Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nat Chem Biol ; 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38302607

RESUMEN

The leaf-cutter ant fungal garden ecosystem is a naturally evolved model system for efficient plant biomass degradation. Degradation processes mediated by the symbiotic fungus Leucoagaricus gongylophorus are difficult to characterize due to dynamic metabolisms and spatial complexity of the system. Herein, we performed microscale imaging across 12-µm-thick adjacent sections of Atta cephalotes fungal gardens and applied a metabolome-informed proteome imaging approach to map lignin degradation. This approach combines two spatial multiomics mass spectrometry modalities that enabled us to visualize colocalized metabolites and proteins across and through the fungal garden. Spatially profiled metabolites revealed an accumulation of lignin-related products, outlining morphologically unique lignin microhabitats. Metaproteomic analyses of these microhabitats revealed carbohydrate-degrading enzymes, indicating a prominent fungal role in lignocellulose decomposition. Integration of metabolome-informed proteome imaging data provides a comprehensive view of underlying biological pathways to inform our understanding of metabolic fungal pathways in plant matter degradation within the micrometer-scale environment.

2.
Nano Lett ; 23(17): 8256-8263, 2023 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-37651617

RESUMEN

Miniature two-photon microscopy has emerged as a powerful technique for investigating brain activity in freely moving animals. Ongoing research objectives include reducing probe weight and minimizing animal behavior constraints caused by probe attachment. Employing dielectric metalenses, which enable the use of sizable optical components in flat device structures while maintaining imaging resolution, is a promising solution for addressing these challenges. In this study, we designed and fabricated a titanium dioxide metalens with a wavelength of 920 nm and a high aspect ratio. Furthermore, a meta-optic two-photon microscope weighing 1.36 g was developed. This meta-optic probe has a lateral resolution of 0.92 µm and an axial resolution of 18.08 µm. Experimentally, two-photon imaging of mouse brain structures in vivo was also demonstrated. The flat dielectric metalens technique holds promising opportunities for high-performance integrated miniature nonlinear microscopy and endomicroscopy platforms in the biomedical field.


Asunto(s)
Microscopía , Dispositivos Ópticos , Animales , Ratones , Fotones
3.
Metab Eng ; 78: 72-83, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37201565

RESUMEN

Microbial production of valuable bioproducts is a promising route towards green and sustainable manufacturing. The oleaginous yeast, Rhodosporidium toruloides, has emerged as an attractive host for the production of biofuels and bioproducts from lignocellulosic hydrolysates. 3-hydroxypropionic acid (3HP) is an attractive platform molecule that can be used to produce a wide range of commodity chemicals. This study focuses on establishing and optimizing the production of 3HP in R. toruloides. As R. toruloides naturally has a high metabolic flux towards malonyl-CoA, we exploited this pathway to produce 3HP. Upon finding the yeast capable of catabolizing 3HP, we then implemented functional genomics and metabolomic analysis to identify the catabolic pathways. Deletion of a putative malonate semialdehyde dehydrogenase gene encoding an oxidative 3HP pathway was found to significantly reduce 3HP degradation. We further explored monocarboxylate transporters to promote 3HP transport and identified a novel 3HP transporter in Aspergillus pseudoterreus by RNA-seq and proteomics. Combining these engineering efforts with media optimization in a fed-batch fermentation resulted in 45.4 g/L 3HP production. This represents one of the highest 3HP titers reported in yeast from lignocellulosic feedstocks. This work establishes R. toruloides as a host for 3HP production from lignocellulosic hydrolysate at high titers, and paves the way for further strain and process optimization towards enabling industrial production of 3HP in the future.


Asunto(s)
Lignina , Ingeniería Metabólica , Ingeniería Metabólica/métodos , Lignina/metabolismo
4.
Metab Eng ; 80: 163-172, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37778408

RESUMEN

Aconitic acid is an unsaturated tricarboxylic acid that is attractive for its potential use in manufacturing biodegradable and biocompatible polymers, plasticizers, and surfactants. Previously Aspergillus pseudoterreus was engineered as a platform to produce aconitic acid by deleting the cadA (cis-aconitic acid decarboxylase) gene in the itaconic acid biosynthetic pathway. In this study, the aconitic acid transporter gene (aexA) was identified using comparative global discovery proteomics analysis between the wild-type and cadA deletion strains. The protein AexA belongs to the Major Facilitator Superfamily (MFS). Deletion of aexA almost abolished aconitic acid secretion, while its overexpression led to a significant increase in aconitic acid production. Transportation of aconitic acid across the plasma membrane is a key limiting step in its production. In vitro, proteoliposome transport assay further validated AexA's function and substrate specificity. This research provides new approaches to efficiently pinpoint and characterize exporters of fungal organic acids and accelerate metabolic engineering to improve secretion capability and lower the cost of bioproduction.


Asunto(s)
Ácido Aconítico , Aspergillus , Ácido Aconítico/metabolismo , Aspergillus/genética , Aspergillus/metabolismo , Proteínas de Transporte de Membrana/genética , Ingeniería Metabólica , Succinatos/metabolismo
5.
Artículo en Inglés | MEDLINE | ID: mdl-37068015

RESUMEN

Currently, the genus Paracoccus comprises 76 recognized species. Members of Paracoccus are mostly isolated from environmental, animal, and plant sources. This report describes and proposes a novel species of Paracoccus isolated from clinical specimens of the human ocular surface. We isolated two aerobic, Gram-stain-negative, non-spore-forming, coccoid or short rod-shaped, and non-motile strains (designated DK398T and DK608) from conjunctival sac swabs of two healthy volunteers. The results showed that the strains grew best under the conditions of 28°C, pH 7.0, and 1.0 % (w/v) NaCl. Sequence analysis based on the 16S rRNA gene showed that strains DK398T and DK608 were members of Paracoccus, most similar to Paracoccus laeviglucosivorans 43PT (98.54 and 98.62 %), Paracoccus litorisediminis GHD-05T (98.34 and 98.41 %), and Paracoccus limmosus NB88T (98.21 and 98.29 %). Phenotypic analysis showed that DK398T and DK608 were positive for catalase and oxidase, negative for producing N-acetyl-ß-glucosaminic acid, arginine dihydrolase, and ß-glucuronidase but positive for leucine arylamidase. The predominant isoprenoid quinone was Q-10, and the major polar lipids included phosphatidylethanolamine, diphosphatidylglycerol, phosphatidylglycerol, phosphatidylcholine, and an unidentified glycolipid. The major fatty acids (>10%) were summed feature 8 (C18 : 1 ω7c and/or C18 : 1 ω6c) and C16 : 0. The meso-diaminopimelic acid was found in the cell wall peptidoglycan of DK398T. The major cell wall sugars were ribose and galactose. Based on the results of phylogenetic analyses, low (<83.22 %) average nucleotide identity, digital DNA-DNA hybridization (<26.0%), chemotaxonomic analysis, and physiological properties, strain DK398T represents a novel species of the genus Paracoccus, for which the name Paracoccus shanxieyensis sp. nov. is proposed. The type strain is DK398T (=CGMCC 1.17227T=JCM 33719T).


Asunto(s)
Ácidos Grasos , Paracoccus , Animales , Humanos , Ácidos Grasos/química , Fosfolípidos/química , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Ubiquinona/química , Técnicas de Tipificación Bacteriana , ADN Bacteriano/genética , Composición de Base
6.
Microb Cell Fact ; 22(1): 144, 2023 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-37537586

RESUMEN

Efficient conversion of pentose sugars remains a significant barrier to the replacement of petroleum-derived chemicals with plant biomass-derived bioproducts. While the oleaginous yeast Rhodosporidium toruloides (also known as Rhodotorula toruloides) has a relatively robust native metabolism of pentose sugars compared to other wild yeasts, faster assimilation of those sugars will be required for industrial utilization of pentoses. To increase the rate of pentose assimilation in R. toruloides, we leveraged previously reported high-throughput fitness data to identify potential regulators of pentose catabolism. Two genes were selected for further investigation, a putative transcription factor (RTO4_12978, Pnt1) and a homolog of a glucose transceptor involved in carbon catabolite repression (RTO4_11990). Overexpression of Pnt1 increased the specific growth rate approximately twofold early in cultures on xylose and increased the maximum specific growth by 18% while decreasing accumulation of arabitol and xylitol in fast-growing cultures. Improved growth dynamics on xylose translated to a 120% increase in the overall rate of xylose conversion to fatty alcohols in batch culture. Proteomic analysis confirmed that Pnt1 is a major regulator of pentose catabolism in R. toruloides. Deletion of RTO4_11990 increased the growth rate on xylose, but did not relieve carbon catabolite repression in the presence of glucose. Carbon catabolite repression signaling networks remain poorly characterized in R. toruloides and likely comprise a different set of proteins than those mainly characterized in ascomycete fungi.


Asunto(s)
Proteómica , Xilosa , Xilosa/metabolismo , Pentosas , Glucosa/metabolismo
7.
Opt Express ; 30(15): 26090-26101, 2022 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-36236806

RESUMEN

We demonstrate a miniature fiber-optic two two-photon endomicroscopy with microsphere-spliced double-cladding antiresonant fiber for resolution enhancement. An easy-to-operate process for fixing microsphere permanently in an antiresonant fiber core, by arc discharge, is proposed. The flexible fiber-optic probe is integrated with a parameter of 5.8 mm × 49.1 mm (outer diameter × rigid length); the field of view is 210 µm, the resolution is 1.3 µm, and the frame rate is 0.7 fps. The imaging ability is verified using ex-vivo mouse kidney, heart, stomach, tail tendon, and in-vivo brain neural imaging.


Asunto(s)
Tecnología de Fibra Óptica , Fotones , Animales , Tecnología de Fibra Óptica/métodos , Ratones , Microesferas
8.
Opt Express ; 29(23): 38199-38205, 2021 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-34808877

RESUMEN

We demonstrate a femtosecond all-polarization-maintaining Nd fiber laser working at 920 nm mode locked by a biased non-linear loop mirror. The broadest spectral width of the pulse is 25.2 nm and the output power is 8 mW with 320 mW pump power. The measured pulse width is 109 fs with extra-cavity compression. The laser configuration of all-polarization-maintaining fiber can directly enhance the environmental stability of generated pulses. The seed pulses of the oscillator were amplified over 400 mW, which served as the light source for a two-photon microscope. To the best of our knowledge, this is the first demonstration of a 920 nm femtosecond Nd polarization-maintaining fiber laser based on a non-linear loop mirror.

9.
Mol Cell Proteomics ; 18(8): 1630-1650, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31196969

RESUMEN

Aberrant phospho-signaling is a hallmark of cancer. We investigated kinase-substrate regulation of 33,239 phosphorylation sites (phosphosites) in 77 breast tumors and 24 breast cancer xenografts. Our search discovered 2134 quantitatively correlated kinase-phosphosite pairs, enriching for and extending experimental or binding-motif predictions. Among the 91 kinases with auto-phosphorylation, elevated EGFR, ERBB2, PRKG1, and WNK1 phosphosignaling were enriched in basal, HER2-E, Luminal A, and Luminal B breast cancers, respectively, revealing subtype-specific regulation. CDKs, MAPKs, and ataxia-telangiectasia proteins were dominant, master regulators of substrate-phosphorylation, whose activities are not captured by genomic evidence. We unveiled phospho-signaling and druggable targets from 113 kinase-substrate pairs and cascades downstream of kinases, including AKT1, BRAF and EGFR. We further identified kinase-substrate-pairs associated with clinical or immune signatures and experimentally validated activated phosphosites of ERBB2, EIF4EBP1, and EGFR. Overall, kinase-substrate regulation revealed by the largest unbiased global phosphorylation data to date connects driver events to their signaling effects.


Asunto(s)
Neoplasias de la Mama/metabolismo , Proteínas Quinasas/metabolismo , Femenino , Humanos , Fosforilación , Transducción de Señal
10.
Microb Cell Fact ; 19(1): 24, 2020 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-32024522

RESUMEN

BACKGROUND: Rhodosporidium toruloides has emerged as a promising host for the production of bioproducts from lignocellulose, in part due to its ability to grow on lignocellulosic feedstocks, tolerate growth inhibitors, and co-utilize sugars and lignin-derived monomers. Ent-kaurene derivatives have a diverse range of potential applications from therapeutics to novel resin-based materials. RESULTS: The Design, Build, Test, and Learn (DBTL) approach was employed to engineer production of the non-native diterpene ent-kaurene in R. toruloides. Following expression of kaurene synthase (KS) in R. toruloides in the first DBTL cycle, a key limitation appeared to be the availability of the diterpene precursor, geranylgeranyl diphosphate (GGPP). Further DBTL cycles were carried out to select an optimal GGPP synthase and to balance its expression with KS, requiring two of the strongest promoters in R. toruloides, ANT (adenine nucleotide translocase) and TEF1 (translational elongation factor 1) to drive expression of the KS from Gibberella fujikuroi and a mutant version of an FPP synthase from Gallus gallus that produces GGPP. Scale-up of cultivation in a 2 L bioreactor using a corn stover hydrolysate resulted in an ent-kaurene titer of 1.4 g/L. CONCLUSION: This study builds upon previous work demonstrating the potential of R. toruloides as a robust and versatile host for the production of both mono- and sesquiterpenes, and is the first demonstration of the production of a non-native diterpene in this organism.


Asunto(s)
Diterpenos de Tipo Kaurano/metabolismo , Lignina/metabolismo , Ingeniería Metabólica , Ustilaginales/metabolismo , Animales , Proteínas de Plantas/metabolismo
11.
J Proteome Res ; 18(2): 694-699, 2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-30525668

RESUMEN

Targeted proteomics experiments based on selected reaction monitoring (SRM) have gained wide adoption in the use of clinical biomarkers, cellular modeling, and numerous other biological experiments due to their highly accurate and reproducible quantification. The quantitative accuracy in targeted proteomics experiments is reliant on the stable-isotope, heavy-labeled peptide standards that are spiked into a sample and used as a reference when calculating the abundance of endogenous peptides. Therefore, the quality of measurement for these standards is a critical factor in determining whether data acquisition was successful. With improved mass spectrometry (MS) instrumentation that enables the monitoring of hundreds of peptides in hundreds to thousands of samples, quality assessment is increasingly important and cannot be performed manually. We present Q4SRM, a software tool that rapidly checks the signal from all heavy-labeled peptides and flags those that fail quality-control metrics. Using four metrics, the tool detects problems with both individual SRM transitions and the collective group of transitions that monitor a single peptide. The program's speed and simplicity enable its use at the point of data acquisition and can be ideally run immediately upon the completion of a liquid chromatography-SRM-MS analysis.


Asunto(s)
Marcaje Isotópico/normas , Proteómica/métodos , Control de Calidad , Programas Informáticos , Cromatografía Liquida/métodos , Humanos , Marcaje Isotópico/métodos , Espectrometría de Masas/métodos , Péptidos/análisis , Péptidos/normas , Proteómica/normas
12.
World J Microbiol Biotechnol ; 35(11): 163, 2019 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-31637600

RESUMEN

To simplify industrial mushroom cultivation, we introduced a bacterial Pseudomonas sp. UW4 acdS gene, encoding 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase (AcdS), into fungus Agaricus bisporus. Transformant A. bisporus-acdS14 cased with sterilized-vermiculite generated primordia 5 days sooner than wild-type strain, confirming the specific role of the AcdS enzyme. Being consistent with the AcdS enzyme activity increased by 84%, the mycelium growth rate was increased by 25%; but, the ACC and ethylene concentrations were reduced by 71% and 36%, respectively, in the A. bisporus-acdS14 transformant. And the bacterium P. sp. UW4 attachment on the mycelium of the A. bisporus-acdS14 transformant was drastically reduced. We conclude that the heterogeneously expressed bacterial acdS gene degrades ACC and reduces ethylene-synthesis, eliminating ethylene inhibition on the mycelium growth and primordium formation in A. bisporus. Our results provide new insights into the mechanism underlying casing soil bacterium, and help formulate a casing-less cultivation for the next-generation mushroom industry.


Asunto(s)
Agaricus/crecimiento & desarrollo , Agaricus/genética , Cuerpos Fructíferos de los Hongos/crecimiento & desarrollo , Pseudomonas/enzimología , Pseudomonas/genética , Aminoácidos Cíclicos/metabolismo , Liasas de Carbono-Carbono/genética , Liasas de Carbono-Carbono/metabolismo , Clonación Molecular , Etilenos/metabolismo , Regulación Fúngica de la Expresión Génica , Micelio/crecimiento & desarrollo , Suelo , Transformación Genética
13.
Anal Chem ; 89(17): 9139-9146, 2017 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-28724286

RESUMEN

Mass spectrometry-based targeted proteomics (e.g., selected reaction monitoring, SRM) is emerging as an attractive alternative to immunoassays for protein quantification. Recently we have made significant progress in SRM sensitivity for enabling quantification of low nanograms per milliliter to sub-naograms per milliliter level proteins in nondepleted human blood plasma/serum without affinity enrichment. However, precise quantification of extremely low abundance proteins (e.g., ≤ 100 pg/mL in blood plasma/serum) using targeted proteomics approaches still remains challenging, especially for these samples without available antibodies for enrichment. To address this need, we have developed an antibody-independent deep-dive SRM (DD-SRM) approach that capitalizes on multidimensional high-resolution reversed-phase liquid chromatography (LC) separation for target peptide separation and enrichment combined with precise selection of target peptide fractions of interest, significantly improving SRM sensitivity by ∼5 orders of magnitude when compared to conventional LC-SRM. Application of DD-SRM to human serum and tissue provides precise quantification of endogenous proteins at the ∼10 pg/mL level in nondepleted serum and at <10 copies per cell level in tissue. Thus, DD-SRM holds great promise for precisely measuring extremely low abundance proteins or protein modifications, especially when high-quality antibodies are not available.


Asunto(s)
Proteínas Sanguíneas/química , Inmunoensayo/métodos , Espectrometría de Masas/métodos , Proteómica/métodos , Anticuerpos , Cromatografía de Fase Inversa , Humanos , Plasma/química , Antígeno Prostático Específico/sangre , Sensibilidad y Especificidad
14.
J Transl Med ; 15(1): 175, 2017 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-28810879

RESUMEN

BACKGROUND: Speckle-type POZ protein (SPOP) is an E3 ubiquitin ligase adaptor protein that functions as a potential tumor suppressor, and SPOP mutations have been identified in ~10% of human prostate cancers. However, it remains unclear if mutant SPOP proteins can be utilized as biomarkers for early detection, diagnosis, prognosis or targeted therapy of prostate cancer. Moreover, the SPOP mutation sites are distributed in a relatively short region with multiple lysine residues, posing significant challenges for bottom-up proteomics analysis of the SPOP mutations. METHODS: To address this issue, PRISM (high-pressure, high-resolution separations coupled with intelligent selection and multiplexing)-SRM (selected reaction monitoring) mass spectrometry assays have been developed for quantifying wild-type SPOP protein and 11 prostate cancer-derived SPOP mutations. RESULTS: Despite inherent limitations due to amino acid sequence constraints, all the PRISM-SRM assays developed using Arg-C digestion showed a linear dynamic range of at least two orders of magnitude, with limits of quantification ranged from 0.1 to 1 fmol/µg of total protein in the cell lysate. Applying these SRM assays to analyze HEK293T cells with and without expression of the three most frequent SPOP mutations in prostate cancer (Y87N, F102C or F133V) led to confident detection of all three SPOP mutations in corresponding positive cell lines but not in the negative cell lines. Expression of the F133V mutation and wild-type SPOP was at much lower levels compared to that of F102C and Y87N mutations; however, at present, it is unknown if this also affects the biological activity of the SPOP protein. CONCLUSIONS: In summary, PRISM-SRM enables multiplexed, isoform-specific detection of mutant SPOP proteins in cell lysates, providing significant potential in biomarker development for prostate cancer.


Asunto(s)
Espectrometría de Masas/métodos , Mutación/genética , Proteínas Nucleares/genética , Neoplasias de la Próstata/genética , Proteómica/métodos , Proteínas Represoras/genética , Secuencia de Aminoácidos , Células HEK293 , Humanos , Límite de Detección , Masculino , Péptidos/química , Péptidos/metabolismo
15.
Environ Sci Technol ; 51(20): 11848-11857, 2017 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-28891285

RESUMEN

The kinetics of biogeochemical processes in natural and engineered environmental systems is typically described using Monod-type or modified Monod-type models. These models rely on biomass as surrogates for functional enzymes in microbial communities that catalyze biogeochemical reactions. A major challenge of applying such models is the difficulty of quantitatively measuring functional biomass for the constraining and validation of the models. However, omics-based approaches have been increasingly used to characterize microbial community structure, functions, and metabolites. Here, we propose an enzyme-based model that can incorporate omics data to link microbial community functions with biogeochemical process kinetics. The model treats enzymes as time-variable catalysts for biogeochemical reactions and applies a biogeochemical reaction network to incorporate intermediate metabolites. The sequences of genes and proteins from metagenomes, as well as those from the UniProt database, were used for targeted enzyme quantification and to provide insights into the dynamic linkage among functional genes, enzymes, and metabolites that are required in the model. The application of the model was demonstrated using denitrification, as an example, by comparing model simulations with measured functional enzymes, genes, denitrification substrates, and intermediates.


Asunto(s)
Desnitrificación , Metagenoma , Biomasa , Cinética
16.
Int J Phytoremediation ; 19(8): 739-745, 2017 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-28537795

RESUMEN

A greenhouse experiment was conducted to investigate the effects of the arbuscular mycorrhizal fungus Funneliformis mosseae on three parameters: Pb, Zn, Cu and Cd accumulation, translocation and plant growth in perennial ryegrass (Lolium perenne), tall fescue (Festuca arundinacea), showy stonecrop (Hylotelephium spectabile) and Purple Heart (Tradescantia pallida). The purpose of this work is to enhance site-specific phytostabilization of lead/zinc mine tailings using native plant species. The results showed that mycorrhizal fungi inoculation significantly increased plant biomass of F. arundinacea, H. spectabile and T. pallida. The Pb, Zn, Cu and Cd concentrations in roots were higher than those in shoots both with and without mycorrhizae, with the exception of the Zn concentration in H. spectabile. Mycorrhizae generally increased metal concentrations in roots and decreased metal concentrations in shoots of L. perenne and F. arundinacea. In addition, it was found that the majority of the bioconcentration and translocation factors were lower than 1 and mycorrhizal fungi inoculation further reduced these values. These results suggest that appropriate plant species inoculated with mycorrhiza might be a potential approach to revegetating mine tailing sites and that H. spectabile is an appropriate plant for phytostabilization of Pb/Zn tailings in northern China due to its higher biomass production and lower metal accumulation in shoots.


Asunto(s)
Plomo/metabolismo , Micorrizas , Contaminantes del Suelo/metabolismo , Zinc/metabolismo , Biodegradación Ambiental , China , Raíces de Plantas , Plantas
17.
Kidney Int ; 89(6): 1244-52, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27165815

RESUMEN

The human urinary proteome provides an assessment of kidney injury with specific biomarkers for different kidney injury phenotypes. In an effort to fully map and decipher changes in the urine proteome and peptidome after kidney transplantation, renal allograft biopsy matched urine samples were collected from 396 kidney transplant recipients. Centralized and blinded histology data from paired graft biopsies was used to classify urine samples into diagnostic categories of acute rejection, chronic allograft nephropathy, BK virus nephritis, and stable graft. A total of 245 urine samples were analyzed by liquid chromatography-mass spectrometry using isobaric Tags for Relative and Absolute Quantitation (iTRAQ) reagents. From a group of over 900 proteins identified in transplant injury, a set of 131 peptides were assessed by selected reaction monitoring for their significance in accurately segregating organ injury causation and pathology in an independent cohort of 151 urine samples. Ultimately, a minimal set of 35 proteins were identified for their ability to segregate the 3 major transplant injury clinical groups, comprising the final panel of 11 urinary peptides for acute rejection (93% area under the curve [AUC]), 12 urinary peptides for chronic allograft nephropathy (99% AUC), and 12 urinary peptides for BK virus nephritis (83% AUC). Thus, urinary proteome discovery and targeted validation can identify urine protein panels for rapid and noninvasive differentiation of different causes of kidney transplant injury, without the requirement of an invasive biopsy.


Asunto(s)
Aloinjertos/patología , Rechazo de Injerto/orina , Trasplante de Riñón , Riñón/patología , Nefritis/orina , Adolescente , Adulto , Virus BK/aislamiento & purificación , Biomarcadores/orina , Biopsia , Niño , Cromatografía Liquida , Femenino , Rechazo de Injerto/diagnóstico , Rechazo de Injerto/patología , Humanos , Masculino , Espectrometría de Masas , Nefritis/diagnóstico , Nefritis/patología , Nefritis/virología , Proteómica , Urinálisis/métodos , Adulto Joven
18.
Anal Chem ; 88(8): 4418-25, 2016 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-27028594

RESUMEN

A new sheathless transient capillary isotachophoresis (CITP)/capillary zone electrophoresis (CZE)-MS interface, based on a commercially available capillary with an integrated metal-coated ESI emitter, was developed in this study aiming at overcoming the reproducibility and ruggedness problems suffered to a certain degree by almost all the available CE-MS interfaces, and pushing the CE-MS technology suitable for routine sample analysis with high sensitivity. The new CITP/CZE-MS interface allows the electric contact between ESI voltage power supply and the CE separation liquid by using a conductive liquid that comes in contact with the metal-coated surface of the ESI emitter, making it a true sheathless CE-MS interface. Stable electrospray was established by avoiding the formation of gas bubbles from electrochemical reaction inside the CE capillary. Crucial operating parameters, such as sample loading volume, flow rate, and separation voltage, were systematically evaluated for their effects on both CITP/CZE separation efficiency and MS detection sensitivity. Around one hundred CITP/CZE-MS analyses can be easily achieved by using the new sheathless CITP/CZE interface without a noticeable loss of metal coating on the ESI emitter surface, or degrading of the ESI emitter performance. The reproducibility in analyte migration time and quantitative performance of the new interface was experimentally evaluated to demonstrate a LOQ below 5 attomole.


Asunto(s)
Electroforesis Capilar , Nanotecnología , Péptidos/análisis , Espectrometría de Masa por Ionización de Electrospray , Electrólitos/análisis
19.
Clin Chem ; 62(1): 48-69, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26719571

RESUMEN

BACKGROUND: For many years, basic and clinical researchers have taken advantage of the analytical sensitivity and specificity afforded by mass spectrometry in the measurement of proteins. Clinical laboratories are now beginning to deploy these work flows as well. For assays that use proteolysis to generate peptides for protein quantification and characterization, synthetic stable isotope-labeled internal standard peptides are of central importance. No general recommendations are currently available surrounding the use of peptides in protein mass spectrometric assays. CONTENT: The Clinical Proteomic Tumor Analysis Consortium of the National Cancer Institute has collaborated with clinical laboratorians, peptide manufacturers, metrologists, representatives of the pharmaceutical industry, and other professionals to develop a consensus set of recommendations for peptide procurement, characterization, storage, and handling, as well as approaches to the interpretation of the data generated by mass spectrometric protein assays. Additionally, the importance of carefully characterized reference materials-in particular, peptide standards for the improved concordance of amino acid analysis methods across the industry-is highlighted. The alignment of practices around the use of peptides and the transparency of sample preparation protocols should allow for the harmonization of peptide and protein quantification in research and clinical care.


Asunto(s)
Técnicas de Laboratorio Clínico , Espectrometría de Masas , Péptidos/análisis , Proteómica , Manejo de Especímenes , Guías como Asunto , Humanos , Péptidos/aislamiento & purificación , Investigadores
20.
Anal Chem ; 87(2): 1103-10, 2015 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-25517423

RESUMEN

Targeted mass spectrometry is a promising technology for site-specific quantification of posttranslational modifications. However, a major constraint is the limited sensitivity for quantifying low-abundance PTMs, requiring the use of affinity reagents for enrichment. Herein, we demonstrate the direct site-specific quantification of ERK phosphorylation isoforms (pT, pY, pTpY) and their relative stoichiometry using a sensitive targeted MS approach termed high-pressure, high-resolution separations with intelligent selection, and multiplexing (PRISM). PRISM provides effective enrichment of target peptides into a given fraction from complex mixture, followed by selected reaction monitoring quantification. Direct quantification of ERK phosphorylation in human mammary epithelial cells (HMEC) was demonstrated from as little as 25 µg tryptic peptides from whole cell lysates. Compared to immobilized metal-ion affinity chromatography, PRISM provided ∼10-fold higher signal intensities, presumably due to the better peptide recovery of PRISM. This approach was applied to quantify ERK phosphorylation dynamics in HMEC treated by different doses of epidermal growth factor at both the peak activation (10 min) and steady state (2 h). The maximal ERK activation was observed with 0.3 and 3 ng/mL doses for 10 min and 2 h time points, respectively. The dose-response profiles of individual phosphorylated isoforms showed that singly phosphorylated pT-ERK never increases significantly, while the increase of pY-ERK paralleled that of pTpY-ERK. This data supports for a processive, rather than distributed model of ERK phosphorylation. The PRISM-SRM quantification of protein phosphorylation illustrates the potential for simultaneous quantification of multiple PTMs.


Asunto(s)
Mama/enzimología , Cromatografía Liquida/métodos , Células Epiteliales/enzimología , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Fragmentos de Péptidos/análisis , Espectrometría de Masas en Tándem/métodos , Femenino , Humanos , Fosforilación , Procesamiento Proteico-Postraduccional , Proteómica/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA