Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Mol Microbiol ; 115(6): 1086-1093, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33434389

RESUMEN

The deoxyhexose sugar L-fucose is important for many biological processes within the human body and the associated microbiota. This carbohydrate is abundant in host gut mucosal surfaces, numerous microbial cell surface structures, and some dietary carbohydrates. Fucosylated oligosaccharides facilitate the establishment of a healthy microbiota and provide protection from infection. However, there are instances where pathogens can also exploit these fucosylated structures to cause infection. Furthermore, deficiencies in host fucosylation are associated with specific disease outcomes. This review focuses on our current understanding of the impact of fucosylation within the mucosal environment of the gastrointestinal tract with a specific emphasis on the mediatory effects in host-microbe interactions.


Asunto(s)
Bacterias/metabolismo , Fucosa/metabolismo , Microbioma Gastrointestinal/fisiología , Interacciones Microbiota-Huesped/fisiología , Mucosa Intestinal/metabolismo , Animales , Carbohidratos de la Dieta/metabolismo , Tracto Gastrointestinal/fisiología , Glicosilación , Humanos , Ratones
2.
Methods Mol Biol ; 2657: 223-239, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37149535

RESUMEN

Purified glycan standards are required for glycan arrays, characterizing substrate specificities of glycan-active enzymes, and to serve as retention-time or mobility standards for various separation techniques. This chapter describes a method for the rapid separation, and subsequent desalting, of glycans labeled with the highly fluorescent fluorophore 8-aminopyrene-1,3,6-trisulfonate (APTS). By using fluorophore-assisted carbohydrate electrophoresis (FACE) on polyacrylamide gels, a technique amenable to equipment readily available in most molecular biology laboratories, many APTS-labeled glycans can be simultaneously resolved. Excising specific gel bands containing the desired APTS-labeled glycans, followed by glycan elution from the gel by simple diffusion and subsequent solid-phase extraction (SPE)-based desalting, affords a single glycan species free of excess labeling reagents and buffer components. The described protocol also offers a simple, rapid method for the simultaneous removal of excess APTS and unlabeled glycan material from reaction mixtures. This chapter describes a FACE/SPE procedure ideal for preparing glycans for capillary electrophoresis (CE)-based enzyme assays, as well as for the purification of rare, commercially unavailable glycans from tissue culture samples.


Asunto(s)
Polisacáridos , Pirenos , Polisacáridos/química , Pirenos/química , Pruebas de Enzimas , Electroforesis Capilar/métodos
3.
mBio ; : e0273223, 2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-38032212

RESUMEN

IMPORTANCE: In this study, we identify a separate role for the Campylobacter jejuni l-fucose dehydrogenase in l-fucose chemotaxis and demonstrate that this mechanism is not only limited to C. jejuni but is also present in Burkholderia multivorans. We now hypothesize that l-fucose energy taxis may contribute to the reduction of l-fucose-metabolizing strains of C. jejuni from the gastrointestinal tract of breastfed infants, selecting for isolates with increased colonization potential.

4.
mSphere ; 5(1)2020 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-31941810

RESUMEN

Campylobacter jejuni is a leading cause of bacterial diarrhea worldwide and is associated with high rates of mortality and growth stunting in children inhabiting low- to middle-resource countries. To better understand the impact of breastfeeding on Campylobacter infection in infants in sub-Saharan Africa and South Asia, we examined fecal microbial compositions, bacterial isolates, and their carbohydrate metabolic pathways in Campylobacter-positive infants <1 year of age from the Global Enterics Multicenter Study. Exclusively breastfed infants with diarrhea exhibited high Campylobacter abundances, and this negatively correlated with bacterial carbohydrate metabolism. Although C. jejuni and Campylobacter coli are prevalent among these infants, the second most abundant Campylobacter species was a new species, which we named "Candidatus Campylobacter infans." Asymptomatic Campylobacter carriers also possess significantly different proportions of specific gut microbes compared to diarrheal cases. These findings provide insight into Campylobacter infections in infants in sub-Saharan Africa and South Asia and help inform strategies aimed at eliminating campylobacteriosis in these areas.IMPORTANCECampylobacter is the primary cause of bacterial diarrhea in the United States and can lead to the development of the postinfectious autoimmune neuropathy known as Guillain-Barré syndrome. Also, drug-resistant campylobacters are becoming a serious concern both locally and abroad. In low- and middle-income countries (LMICs), infection with Campylobacter is linked to high rates of morbidity, growth stunting, and mortality in children, and breastfeeding is important for infant nutrition, development, and protection against infectious diseases. In this study, we examined the relationship between breastfeeding and Campylobacter infection and demonstrate the increased selection for C. jejuni and C. coli strains unable to metabolize fucose. We also identify a new Campylobacter species coinfecting these infants with a high prevalence in five of the seven countries in sub-Saharan Africa and South Asia examined. These findings indicate that more detailed studies are needed in LMICs to understand the Campylobacter infection process in order to devise a strategy for eliminating this pathogenic microbe.


Asunto(s)
Lactancia Materna , Infecciones por Campylobacter/epidemiología , Campylobacter/clasificación , Campylobacter/aislamiento & purificación , Diarrea/microbiología , África del Sur del Sahara/epidemiología , Asia/epidemiología , Campylobacter/metabolismo , Infecciones por Campylobacter/microbiología , Infecciones por Campylobacter/prevención & control , Metabolismo de los Hidratos de Carbono , Estudios de Casos y Controles , Coinfección/epidemiología , Diarrea/epidemiología , Heces/microbiología , Femenino , Fucosa/metabolismo , Humanos , Lactante , Recién Nacido , Masculino , Prevalencia , Estudios Prospectivos
5.
Commun Biol ; 3(1): 2, 2020 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-31925306

RESUMEN

Although the gastrointestinal pathogen Campylobacter jejuni was considered asaccharolytic, >50% of sequenced isolates possess an operon for L-fucose utilization. In C. jejuni NCTC11168, this pathway confers L-fucose chemotaxis and competitive colonization advantages in the piglet diarrhea model, but the catabolic steps remain unknown. Here we solved the putative dehydrogenase structure, resembling FabG of Burkholderia multivorans. The C. jejuni enzyme, FucX, reduces L-fucose and D-arabinose in vitro and both sugars are catabolized by fuc-operon encoded enzymes. This enzyme alone confers chemotaxis to both sugars in a non-carbohydrate-utilizing C. jejuni strain. Although C. jejuni lacks fucosidases, the organism exhibits enhanced growth in vitro when co-cultured with Bacteroides vulgatus, suggesting scavenging may occur. Yet, when excess amino acids are available, C. jejuni prefers them to carbohydrates, indicating a metabolic hierarchy exists. Overall this study increases understanding of nutrient metabolism by this pathogen, and identifies interactions with other gut microbes.


Asunto(s)
Bacteroides/metabolismo , Campylobacter jejuni/metabolismo , Metabolismo de los Hidratos de Carbono , Azúcares/metabolismo , Simbiosis , Bacteroides/inmunología , Campylobacter jejuni/inmunología , Quimiotaxis , Fucosa/química , Fucosa/metabolismo , Microbioma Gastrointestinal , Tracto Gastrointestinal/microbiología , Modelos Moleculares , Conformación Molecular , Estructura Molecular , Mucinas/metabolismo , Azúcares/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA