos adversos , Aprendizaje Espacial/efectos de la radiación , Animales , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Relación Dosis-Respuesta en la Radiación , Masculino , Cuerpos de Nissl/fisiología , Distribución Aleatoria , Ratas , Ratas Wistar , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo
18.
Zhonghua Nan Ke Xue ; 14(7): 579-82, 2008 Jul.
Artículo en Zh | MEDLINE | ID: mdl-18686375

RESUMEN

OBJECTIVE: To determine the effect of high power microwave (HPM) radiation on the structure and function of blood-testis barrier (BTB) in rats. METHODS: One hundred and sixty-six male Wistar rats were treated by heart perfusion of lanthanum-glutaraldehyde solution and tail vein injection of evans blue (EB) at 6 h, 1, 3, 7 and 14 d after exposed to 0, 10, 30 and 100 mW/cm2 HPM radiation for 5 minutes, the structural change of BTB and distribution of lanthanum or EB observed through the light microscope, electron microscope and laser scanning confocal microscopy (LSCM). RESULTS: Testicular interstitial edema, vascular congestion or hyperemia with accumulation of plasma proteins and red blood cells in the inner compartment of seminiferous tubules were observed after exposure to HPM. The above-mentioned pathological changes were aggravated at 1-7 d and relieved at 14 d after radiation, obviously more severe in the 30 and 100 mW/cm2 exposure groups than in the 10 mW/cm2. Both lanthanum precipitation and EB were deposited in the inner compartment. CONCLUSION: HPM radiation may damage the structure and increase the permeability of BTB.


Asunto(s)
Barrera Hematotesticular/efectos de la radiación , Microondas/efectos adversos , Animales , Barrera Hematotesticular/patología , Barrera Hematotesticular/fisiopatología , Masculino , Ratas , Ratas Wistar
19.
Artículo en Zh | MEDLINE | ID: mdl-19309582

RESUMEN

OBJECTIVE: To study the development of changes for Raf kinase inhibitor protein (RKIP) and its mRNA in rats hippocampus after electromagnetic radiation. METHODS: Rats were exposed to X-band high power microwave (X-HPM), S-band high power microwave (S-HPM) and electromagnetic pulse (EMP) radiation source respectively. The animal model of electromagnetic radiation was established. Western blot was used to detect the expression of RKIP, and RT-PCR was applied to detect the expression of RKIP mRNA. The interaction of RKIP and Raf-1 was measured with co-immunoprecipitation method, and the expression of cerebral choline acetyltransferase (CHAT) was measured by immunohistochemistry. RESULTS: The expression of RKIP significantly down-regulated at 6 h after radiation, and recovered at 1 d in group EMP, but the down-regulation continued during 1 approximately 7 d after radiation in the two microwave groups. The expression of RKIP mRNA changed wavily during 6 h approximately 7 d after radiation, which showed down-regulation at 6 h, and up-regulation at 3 d. The interaction of RKIP and Raf-1 decreased during 6 h approximately 7 d after radiation, most significantly at 7 d, and the two microwave groups were more significant. The expression of CHAT decreased continuously during 6 h approximately 7 d after radiation, and generally recovered on 14 d. CONCLUSION: The down-regulation of RKIP and its related proteins of hippocampus is induced by electromagnetic radiation.


Asunto(s)
Radiación Electromagnética , Proteínas de Unión a Fosfatidiletanolamina/metabolismo , Animales , Hipocampo/metabolismo , Hipocampo/efectos de la radiación , Quinasas Quinasa Quinasa PAM/metabolismo , Masculino , Proteínas de Unión a Fosfatidiletanolamina/genética , Proteínas Proto-Oncogénicas c-raf , ARN Mensajero/genética , Ratas , Ratas Wistar
20.
Artículo en Zh | MEDLINE | ID: mdl-17535652

RESUMEN

OBJECTIVE: To investigate the effect of microwave radiation on synaptic structure, characteristic of synaptosome, the contents and release of neurotransmitters in hippocampus in Wistar rats. METHODS: Wistar rats were exposed to microwave radiation with average power density of 30 mW/cm(2). Electron telescope was used to study the change of the synaptic structure at 6 h after radiation and to identify synaptosome. Flow cytometry and electron spin resonance were used to study the change of the concentration of Ca(2+) in synapse and the fluidity of membrane proteins of synaptosome. High performance liquid chromatography (HPLC) and spectrophotometer were used to study the changes of contents and release of amino acids and acetylcholine in hippocampus. RESULTS: Microwave radiation of 30 mW/cm(2) caused deposits of synapse vesicle, elongation of active zone, the increase of thickness of postsynaptic density (PSD) and curvature, and perforation of synapse. The concentration of Ca(2+) in synapse (P<0.01) and tc of membrane proteins (P<0.01) of synaptosome increased contents of glutamic acid and glycine (P<0.01) and release of GABA increased the increase of contents and release of acetylcholine, and activity of acetyl cholinesterase (P<0.01) increased. CONCLUSION: Microwave radiation can induce the injure of synaptic structure and function of hippocampus, and then induce the disorder of the ability of learning and memory in rats.


Asunto(s)
Hipocampo/patología , Microondas/efectos adversos , Sinapsis/patología , Sinaptosomas/metabolismo , Animales , Hipocampo/metabolismo , Hipocampo/efectos de la radiación , Masculino , Ratas , Ratas Wistar , Sinapsis/metabolismo , Sinapsis/efectos de la radiación , Sinaptosomas/efectos de la radiación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA