Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Lipid Res ; 63(1): 100151, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34808193

RESUMEN

Lipid transfer proteins acquire and release their lipid cargoes by interacting transiently with source and destination biomembranes. In the GlycoLipid Transfer Protein (GLTP) superfamily, the two-layer all-α-helical GLTP-fold defines proteins that specifically target sphingolipids (SLs) containing either sugar or phosphate headgroups via their conserved but evolutionarily-modified SL recognitions centers. Despite comprehensive structural insights provided by X-ray crystallography, the conformational dynamics associated with membrane interaction and SL uptake/release by GLTP superfamily members have remained unknown. Herein, we report insights gained from molecular dynamics (MD) simulations into the conformational dynamics that enable ceramide-1-phosphate transfer proteins (CPTPs) to acquire and deliver ceramide-1-phosphate (C1P) during interaction with 1-palmitoyl-2-oleoyl phosphatidylcholine bilayers. The focus on CPTP reflects this protein's involvement in regulating pro-inflammatory eicosanoid production and autophagy-dependent inflammasome assembly that drives interleukin (IL-1ß and IL-18) production and release by surveillance cells. We found that membrane penetration by CPTP involved α-6 helix and the α-2 helix N-terminal region, was confined to one bilayer leaflet, and was relatively shallow. Large-scale dynamic conformational changes were minimal for CPTP during membrane interaction or C1P uptake except for the α-3/α-4 helices connecting loop, which is located near the membrane interface and interacts with certain phosphoinositide headgroups. Apart from functioning as a shallow membrane-docking element, α-6 helix was found to adeptly reorient membrane lipids to help guide C1P hydrocarbon chain insertion into the interior hydrophobic pocket of the SL binding site.These findings support a proposed 'hydrocarbon chain-first' mechanism for C1P uptake, in contrast to the 'lipid polar headgroup-first' uptake used by most lipid-transfer proteins.


Asunto(s)
Proteínas de Transferencia de Fosfolípidos
2.
J Biol Chem ; 296: 100600, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33781749

RESUMEN

Ceramide-1-phosphate transfer proteins (CPTPs) are members of the glycolipid transfer protein (GLTP) superfamily that shuttle ceramide-1-phosphate (C1P) between membranes. CPTPs regulate cellular sphingolipid homeostasis in ways that impact programmed cell death and inflammation. CPTP downregulation specifically alters C1P levels in the plasma and trans-Golgi membranes, stimulating proinflammatory eicosanoid production and autophagy-dependent inflammasome-mediated cytokine release. However, the mechanisms used by CPTP to target the trans-Golgi and plasma membrane are not well understood. Here, we monitored C1P intervesicular transfer using fluorescence energy transfer (FRET) and showed that certain phosphoinositides (phosphatidylinositol 4,5 bisphosphate (PI-(4,5)P2) and phosphatidylinositol 4-phosphate (PI-4P)) increased CPTP transfer activity, whereas others (phosphatidylinositol 3-phosphate (PI-3P) and PI) did not. PIPs that stimulated CPTP did not stimulate GLTP, another superfamily member. Short-chain PI-(4,5)P2, which is soluble and does not remain membrane-embedded, failed to activate CPTP. CPTP stimulation by physiologically relevant PI-(4,5)P2 levels surpassed that of phosphatidylserine (PS), the only known non-PIP stimulator of CPTP, despite PI-(4,5)P2 increasing membrane equilibrium binding affinity less effectively than PS. Functional mapping of mutations that led to altered FRET lipid transfer and assessment of CPTP membrane interaction by surface plasmon resonance indicated that di-arginine motifs located in the α-6 helix and the α3-α4 helix regulatory loop of the membrane-interaction region serve as PI-(4,5)P2 headgroup-specific interaction sites. Haddock modeling revealed specific interactions involving the PI-(4,5)P2 headgroup that left the acyl chains oriented favorably for membrane embedding. We propose that PI-(4,5)P2 interaction sites enhance CPTP activity by serving as preferred membrane targeting/docking sites that favorably orient the protein for function.


Asunto(s)
Fosfatidilinositoles/metabolismo , Proteínas de Transferencia de Fosfolípidos/metabolismo , Homeostasis , Humanos , Modelos Moleculares , Proteínas de Transferencia de Fosfolípidos/química , Conformación Proteica en Hélice alfa
3.
World J Surg Oncol ; 20(1): 180, 2022 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-35659681

RESUMEN

BACKGROUND: Computed tomography (CT)-guided cutting needle biopsy (CNB) is an effective diagnostic method for lung nodules (LNs). The false-negative rate of CT-guided lung biopsy is reported to be up to 16%. This study aimed to determine the predictors of true-negative results in LNs with CNB-based benign results. METHODS: From January 2011 to December 2015, 96 patients with CNB-based nonspecific benign results were included in this study as the training group to detect predictors of true-negative results. From January 2016 to December 2018, an additional 57 patients were included as a validation group to test the reliability of the predictors. RESULTS: In the training group, a total of 96 patients underwent CT-guided CNB for 96 LNs. The CNB-based results were true negatives for 82 LNs and false negatives for 14 LNs. The negative predictive value of the CNB-based benign results was 85.4% (82/96). Univariate and multivariate logistic regression analyses revealed that CNB-based granulomatous inflammation (P = 0.013, hazard ratio = 0.110, 95% confidential interval = 0.019-0.625) was the independent predictor of true-negative results. The area under the receiver operator characteristic (ROC) curve was 0.697 (P = 0.019). In the validation group, biopsy results for 47 patients were true negative, and 10 were false negative. When the predictor was used on the validation group, the area under the ROC curve was 0.759 (P = 0.011). CONCLUSIONS: Most of the CNB-based benign results were true negatives, and CNB-based granulomatous inflammation could be considered a predictor of true-negative results.


Asunto(s)
Neoplasias Pulmonares , Biopsia con Aguja Gruesa/métodos , Biopsia con Aguja/métodos , Humanos , Biopsia Guiada por Imagen/métodos , Inflamación/patología , Pulmón/diagnóstico por imagen , Pulmón/patología , Neoplasias Pulmonares/diagnóstico por imagen , Neoplasias Pulmonares/cirugía , Reproducibilidad de los Resultados , Estudios Retrospectivos , Sensibilidad y Especificidad , Tomografía Computarizada por Rayos X/métodos
4.
Int J Mol Sci ; 22(15)2021 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-34360948

RESUMEN

Osteoporosis is one of the major bone disorders that affects both women and men, and causes bone deterioration and bone strength. Bone remodeling maintains bone mass and mineral homeostasis through the balanced action of osteoblasts and osteoclasts, which are responsible for bone formation and bone resorption, respectively. The imbalance in bone remodeling is known to be the main cause of osteoporosis. The imbalance can be the result of the action of various molecules produced by one bone cell that acts on other bone cells and influence cell activity. The understanding of the effect of these molecules on bone can help identify new targets and therapeutics to prevent and treat bone disorders. In this article, we have focused on molecules that are produced by osteoblasts, osteocytes, and osteoclasts and their mechanism of action on these cells. We have also summarized the different pharmacological osteoporosis treatments that target different molecular aspects of these bone cells to minimize osteoporosis.


Asunto(s)
Conservadores de la Densidad Ósea/farmacología , Hormonas y Agentes Reguladores de Calcio/farmacología , Osteoporosis/metabolismo , Animales , Conservadores de la Densidad Ósea/uso terapéutico , Remodelación Ósea , Hormonas y Agentes Reguladores de Calcio/uso terapéutico , Humanos , Osteoclastos/efectos de los fármacos , Osteoclastos/metabolismo , Osteoporosis/tratamiento farmacológico , Osteoporosis/patología
5.
Anal Chem ; 92(4): 3417-3425, 2020 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-31970977

RESUMEN

In vitro assessment of lipid intermembrane transfer activity by cellular proteins typically involves measurement of either radiolabeled or fluorescently labeled lipid trafficking between vesicle model membranes. Use of bilayer vesicles in lipid transfer assays usually comes with inherent challenges because of complexities associated with the preparation of vesicles and their rather short "shelf life". Such issues necessitate the laborious task of fresh vesicle preparation to achieve lipid transfer assays of high quality, precision, and reproducibility. To overcome these limitations, we have assessed model membrane generation by bicelle dilution for monitoring the transfer rates and specificity of various BODIPY-labeled sphingolipids by different glycolipid transfer protein (GLTP) superfamily members using a sensitive fluorescence resonance energy transfer approach. Robust, protein-selective sphingolipid transfer is observed using donor and acceptor model membranes generated by dilution of 0.5 q-value mixtures. The sphingolipid transfer rates are comparable to those observed between small bilayer vesicles produced by sonication or ethanol injection. Among the notable advantages of using bicelle-generated model membranes are (i) easy and straightforward preparation by means that avoid lipid fluorophore degradation and (ii) long "shelf life" after production (≥6 days) and resilience to freeze-thaw storage. The bicelle-dilution-based assay is sufficiently robust, sensitive, and stable for application, not only to purified LTPs but also for LTP activity detection in crude cytosolic fractions of cell homogenates.


Asunto(s)
Proteínas Portadoras/análisis , Membrana Dobles de Lípidos/metabolismo , Modelos Biológicos , Esfingolípidos/metabolismo , Transporte Biológico , Proteínas Portadoras/metabolismo , Transferencia Resonante de Energía de Fluorescencia , Células HeLa , Humanos , Membrana Dobles de Lípidos/química , Esfingolípidos/química
6.
Int J Mol Sci ; 21(17)2020 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-32846921

RESUMEN

Bone metabolism is an intricate process involving various bone cells, signaling pathways, cytokines, hormones, growth factors, etc., and the slightest deviation can result in various bone disorders including osteoporosis, arthropathy, and avascular necrosis of femoral head. Osteoporosis is one of the most prevalent disorders affecting the skeleton, which is characterized by low bone mass and bone mineral density caused by the disruption in the balanced process of bone formation and bone resorption. The current pharmaceutical treatments such as bisphosphonates, selective estrogen receptor modulator, calcitonin, teriparatide, etc., could decrease the risk of fractures but have side-effects that have limited their long term applications. MicroRNAs (miRNAs) are one of many non-coding RNAs. These are single-stranded with a length of 19-25 nucleotides and can influence various cellular processes and play an important role in various diseases. Therefore, in this article, we review the different functions of different miRNA in bone metabolism and osteoporosis to understand their mechanism of action for the development of possible therapeutics.


Asunto(s)
Enfermedades Óseas/genética , Huesos/metabolismo , MicroARNs/fisiología , Densidad Ósea/genética , Conservadores de la Densidad Ósea/química , Conservadores de la Densidad Ósea/uso terapéutico , Enfermedades Óseas/metabolismo , Fracturas Óseas/genética , Fracturas Óseas/metabolismo , Humanos , Terapia Molecular Dirigida/métodos , Terapia Molecular Dirigida/tendencias , Osteoporosis/genética , Osteoporosis/metabolismo
7.
Int J Mol Sci ; 21(9)2020 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-32344794

RESUMEN

Microgravity induces a number of significant physiological changes in the cardiovascular, nervous, immune systems, as well as the bone tissue of astronauts. Changes in cell adhesion properties are one aspect affected during long-term spaceflights in mammalian cells. Cellular adhesion behaviors can be divided into cell-cell and cell-matrix adhesion. These behaviors trigger cell-cell recognition, conjugation, migration, cytoskeletal rearrangement, and signal transduction. Cellular adhesion molecule (CAM) is a general term for macromolecules that mediate the contact and binding between cells or between cells and the extracellular matrix (ECM). In this review, we summarize the four major classes of adhesion molecules that regulate cell adhesion, including integrins, immunoglobulin superfamily (Ig-SF), cadherins, and selectin. Moreover, we discuss the effects of spaceflight and simulated microgravity on the adhesion of endothelial cells, immune cells, tumor cells, stem cells, osteoblasts, muscle cells, and other types of cells. Further studies on the effects of microgravity on cell adhesion and the corresponding physiological behaviors may help increase the safety and improve the health of astronauts in space.


Asunto(s)
Adhesión Celular , Vuelo Espacial , Simulación de Ingravidez , Animales , Astronautas , Moléculas de Adhesión Celular/clasificación , Moléculas de Adhesión Celular/fisiología , Citoesqueleto/ultraestructura , Células Endoteliales/citología , Matriz Extracelular/metabolismo , Humanos , Sistema Inmunológico/citología , Ratones , Células Musculares/citología , Proteínas de Neoplasias/metabolismo , Células Madre Neoplásicas/citología , Especificidad de Órganos , Osteoblastos/citología , Ratas , Células Madre/citología
8.
Int J Mol Sci ; 21(3)2020 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-31973091

RESUMEN

Forkhead box class O family member proteins (FoxOs) are evolutionarily conserved transcription factors for their highly conserved DNA-binding domain. In mammalian species, all the four FoxO members, FoxO1, FoxO3, FoxO4, and FoxO6, are expressed in different organs. In bone, the first three members are extensively expressed and more studied. Bone development, remodeling, and homeostasis are all regulated by multiple cell lineages, including osteoprogenitor cells, chondrocytes, osteoblasts, osteocytes, osteoclast progenitors, osteoclasts, and the intercellular signaling among these bone cells. The disordered FoxOs function in these bone cells contribute to osteoarthritis, osteoporosis, or other bone diseases. Here, we review the current literature of FoxOs for their roles in bone cells, focusing on helping researchers to develop new therapeutic approaches and prevent or treat the related bone diseases.


Asunto(s)
Huesos/metabolismo , Factores de Transcripción Forkhead/metabolismo , Osteocitos/metabolismo , Factores de Transcripción/metabolismo , Enfermedades Óseas/metabolismo , Proteínas de Ciclo Celular/metabolismo , Linaje de la Célula , Condrogénesis/fisiología , Proteína Forkhead Box O1/metabolismo , Proteína Forkhead Box O3/metabolismo , Factores de Transcripción Forkhead/clasificación , Factores de Transcripción Forkhead/genética , Células Madre Hematopoyéticas , Osteoartritis/metabolismo , Osteoblastos/metabolismo , Osteoclastos/metabolismo , Osteogénesis/fisiología , Osteoporosis/metabolismo , Transducción de Señal
9.
J Biol Chem ; 293(43): 16709-16723, 2018 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-30206120

RESUMEN

The glycolipid transfer protein (GLTP) fold defines a superfamily of eukaryotic proteins that selectively transport sphingolipids (SLs) between membranes. However, the mechanisms determining the protein selectivity for specific glycosphingolipids (GSLs) are unclear. Here, we report the crystal structure of the GLTP homology (GLTPH) domain of human 4-phosphate adaptor protein 2 (FAPP2) bound with N-oleoyl-galactosylceramide. Using this domain, FAPP2 transports glucosylceramide from its cis-Golgi synthesis site to the trans-Golgi for conversion into complex GSLs. The FAPP2-GLTPH structure revealed an element, termed the ID loop, that controls specificity in the GLTP family. We found that, in accordance with FAPP2 preference for simple GSLs, the ID loop protrudes from behind the SL headgroup-recognition center to mitigate binding by complex GSLs. Mutational analyses including GLTP and FAPP2 chimeras with swapped ID loops supported the proposed restrictive role of the FAPP2 ID loop in GSL selectivity. Comparative analysis revealed distinctly designed ID loops in each GLTP family member. This analysis also disclosed a conserved H-bond triplet that "clasps" both ID-loop ends together to promote structural autonomy and rigidity. The findings indicated that various ID loops work in concert with conserved recognition centers to create different specificities among family members. We also observed four bulky, conserved hydrophobic residues involved in "sensor-like" interactions with lipid chains in protein hydrophobic pockets and FF motifs in GLTP and FAPP2, well-positioned to provide acyl chain-dependent SL selectivity for the hydrophobic pockets. In summary, our study provides mechanistic insights into sphingolipid recognition by the GLTP fold and uncovers the elements involved in this recognition.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/química , Proteínas Portadoras/química , Esfingolípidos/química , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Secuencia de Aminoácidos , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Cristalografía por Rayos X , Aparato de Golgi/genética , Aparato de Golgi/metabolismo , Humanos , Datos de Secuencia Molecular , Familia de Multigenes , Conformación Proteica , Alineación de Secuencia , Esfingolípidos/metabolismo
10.
Int J Mol Sci ; 20(3)2019 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-30699924

RESUMEN

Skeletal systems provide support, movement, and protection to the human body. It can be affected by several life suffering bone disorders such as osteoporosis, osteoarthritis, and bone cancers. It is not an easy job to treat bone disorders because of avascular cartilage regions. Treatment with non-specific drug delivery must utilize high doses of systemic administration, which may result in toxicities in non-skeletal tissues and low therapeutic efficacy. Therefore, in order to overcome such limitations, developments in targeted delivery systems are urgently needed. Although the idea of a general targeted delivery system using bone targeting moieties like bisphosphonates, tetracycline, and calcium phosphates emerged a few decades ago, identification of carrier systems like viral and non-viral vectors is a recent approach. Viral vectors have high transfection efficiency but are limited by inducing immunogenicity and oncogenicity. Although non-viral vectors possess low transfection efficiency they are comparatively safe. A number of non-viral vectors including cationic lipids, cationic polymers, and cationic peptides have been developed and used for targeted delivery of DNA, RNA, and drugs to bone tissues or cells with successful consequences. Here we mainly discuss such various non-viral delivery systems with respect to their mechanisms and applications in the specific targeting of bone tissues or cells. Moreover, we discuss possible therapeutic agents that can be delivered against various bone related disorders.


Asunto(s)
Enfermedades Óseas/terapia , Animales , Enfermedades Óseas/tratamiento farmacológico , Difosfonatos/química , Difosfonatos/uso terapéutico , Sistemas de Liberación de Medicamentos , Humanos , Nanopartículas/química , Transfección/métodos
11.
Int J Mol Sci ; 20(21)2019 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-31690044

RESUMEN

Gene therapy is manipulation in/of gene expression in specific cells/tissue to treat diseases. This manipulation is carried out by introducing exogenous nucleic acids, such as DNA or RNA, into the cell. Because of their negative charge and considerable larger size, the delivery of these molecules, in general, should be mediated by gene vectors. Non-viral vectors, as promising delivery systems, have received considerable attention due to their low cytotoxicity and non-immunogenicity. As research continued, more and more functional non-viral vectors have emerged. They not only have the ability to deliver a gene into the cells but also have other functions, such as the performance of fluorescence imaging, which aids in monitoring their progress, targeted delivery, and biodegradation. Recently, many reviews related to non-viral vectors, such as polymers and cationic lipids, have been reported. However, there are few reviews regarding functional non-viral vectors. This review summarizes the common functional non-viral vectors developed in the last ten years and their potential applications in the future. The transfection efficiency and the transport mechanism of these materials were also discussed in detail. We hope that this review can help researchers design more new high-efficiency and low-toxicity multifunctional non-viral vectors, and further accelerate the progress of gene therapy.


Asunto(s)
Técnicas de Transferencia de Gen , Terapia Genética/métodos , Nanopartículas/metabolismo , Animales , Vectores Genéticos/efectos adversos , Vectores Genéticos/genética , Humanos , Nanopartículas/química
12.
J Biol Chem ; 292(6): 2531-2541, 2017 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-28011644

RESUMEN

Genetic models for studying localized cell suicide that halt the spread of pathogen infection and immune response activation in plants include Arabidopsis accelerated-cell-death 11 mutant (acd11). In this mutant, sphingolipid homeostasis is disrupted via depletion of ACD11, a lipid transfer protein that is specific for ceramide 1-phosphate (C1P) and phyto-C1P. The C1P binding site in ACD11 and in human ceramide-1-phosphate transfer protein (CPTP) is surrounded by cationic residues. Here, we investigated the functional regulation of ACD11 and CPTP by anionic phosphoglycerides and found that 1-palmitoyl-2-oleoyl-phosphatidic acid or 1-palmitoyl-2-oleoyl-phosphatidylglycerol (≤15 mol %) in C1P source vesicles depressed C1P intermembrane transfer. By contrast, replacement with 1-palmitoyl-2-oleoyl-phosphatidylserine stimulated C1P transfer by ACD11 and CPTP. Notably, "soluble" phosphatidylserine (dihexanoyl-phosphatidylserine) failed to stimulate C1P transfer. Also, none of the anionic phosphoglycerides affected transfer action by human glycolipid lipid transfer protein (GLTP), which is glycolipid-specific and has few cationic residues near its glycolipid binding site. These findings provide the first evidence for a potential phosphoglyceride headgroup-specific regulatory interaction site(s) existing on the surface of any GLTP-fold and delineate new differences between GLTP superfamily members that are specific for C1P versus glycolipid.


Asunto(s)
Proteínas Portadoras/metabolismo , Ceramidas/metabolismo , Fosfatidilserinas/fisiología , Proteínas Reguladoras de la Apoptosis/química , Proteínas Reguladoras de la Apoptosis/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Transporte Biológico , Proteínas Portadoras/química , Línea Celular , Cristalografía por Rayos X , Humanos , Proteínas de Transporte de Membrana/química , Proteínas de Transporte de Membrana/metabolismo , Proteínas de Transferencia de Fosfolípidos , Unión Proteica , Electricidad Estática
13.
Org Biomol Chem ; 16(42): 7833-7842, 2018 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-30084471

RESUMEN

Structure-activity relationship (SAR) studies are very critical to design ideal gene vectors for gene delivery. However, It is difficult to obtain SAR information of low-generation dendrimers due to the lack of easy structural modification ways. Here, we synthesized a novel family of rigid aromatic backbone-based low-generation polyamidoamine (PAMAM) dendrimers. According to the number of primary amines, they were divided into two types: four-amine-containing PAMAM (DL1-DL5) and eight-amine-containing PAMAM (DL6-DL10). Due to the introduction of a rigid aromatic backbone, the low-generation PAMAM could be modified easier by different hydrophobic aliphatic chains. Several assays were used to study the interactions of the PAMAM dendrimers with plasmid DNA, and the results revealed that they not only had good DNA binding ability but also could efficiently condense DNA into spherical-shaped nanoparticles with suitable sizes and zeta potentials. The SAR studies indicated that the gene-transfection efficiency of the synthesized materials depended on not only the structure of their hydrophobic chains but also the number of primary amines. It was found that four-amine-containing PAMAM prepared from oleylamine (DL5) gave the best transfection efficiency, which was 3 times higher than that of lipofectamine 2000 in HEK293 cells. The cellular uptake mechanism mediated by DL5 was further investigated, and the results indicated that DL5/DNA complexes entered the cells mainly via caveolae and clathrin-mediated endocytosis. In addition, these low-generation PAMAMs modified with a single hydrophobic tail showed lower toxicity than lipofectamine 2000 in MC3T3-E1, MG63, HeLa, and HEK293 cells. These results reveal that such a type of low-generation polyamidoamines might be promising non-viral gene vectors, and also give us clues for the design of safe and high-efficiency gene vectors.


Asunto(s)
Dendrímeros , Vectores Genéticos , Poliaminas , Aminas/química , Supervivencia Celular/efectos de los fármacos , Dendrímeros/efectos adversos , Dendrímeros/síntesis química , Dendrímeros/química , Técnicas de Transferencia de Gen , Terapia Genética/métodos , Vectores Genéticos/efectos adversos , Vectores Genéticos/síntesis química , Vectores Genéticos/química , Células HeLa , Humanos , Nanopartículas/química , Plásmidos/química , Relación Estructura-Actividad
14.
Bioorg Chem ; 79: 334-340, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29803080

RESUMEN

Three cationic lipids derived from [12]aneN3 modified with naphthalimide (1a), oleic acid (1b) and octadecylamine (1c) were designed and synthesized. In vitro transfection showed that all these liposomes can deliver plasmid DNA into the tested cell lines. Among these liposomes, 1a gave the best transfection efficiency (TE) in A549 cells, which was higher than that of lipofectamine 2000. More importantly, the TE of 1a was dramatically increased in the presence of 10% serum. These results suggested that 1a might be a promising non-viral gene vector, and also give further insight for developing novel high performance gene delivery agents.


Asunto(s)
Técnicas de Transferencia de Gen , Lípidos/química , Luciferasas/genética , Naftalimidas/química , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Humanos , Lípidos/farmacología , Luciferasas/metabolismo , Estructura Molecular , Naftalimidas/farmacología , Relación Estructura-Actividad , Transfección
15.
Org Biomol Chem ; 14(26): 6346-54, 2016 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-27273411

RESUMEN

Small organic non-viral gene vectors with the structural combinations of (aliphatic chain)-naphthalimide-[12]aneN3 (11a, b) and naphthalimide-(aliphatic chain)-[12]aneN3 (12a-c) were synthesized and fully characterized. Agarose gel electrophoresis experiments indicated that the first type of compounds, 11a and 11b, could completely retard DNA at the concentration of 5 µM in the presence of DOPE. Within the second type of compounds, 12c with the decane chain showed a complete retardation of DNA at the concentration of 20 µM, whereas 12a and 12b with the ethyl and hexyl chains could not retard DNA effectively. Dynamic light scattering measurements indicated that compounds 11a, 11b and 12b, 12c condensed DNA into nanoparticles with the size in the range of 60-160 nm. Due to the strong fluorescence of 11a and 11b, the distribution of lipids/DNA complexes and the process of DNA release from the lipids were clearly observed via cellular uptake experiments. On the other hand, the non-fluorescent 12a-c enabled the EB exclusion assay to afford the binding constants of 4.88 × 10(6) M(-1) (12a), 4.18 × 10(6) M(-1) (12b) and 3.39 × 10(6) M(-1) (12c), respectively. The MTT assay revealed that both types of compounds have low cytotoxicity. Non-fluorescent 12c was successfully applied in the eGFP expression experiments in A549 cells and showed stronger green fluorescence emission than that of lipofectamine 2000. Quantitative transfection experiments through the luciferase assay further revealed that compounds 11a, 11b and 12c can act as non-viral gene vectors in different cell lines. Among them, 12c gave the highest transfection efficiency in HeLa cells, which was about 2 times that offered by lipofectamine 2000. This work clearly demonstrated that the right combination of different functional units and long aliphatic linkers will likely promote gene delivery and transfection efficiency.


Asunto(s)
Técnicas de Transferencia de Gen , Compuestos Heterocíclicos con 1 Anillo/química , Lípidos/química , Naftalimidas/química , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , ADN/química , Relación Dosis-Respuesta a Droga , Vectores Genéticos/química , Vectores Genéticos/farmacología , Humanos , Lípidos/síntesis química , Lípidos/farmacología , Estructura Molecular , Naftalimidas/farmacología , Plásmidos/química , Relación Estructura-Actividad
16.
Bioorg Med Chem ; 24(7): 1550-9, 2016 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-26924215

RESUMEN

Two fluorescent probes, 1 and 2, derived from borondipyrromethene (BODIPY) modified with macrocyclic polyamine [12]aneN3, were synthesized and applied in the discrimination of cysteine (Cys), homocysteine (Hcy), and glutathione (GSH) with absorption and fluorescent spectroscopy in comparison. It was found that Boc-protected 1 showed highly sensitive and selective recognition of GSH over Cys and Hcy; while probe 2 was able to distinguish the three different thiols due to their different reactivities. With its water-solubility, rapid responsiveness, high sensitivity and low cytotoxicity, probe 2 was successfully applied in the fast detection of three biothiols in living cells.


Asunto(s)
Compuestos de Boro/química , Colorantes Fluorescentes/análisis , Colorantes Fluorescentes/química , Compuestos de Sulfhidrilo/análisis , Compuestos de Sulfhidrilo/química , Supervivencia Celular , Relación Dosis-Respuesta a Droga , Células HeLa , Células Hep G2 , Humanos , Estructura Molecular , Solubilidad , Soluciones , Relación Estructura-Actividad , Células Tumorales Cultivadas , Agua/química
17.
J Biol Chem ; 289(10): 6592-6603, 2014 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-24482230

RESUMEN

Chemokines play important roles in the immune system, not only recruiting leukocytes to the site of infection and inflammation but also guiding cell homing and cell development. The soluble poxvirus-encoded protein viral CC chemokine inhibitor (vCCI), a CC chemokine inhibitor, can bind to human CC chemokines tightly to impair the host immune defense. This protein has no known homologs in eukaryotes and may represent a potent method to stop inflammation. Previously, our structure of the vCCI·MIP-1ß (macrophage inflammatory protein-1ß) complex indicated that vCCI uses negatively charged residues in ß-sheet II to interact with positively charged residues in the MIP-1ß N terminus, 20s region and 40s loop. However, the interactions between vCCI and other CC chemokines have not yet been fully explored. Here, we used NMR and fluorescence anisotropy to study the interaction between vCCI and eotaxin-1 (CCL11), a CC chemokine that is an important factor in the asthma response. NMR results reveal that the binding pattern is very similar to the vCCI·MIP-1ß complex and suggest that electrostatic interactions provide a major contribution to binding. Fluorescence anisotropy results on variants of eotaxin-1 further confirm the critical roles of the charged residues in eotaxin-1. In addition, the binding affinity between vCCI and other wild type CC chemokines, MCP-1 (monocyte chemoattractant protein-1), MIP-1ß, and RANTES (regulated on activation normal T cell expressed and secreted), were determined as 1.1, 1.2, and 0.22 nm, respectively. To our knowledge, this is the first work quantitatively measuring the binding affinity between vCCI and multiple CC chemokines.


Asunto(s)
Quimiocina CCL11/inmunología , Proteínas Virales/inmunología , Factores de Virulencia/inmunología , Secuencia de Aminoácidos , Quimiocina CCL11/química , Quimiocina CCL11/genética , Quimiocina CCL2/química , Quimiocina CCL2/inmunología , Quimiocina CCL4/química , Quimiocina CCL4/inmunología , Quimiocina CCL5/química , Quimiocina CCL5/inmunología , Humanos , Inflamación/inmunología , Datos de Secuencia Molecular , Resonancia Magnética Nuclear Biomolecular , Unión Proteica/inmunología , Estructura Secundaria de Proteína , Proteínas Virales/química , Factores de Virulencia/química
18.
Biochim Biophys Acta ; 1831(2): 417-27, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23159414

RESUMEN

Phosphoinositol 4-phosphate adaptor protein-2 (FAPP2) plays a key role in glycosphingolipid (GSL) production using its C-terminal domain to transport newly synthesized glucosylceramide away from the cytosol-facing glucosylceramide synthase in the cis-Golgi for further anabolic processing. Structural homology modeling against human glycolipid transfer protein (GLTP) predicts a GLTP-fold for FAPP2 C-terminal domain, but no experimental support exists to warrant inclusion in the GLTP superfamily. Here, the biophysical properties and glycolipid transfer specificity of FAPP2-C-terminal domain have been characterized and compared with other established GLTP-folds. Experimental evidence for a GLTP-fold includes: i) far-UV circular dichroism (CD) showing secondary structure with high alpha-helix content and a low thermally-induced unfolding transition (~41°C); ii) near-UV-CD indicating only subtle tertiary conformational change before/after interaction with membranes containing/lacking glycolipid; iii) Red-shifted tryptophan (Trp) emission wavelength maximum (λ(max)~352nm) for apo-FAPP2-C-terminal domain consistent with surface exposed intrinsic Trp residues; iv) 'signature' GLTP-fold Trp fluorescence response, i.e., intensity decrease (~30%) accompanied by strongly blue-shifted λ(max) (~14nm) upon interaction with membranes containing glycolipid, supporting direct involvement of Trp in glycolipid binding and enabling estimation of partitioning affinities. A structurally-based preference for other simple uncharged GSLs, in addition to glucosylceramide, makes human FAPP2-GLTP more similar to fungal HET-C2 than to plant AtGLTP1 (glucosylceramide-specific) or to broadly GSL-selective human GLTP. These findings along with the distinct mRNA exon/intron organizations originating from single-copy genes on separate human chromosomes suggest adaptive evolutionary divergence by these two GLTP-folds.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Portadoras/metabolismo , Glicoesfingolípidos/metabolismo , Proteínas Adaptadoras Transductoras de Señales/química , Secuencia de Aminoácidos , Proteínas Portadoras/química , Dicroismo Circular , Datos de Secuencia Molecular , Homología de Secuencia de Aminoácido , Espectrometría de Fluorescencia , Espectrofotometría Ultravioleta
19.
BMC Chem ; 18(1): 38, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38383516

RESUMEN

The α-bromination reaction of carbonyl compounds is a significant topic in the field of organic chemistry. However, due to the lack of suitable brominating reagents, the application of this reaction in undergraduate organic chemistry experiments is limited. In this study, three junior undergraduates successfully conducted an innovative experiment under the guidance of teachers. The bromination of various acetophenone derivatives was investigated by employing pyridine hydrobromide perbromide as the brominating agent, with a focus on exploring the effects of reaction time, reaction temperature, and dosage of the brominating agent. The results demonstrated that 4-chloro-α-bromo-acetophenone could be synthesized at 90 ℃ using 4-chloroacetophenone as a substrate and acetic acid as a solvent with a molar ratio of substrate to brominator being 1.0:1.1. Through the experimental teaching of 18 junior undergraduates, it was observed that all the students successfully completed the experiment within a time frame of 4-5 h, with a notable achievement yield exceeding 80% observed in 14 students. This innovative experiment exhibits significant advantages in terms of safety, high yield, cost-effectiveness, and repeatability. Furthermore, while reinforcing fundamental skills in chemistry experimentation among students, it enhances their scientific literacy levels and fosters innovation consciousness as well as practical aptitude. Consequently, this approach is highly suitable for widespread implementation and integration into undergraduate experimental pedagogy.

20.
Talanta ; 276: 126218, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38759363

RESUMEN

In situ monitoring of intracellular microRNAs (miRNAs) often encounters the challenges of surrounding complexity, coexistence of precursor miRNAs (pre-miRNAs) and the degradation of biological enzyme in living cells. Here, we designed a novel probe encapsulated DNA tetrahedral molecular sieve (DTMS) to realize the size-selective detection of intracellular miRNA 21 that can avoid the interference of pre-miRNAs. In such strategy, quencher (BHQ-1) labeled probe DNA (S6-BHQ 1) was introduced into the inner cavity of fluorophore (FAM) labeled DNA tetrahedral scaffolds (DTS) to prepare DTMS, making the FAM and BHQ-1 closely proximate, and resulting the sensor in a "signal-off" state. In the presence of miRNA 21, strand displacement reaction happened to form more stable DNA double-stranded structure, accompanied by the release of S6-BHQ 1 from the inner cavity of DTMS, making the sensor in a "signal-on" state. The DTMS based sensing platform can then realized the size-selective detection of miRNA 21 with a detection limit of 3.6 pM. Relying on the mechanical rigidity of DTS and the encapsulation of DNA probe using DTMS, such proposed method achieved preferable reproducibility and storage stability. Moreover, this sensing system exhibited good performance for monitoring the change of intracellular miRNA 21 level during the treatment with miRNA-related drugs, demonstrating great potential for biological studies and accurate disease diagnosis.


Asunto(s)
ADN , Colorantes Fluorescentes , MicroARNs , MicroARNs/análisis , Humanos , ADN/química , Colorantes Fluorescentes/química , Espectrometría de Fluorescencia/métodos , Límite de Detección , Sondas de ADN/química , Sondas de ADN/genética , Fluorescencia , Técnicas Biosensibles/métodos , Tamaño de la Partícula
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA