Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Sci Total Environ ; 851(Pt 2): 158183, 2022 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-35995169

RESUMEN

Permafrost degradation and the development of thermokarst lakes are important factors driving the variability of regional hydrologic processes. Hydrogeochemical and isotopic analyses are important methods for investigating the hydrologic processes of thermokarst lakes. This study focused on comparing the chemical and hydrogeochemical characteristics between lake water and groundwater during the melting of the active layer in a typical thermokarst lake region on the Qinghai-Tibet Plateau (QTP). Ninety-five samples were collected during different periods of active layer melting and analyzed using statistical, isotope, hydrogeochemical, and modeling methods. Statistical results showed that the average concentrations of almost all ions were lower in lake water than in groundwater, with wider spatial variability in groundwater. The lake water is of the ClNa and HCO3-Ca type with low TDS (total dissolved solids), whereas groundwater is of the HCO3-Ca and mixed type (or transition type) with high TDS. The chemical types of the lake water and groundwater are mainly driven by rock weathering. In terms of the saturation index (SI), halite and gypsum are unsaturated dissolved, whereas dolomite and calcite are generally saturated. Evaporation significantly affects the chemical composition of groundwater, while the hydrochemical compositions of lake water are relatively stable under the joint control of evaporation, precipitation, surface runoff, and groundwater. The isotopic analysis results showed that the contribution of permafrost meltwater and precipitation to groundwater and lake water varied during different stages of active layer melting. According to hydrogeochemical modeling, the main chemical reactions in groundwater are the precipitation of calcite and the dissolution of halite, dolomite, and gypsum. The intensity of groundwater flow determines the degree of chemical reactions along the flow path at different stages of active layer melting. The findings can provide deeper insight into hydrogeochemical processes in thermokarst lake regions under the background of permafrost degradation.


Asunto(s)
Agua Subterránea , Hielos Perennes , Contaminantes Químicos del Agua , Carbonato de Calcio/análisis , Sulfato de Calcio/análisis , China , Monitoreo del Ambiente/métodos , Agua Subterránea/química , Isótopos/análisis , Lagos/química , Tibet , Agua/análisis , Contaminantes Químicos del Agua/análisis
2.
Sci Total Environ ; 636: 1-11, 2018 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-29702397

RESUMEN

Thermokarst lakes are a ubiquitous landscape feature, which widely distributed in the pan-arctic and some low latitude regions, and are associated with regional hydrological processes. The studies were taken to obtain a better understanding of the water balance of thermokarst lakes in the Qinghai-Tibet Plateau (QTP) in order to gain insight of the regional hydrological cycle. The characteristics of the stable isotopes δ 18O and δ D were investigated in precipitation, permafrost meltwater, and thermokarst lake water in the continuous permafrost region of the QTP and analyzed the lake water balance using the isotope mass model. The results showed that the δ D-δ 18O relationship in the thermokarst lakes (δ D = 5.45 δ 18O - 18.95) differed from that of the local precipitation (δ D = 8.30 δ 18O + 18.49) and permafrost meltwater (δ D = 5.78 δ 18O - 23.41), and the mean isotope compositions in the thermokarst lakes were -7.2‰ in δ 18O and -58.0‰ in δ D. The more positive isotope signals in thermokarst lakes than in the precipitation and permafrost meltwater revealed that the lakes had experienced stronger isotope enrichment. Additionally, the evaporation-to-inflow ratio (E/I) values were < 1 in most of the thermokarst lakes (84%), which might be explained by the recent expansion of the lake surfaces. However, 16% of the thermokarst lakes had shrunk, owing to thermokarst erosion, lateral expansion as the temperature increases, and lower recharge volume. Moreover, precipitation on the lake surface was only 14-18% of the inflow volume in the thermokarst lakes, and the surface-subsurface inflow and permafrost meltwater are very important for recharging the lakes and maintaining the water balance. The results of this study provide a comprehensive understanding of the influence of climate warming on hydrological processes in the permafrost regions in the QTP.

3.
Sci Total Environ ; 574: 751-759, 2017 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-27664762

RESUMEN

The formation of thermokarst lakes can degrade alpine meadow ecosystems through changes in soil water and heat properties, which might have an effect on the regional surface water and groundwater processes. In this study, a typical thermokarst lake was selected in the Qinghai-Tibet Plateau (QTP), and the ecological index (SL) was used to divide the affected areas into extremely affected, severely affected, medium-affected, lightly affected, and non-affected areas, and soil hydrological properties, including saturated hydraulic conductivity and soil water-holding capacity, were investigated. The results showed that the formation of a thermokarst lake can lead to the degradation of alpine meadows, accompanied by a change in the soil physiochemical and hydrological properties. Specifically, the soil structure turned towards loose soil and the soil nutrients decreased from non-affected areas to severely affected areas, but the soil organic matter and available potassium increased slightly in the extremely affected areas. Soil saturated hydraulic conductivity showed a 1.7- to 4.1-fold increase in the lake-surrounding areas, and the highest value (401.9cmd-1) was detected in the severely affected area. Soil water-holding capacity decreased gradually during the transition from the non-affected areas to the severely affected areas, but it increased slightly in the extremely affected areas. The principal component analysis showed that the plant biomass was vital to the changes in soil hydrological properties. Thus, the vegetation might serve as a link between the thermokarst lake and soil hydrological properties. In this particular case, it was concluded that the thermokarst lake adversely affected the regional hydrological services in the alpine ecosystem. These results would be useful for describing appropriate hydraulic parameters with the purpose of modeling soil water transportation more accurately in the Qinghai-Tibet Plateau.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA