RESUMEN
The early monitoring and inactivation of bacteria are of crucial importance in preventing the further spread of foodborne pathogens. Staphylococcus aureus (S. aureus), a prototypical foodborne pathogen, is widely present in the natural environment and has the capability to trigger a range of diseases at low concentrations. In this work, we designed Fe3O4@SiO2-Au core-shell-satellite nanocomposites (NCs) modified with aptamer for efficient capture, high-sensitivity surface-enhanced Raman scattering (SERS) detection, and photothermal therapy (PTT) against S. aureus. Fe3O4@SiO2-Au NCs with tunable Au nanocrystal nanogaps were prepared. By combining the finite-difference time-domain (FDTD) method and experimental results, we studied the electric field distribution of Fe3O4@SiO2-Au under different Au nanogaps and ultimately obtained the optimal SERS substrate FSA-60. The modification of aptamer on the surfaces of FSA-60 could be used for the specific capture and selective detection of S. aureus, achieving a detection limit of as low as 50 cfu/mL. Furthermore, Apt-FSA-60 possessed excellent photothermal properties, demonstrating the strong photothermal killing ability against S. aureus. Therefore, Apt-FSA-60 is a promising high-sensitivity SERS substrate and efficient photothermal agent and is expected to be widely applied and promoted in future disease prevention and treatment.
Asunto(s)
Aptámeros de Nucleótidos , Oro , Nanocompuestos , Dióxido de Silicio , Espectrometría Raman , Staphylococcus aureus , Staphylococcus aureus/efectos de los fármacos , Dióxido de Silicio/química , Nanocompuestos/química , Espectrometría Raman/métodos , Oro/química , Aptámeros de Nucleótidos/química , Aptámeros de Nucleótidos/farmacología , Terapia Fototérmica/métodosRESUMEN
We report the low-temperature resistance upturn in sandwiched structures of La2/3Sr1/3MnO3/ZrO2/La2/3Sr1/3MnO3 and La2/3Sr1/3MnO3/LaMnO3/La2/3Sr1/3MnO3, while it disappeared when the interlayer was replaced by YBa2Cu3O7. The experimental data have been analyzed qualitatively and quantitatively. The results show that the low temperature resistance upturn is mainly due to the quantum correction effects driven by the weak localization and the electron-electron interaction in such a strongly correlated system, and the contribution of each factor varies with grain boundaries. Moreover, the resistance upturns are suppressed by a local magnetic field. These findings will help to further understand the physical mechanism of low-temperature resistance upturn in colossal magnetoresistance manganites. Furthermore, it is also helpful to reveal the intrinsic transport mechanism at the interfaces of semiconductor/ferromagnetism and antiferromagnetism/ferromagnetism.
RESUMEN
Smart sensing and advanced systems have played crucial roles in the modern industrialization of society, which has led to many sensors being used in fabrication methodologies for various applications, such as in medical equipment [...].
RESUMEN
The design of mutifunctional protein films for large-area spatially ordered arrays of functional components holds great promise in the field of biomedical applications. Herein, interfacial electrostatic self-assembly was employed to construct a large-scale protein thin film by inducing electrostatic interactions between three bovine serum albumin (BSA)-coated nanoclusters and cetyltrimethylammonium bromide (CTAB), leading to their spontaneous organization and uniform distribution at the oil-water interface. This protein film demonstrated excellent multienzyme functions, high antibacterial activity, and pH-responsive drug release capability. Therefore, it can accelerate the wound closure process through a synergistic effect that includes reducing local blood glucose levels, regulating cellular oxidative stress, eradicating bacteria, and promoting cell proliferation.
Asunto(s)
Antibacterianos , Albúmina Sérica Bovina , Cicatrización de Heridas , Cicatrización de Heridas/efectos de los fármacos , Albúmina Sérica Bovina/química , Animales , Antibacterianos/farmacología , Antibacterianos/química , Cetrimonio/química , Bovinos , Electricidad Estática , Escherichia coli/efectos de los fármacos , Ratones , Proliferación Celular/efectos de los fármacos , Staphylococcus aureus/efectos de los fármacos , Humanos , Concentración de Iones de HidrógenoRESUMEN
Unusual electrical transport properties associated with weak or strong localization are sometimes found in disordered electronic materials. Here, we report experimental observation of a crossover of electronic behavior from weak localization to enhanced weak localization due to the spatial influence of disorder induced by ZrO2 nanopillars in (La2/3Sr1/3MnO3)1-x:(ZrO2)x (x = 0, 0.2, and 0.3) nanocomposite films. The spatial strain regions, identified by scanning transmission electron microscopy and high-resolution x-ray diffraction, induce a coexistence of two-dimentional (2D) and three-dimentional (3D) localization and switches to typical 2D localization with increasing density of ZrO2 pillars due to length scale confinement, which interestingly accords with enhancing vertically interfacial strain. Based on the excellent agreement of our experimental results with one-parameter scaling theory of localization, the enhanced weak localization exists in metal range close to the fixed point. These films provide a tunable experimental model for studying localization in particular the transition regime by appropriate choice of the second epitaxial phase.
RESUMEN
We report electronic transport measurements on high quality floating zone grown Na(x)CoO2 and Na0.41CoO2·0.6H2O single crystals. We find an in-plane electronic scattering minimum near 11 K and a clear charge ordering at approximately 50 K. The electronic and magnetic properties in hydrated and nonhydrated Na0.41CoO2 samples are similar at higher temperature, but evolve in markedly different ways below â¼50 K, where a strong ferromagnetic tendency is observed in the hydrated sample. Model calculations show the relationship of this tendency to the structure of the Fermi surface. The results, particularly the clear differences between the hydrated and nonhydrated material show a substantially enhanced ferromagnetic tendency upon hydration. Implications for superconductivity are discussed.