Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
EMBO J ; 39(14): e103912, 2020 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-32511785

RESUMEN

Mitochondrial respiratory chain complexes I, III, and IV can associate into larger structures termed supercomplexes or respirasomes, thereby generating structural interdependences among the individual complexes yet to be understood. In patients, nonsense mutations in complex IV subunit genes cause severe encephalomyopathies randomly associated with pleiotropic complex I defects. Using complexome profiling and biochemical analyses, we have explored the structural rearrangements of the respiratory chain in human cell lines depleted of the catalytic complex IV subunit COX1 or COX2. In the absence of a functional complex IV holoenzyme, several supercomplex I+III2 species coexist, which differ in their content of COX subunits and COX7A2L/HIGD2A assembly factors. The incorporation of an atypical COX1-HIGD2A submodule attenuates supercomplex I+III2 turnover rate, indicating an unexpected molecular adaptation for supercomplexes stabilization that relies on the presence of COX1 independently of holo-complex IV formation. Our data set the basis for complex I structural dependence on complex IV, revealing the co-existence of alternative pathways for the biogenesis of "supercomplex-associated" versus individual complex IV, which could determine physiological adaptations under different stress and disease scenarios.


Asunto(s)
Complejo IV de Transporte de Electrones/metabolismo , Mitocondrias/enzimología , Membranas Mitocondriales/enzimología , Línea Celular , Humanos
2.
J Pathol ; 261(4): 427-441, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37776271

RESUMEN

Heart and kidney have a closely interrelated pathophysiology. Acute kidney injury (AKI) is associated with significantly increased rates of cardiovascular events, a relationship defined as cardiorenal syndrome type 3 (CRS3). The underlying mechanisms that trigger heart disease remain, however, unknown, particularly concerning the clinical impact of AKI on cardiac outcomes and overall mortality. Tumour necrosis factor-like weak inducer of apoptosis (TWEAK) and its receptor fibroblast growth factor-inducible 14 (Fn14) are independently involved in the pathogenesis of both heart and kidney failure, and recent studies have proposed TWEAK as a possible therapeutic target; however, its specific role in cardiac damage associated with CRS3 remains to be clarified. Firstly, we demonstrated in a retrospective longitudinal clinical study that soluble TWEAK plasma levels were a predictive biomarker of mortality in patients with AKI. Furthermore, the exogenous application of TWEAK to native ventricular cardiomyocytes induced relevant calcium (Ca2+ ) handling alterations. Next, we investigated the role of the TWEAK-Fn14 axis in cardiomyocyte function following renal ischaemia-reperfusion (I/R) injury in mice. We observed that TWEAK-Fn14 signalling was activated in the hearts of AKI mice. Mice also showed significantly altered intra-cardiomyocyte Ca2+ handling and arrhythmogenic Ca2+ events through an impairment in sarcoplasmic reticulum Ca2+ -adenosine triphosphatase 2a pump (SERCA2a ) and ryanodine receptor (RyR2 ) function. Administration of anti-TWEAK antibody after reperfusion significantly improved alterations in Ca2+ cycling and arrhythmogenic events and prevented SERCA2a and RyR2 modifications. In conclusion, this study establishes the relevance of the TWEAK-Fn14 pathway in cardiac dysfunction linked to CRS3, both as a predictor of mortality in patients with AKI and as a Ca2+ mishandling inducer in cardiomyocytes, and highlights the cardioprotective benefits of TWEAK targeting in CRS3. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Asunto(s)
Lesión Renal Aguda , Calcio , Humanos , Ratones , Animales , Calcio/metabolismo , Receptor de TWEAK/metabolismo , Estudios Retrospectivos , Citocina TWEAK/metabolismo , Factores de Necrosis Tumoral/metabolismo , Miocitos Cardíacos/metabolismo , Lesión Renal Aguda/metabolismo
3.
Int J Mol Sci ; 24(2)2023 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-36675256

RESUMEN

We report a neonatal patient with hypertrophic cardiomyopathy (HCM), lactic acidosis and isolated complex I deficiency. Using a customized next-generation sequencing panel, we identified a novel hemizygous variant c.338G>A in the X-linked NDUFB11 gene that encodes the NADH: ubiquinone oxidoreductase subunit B11 of the mitochondrial respiratory chain (MRC) complex I (CI). Molecular and functional assays performed in the proband's target tissues­skeletal and heart muscle­showed biochemical disturbances of the MRC, suggesting a pathogenic role for this variant. In silico analyses initially predicted an amino acid missense change p.(Arg113Lys) in the NDUFB11 CI subunit. However, we showed that the molecular effect of the c.338G>A variant, which is located at the last nucleotide of exon 2 of the NDUFB11 gene in the canonical 'short' transcript (sized 462 bp), instead causes a splicing defect triggering the up-regulation of the expression of an alternative 'long' transcript (sized 492 bp) that can also be detected in the control individuals. Our results support the hypothesis that the canonical 'short' transcript is required for the proper NDUFB11 protein synthesis, which is essential for optimal CI assembly and activity, whereas the longer alternative transcript seems to represent a non-functional, unprocessed splicing intermediate. Our results highlight the importance of characterizing the molecular effect of new variants in the affected patient's tissues to demonstrate their pathogenicity and association with the clinical phenotypes.


Asunto(s)
Cardiomiopatías , Cardiomiopatía Hipertrófica , Enfermedades Mitocondriales , Humanos , Cardiomiopatías/genética , Enfermedades Mitocondriales/genética , Complejo I de Transporte de Electrón/genética , Cardiomiopatía Hipertrófica/genética , Cardiomiopatía Hipertrófica/patología , Mutación , Linaje
4.
Int J Mol Sci ; 23(9)2022 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-35563042

RESUMEN

Glycogen storage disease type V (GSDV, McArdle disease) is a rare genetic myopathy caused by deficiency of the muscle isoform of glycogen phosphorylase (PYGM). This results in a block in the use of muscle glycogen as an energetic substrate, with subsequent exercise intolerance. The pathobiology of GSDV is still not fully understood, especially with regard to some features such as persistent muscle damage (i.e., even without prior exercise). We aimed at identifying potential muscle protein biomarkers of GSDV by analyzing the muscle proteome and the molecular networks associated with muscle dysfunction in these patients. Muscle biopsies from eight patients and eight healthy controls showing none of the features of McArdle disease, such as frequent contractures and persistent muscle damage, were studied by quantitative protein expression using isobaric tags for relative and absolute quantitation (iTRAQ) followed by artificial neuronal networks (ANNs) and topology analysis. Protein candidate validation was performed by Western blot. Several proteins predominantly involved in the process of muscle contraction and/or calcium homeostasis, such as myosin, sarcoplasmic/endoplasmic reticulum calcium ATPase 1, tropomyosin alpha-1 chain, troponin isoforms, and alpha-actinin-3, showed significantly lower expression levels in the muscle of GSDV patients. These proteins could be potential biomarkers of the persistent muscle damage in the absence of prior exertion reported in GSDV patients. Further studies are needed to elucidate the molecular mechanisms by which PYGM controls the expression of these proteins.


Asunto(s)
Enfermedad del Almacenamiento de Glucógeno Tipo V , Proteoma , Biomarcadores/metabolismo , Glucógeno/metabolismo , Enfermedad del Almacenamiento de Glucógeno Tipo V/genética , Humanos , Músculo Esquelético/metabolismo , Isoformas de Proteínas/metabolismo , Proteoma/metabolismo
5.
Int J Mol Sci ; 23(22)2022 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-36430443

RESUMEN

McArdle disease is a rare autosomal recessive disorder caused by mutations in the PYGM gene. This gene encodes for the skeletal muscle isoform of glycogen phosphorylase (myophosphorylase), the first enzyme in glycogenolysis. Patients with this disorder are unable to obtain energy from their glycogen stored in skeletal muscle, prompting an exercise intolerance. Currently, there is no treatment for this disease, and the lack of suitable in vitro human models has prevented the search for therapies against it. In this article, we have established the first human iPSC-based model for McArdle disease. For the generation of this model, induced pluripotent stem cells (iPSCs) from a patient with McArdle disease (harbouring the homozygous mutation c.148C>T; p.R50* in the PYGM gene) were differentiated into myogenic cells able to contract spontaneously in the presence of motor neurons and generate calcium transients, a proof of their maturity and functionality. Additionally, an isogenic skeletal muscle model of McArdle disease was created. As a proof-of-concept, we have tested in this model the rescue of PYGM expression by two different read-through compounds (PTC124 and RTC13). The developed model will be very useful as a platform for testing drugs or compounds with potential pharmacological activity.


Asunto(s)
Glucógeno Fosforilasa de Forma Muscular , Enfermedad del Almacenamiento de Glucógeno Tipo V , Células Madre Pluripotentes Inducidas , Humanos , Enfermedad del Almacenamiento de Glucógeno Tipo V/genética , Células Madre Pluripotentes Inducidas/metabolismo , Glucógeno/metabolismo , Tecnología
6.
Int J Mol Sci ; 22(11)2021 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-34070501

RESUMEN

Our goal was to analyze postmortem tissues of an adult patient with late-onset thymidine kinase 2 (TK2) deficiency who died of respiratory failure. Compared with control tissues, we found a low mtDNA content in the patient's skeletal muscle, liver, kidney, small intestine, and particularly in the diaphragm, whereas heart and brain tissue showed normal mtDNA levels. mtDNA deletions were present in skeletal muscle and diaphragm. All tissues showed a low content of OXPHOS subunits, and this was especially evident in diaphragm, which also exhibited an abnormal protein profile, expression of non-muscular ß-actin and loss of GAPDH and α-actin. MALDI-TOF/TOF mass spectrometry analysis demonstrated the loss of the enzyme fructose-bisphosphate aldolase, and enrichment for serum albumin in the patient's diaphragm tissue. The TK2-deficient patient's diaphragm showed a more profound loss of OXPHOS proteins, with lower levels of catalase, peroxiredoxin 6, cytosolic superoxide dismutase, p62 and the catalytic subunits of proteasome than diaphragms of ventilated controls. Strong overexpression of TK1 was observed in all tissues of the patient with diaphragm showing the highest levels. TK2 deficiency induces a more profound dysfunction of the diaphragm than of other tissues, which manifests as loss of OXPHOS and glycolytic proteins, sarcomeric components, antioxidants and overactivation of the TK1 salvage pathway that is not attributed to mechanical ventilation.


Asunto(s)
ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , Diafragma/metabolismo , Mitocondrias/metabolismo , Insuficiencia Respiratoria/metabolismo , Timidina Quinasa/deficiencia , Timidina Quinasa/genética , Actinas/metabolismo , Adulto , Autopsia , Encéfalo/metabolismo , Catalasa/metabolismo , Diafragma/enzimología , Femenino , Fructosa-Bifosfato Aldolasa/metabolismo , Gliceraldehído-3-Fosfato Deshidrogenasa (Fosforilante)/metabolismo , Humanos , Intestino Delgado/metabolismo , Riñón/metabolismo , Hígado/metabolismo , Espectrometría de Masas , Mitocondrias/enzimología , Mitocondrias/genética , Músculo Esquelético/metabolismo , Fosforilación Oxidativa , Peroxiredoxina VI/metabolismo , Complejo de la Endopetidasa Proteasomal , Proteoma/genética , Proteoma/metabolismo , Insuficiencia Respiratoria/genética , Insuficiencia Respiratoria/mortalidad , Superóxido Dismutasa/metabolismo , Timidina Quinasa/metabolismo , Regulación hacia Arriba
7.
Hum Mutat ; 39(10): 1338-1343, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30011114

RESUMEN

McArdle disease is a disorder of muscle glycogen metabolism caused by mutations in the PYGM gene, encoding for the muscle-specific isoform of glycogen phosphorylase (M-GP). The activity of this enzyme is completely lost in patients' muscle biopsies, when measured with a standard biochemical test which, does not allow to determine M-GP protein levels. We aimed to determine M-GP protein levels in the muscle of McArdle patients, by studying biopsies of 40 patients harboring a broad spectrum of PYGM mutations and 22 controls. Lack of M-GP protein was found in muscle in the vast majority (95%) of patients, irrespective of the PYGM genotype, including those carrying missense mutations, with few exceptions. M-GP protein biosynthesis is not being produced by PYGM mutations inducing premature termination codons (PTC), neither by most PYGM missense mutations. These findings explain the lack of PYGM genotype-phenotype correlation and have important implications for the design of molecular-based therapeutic approaches.


Asunto(s)
Estudios de Asociación Genética , Enfermedad del Almacenamiento de Glucógeno Tipo V/genética , Mutación Missense , Adolescente , Adulto , Anciano , Alelos , Biopsia , Femenino , Genotipo , Glucógeno Fosforilasa de Forma Muscular/genética , Enfermedad del Almacenamiento de Glucógeno Tipo V/diagnóstico , Humanos , Masculino , Persona de Mediana Edad , Isoformas de Proteínas , Adulto Joven
8.
Cereb Cortex ; 27(5): 2809-2819, 2017 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-27166167

RESUMEN

TaqIA is a polymorphism associated with addictions and dopamine-related traits. It is located in the ankyrin repeat and kinase domain containing 1 gene (ANKK1) nearby the gene for the dopamine D2 receptor (D2R). Since ANKK1 function is unknown, TaqIA-associated traits have been explained only by differences in D2R. Here we report ANKK1 studies in mouse and human brain using quantitative real-time PCR, Western blot, immunohistochemistry, and flow cytometry. ANKK1 mRNA and protein isoforms vary along neurodevelopment in the human and mouse brain. In mouse adult brain ANKK1 is located in astrocytes, nuclei of postmitotic neurons and neural precursors from neurogenic niches. In both embryos and adults, nuclei of neural precursors show significant variation of ANKK1 intensity. We demonstrate a correlation between ANKK1 and the cell cycle. Cell synchronization experiments showed a significant increment of ANKK1-kinase in mitotic cells while ANKK1-kinase overexpression affects G1 and M phase that were found to be modulated by ANKK1 alleles and apomorphine treatment. Furthermore, during embryonic neurogenesis ANKK1 was expressed in slow-dividing neuroblasts and rapidly dividing precursors which are mitotic cells. These results suggest a role of ANKK1 during the cell cycle in neural precursors thus providing biological support to brain structure involvement in the TaqIA-associated phenotypes.


Asunto(s)
Encéfalo/metabolismo , Ciclo Celular/fisiología , Regulación del Desarrollo de la Expresión Génica/genética , Células-Madre Neurales/fisiología , Proteínas Serina-Treonina Quinasas/metabolismo , Adolescente , Factores de Edad , Animales , Animales Recién Nacidos , Encéfalo/embriología , Encéfalo/crecimiento & desarrollo , Diferenciación Celular/fisiología , Línea Celular Tumoral , Embrión de Mamíferos , Feto , Edad Gestacional , Proteína Ácida Fibrilar de la Glía/metabolismo , Humanos , Lactante , Ratones , Persona de Mediana Edad , Neurogénesis/fisiología , Proteínas Serina-Treonina Quinasas/genética , ARN Mensajero/metabolismo , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo
9.
J Biol Chem ; 291(50): 25877-25887, 2016 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-27789713

RESUMEN

The Fas-activated serine/threonine kinase (FASTK) family of proteins has recently emerged as a central regulator of mitochondrial gene expression through the function of an unusual RNA-binding domain named RAP (for RNA-binding domain abundant in Apicomplexans), shared by all six members of the family. Here we describe the role of one of the less characterized members, FASTKD3, in mitochondrial RNA metabolism. First, we show that, in contrast to FASTK, FASTKD2, and FASTKD5, FASTKD3 does not localize in mitochondrial RNA granules, which are sites of processing and maturation of mtRNAs and ribosome biogenesis. Second, we generated FASTKD3 homozygous knock-out cell lines by homologous recombination and observed that the absence of FASTKD3 resulted in increased steady-state levels and half-lives of a subset of mature mitochondrial mRNAs: ND2, ND3, CYTB, COX2, and ATP8/6. No aberrant processing of RNA precursors was observed. Rescue experiments demonstrated that RAP domain is required for FASTKD3 function in mRNA stability. Besides, we describe that FASTKD3 is required for efficient COX1 mRNA translation without altering mRNA levels, which results in a decrease in the steady-state levels of COX1 protein. This finding is associated with reduced mitochondrial complex IV assembly and activity. Our observations suggest that the function of this family of proteins goes beyond RNA processing and ribosome assembly and includes RNA stability and translation regulation within mitochondria.


Asunto(s)
Regulación de la Expresión Génica/fisiología , Mitocondrias/metabolismo , Proteínas Mitocondriales/biosíntesis , Proteínas Serina-Treonina Quinasas/metabolismo , ARN Mensajero/metabolismo , ARN/metabolismo , Línea Celular Tumoral , Ciclooxigenasa 1/biosíntesis , Ciclooxigenasa 1/genética , Complejo IV de Transporte de Electrones/biosíntesis , Complejo IV de Transporte de Electrones/genética , Humanos , Mitocondrias/genética , Proteínas Mitocondriales/genética , Proteínas Serina-Treonina Quinasas/genética , ARN/genética , Estabilidad del ARN , ARN Mensajero/genética , ARN Mitocondrial
10.
Genet Med ; 18(11): 1128-1135, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-26913921

RESUMEN

PURPOSE: McArdle disease is a metabolic disorder caused by pathogenic mutations in the PYGM gene. Timely diagnosis can sometimes be difficult with direct genomic analysis, which requires additional studies of cDNA from muscle transcripts. Although the "nonsense-mediated mRNA decay" (NMD) eliminates tissue-specific aberrant transcripts, there is some residual transcription of tissue-specific genes in virtually all cells, such as peripheral blood mononuclear cells (PBMCs). METHODS: We studied a subset of the main types of PYGM mutations (deletions, missense, nonsense, silent, or splicing mutations) in cDNA from easily accessible cells (PBMCs) in 12 McArdle patients. RESULTS: Analysis of cDNA from PBMCs allowed detection of all mutations. Importantly, the effects of mutations with unknown pathogenicity (silent and splicing mutations) were characterized in PBMCs. Because the NMD mechanism does not seem to operate in nonspecific cells, PBMCs were more suitable than muscle biopsies for detecting the pathogenicity of some PYGM mutations, notably the silent mutation c.645G>A (p.K215=), whose effect in the splicing of intron 6 was unnoticed in previous muscle transcriptomic studies. CONCLUSION: We propose considering the use of PBMCs for detecting mutations that are thought to cause McArdle disease, particularly for studying their actual pathogenicity.Genet Med 18 11, 1128-1135.


Asunto(s)
Glucógeno Fosforilasa de Forma Muscular/sangre , Enfermedad del Almacenamiento de Glucógeno Tipo V/sangre , Enfermedad del Almacenamiento de Glucógeno Tipo V/genética , Patología Molecular/métodos , Adolescente , Adulto , Codón sin Sentido/genética , Femenino , Glucógeno Fosforilasa de Forma Muscular/genética , Enfermedad del Almacenamiento de Glucógeno Tipo V/patología , Humanos , Leucocitos Mononucleares , Masculino , Persona de Mediana Edad , Empalme del ARN/genética , Eliminación de Secuencia/genética , Adulto Joven
11.
Hum Mutat ; 34(12): 1623-7, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24105702

RESUMEN

We describe a West syndrome (WS) patient with unidentified etiology that evolved to Lennox-Gastaut syndrome. The mitochondrial respiratory chain of the patient showed a simple complex I deficiency in fibroblasts. Whole-exome sequencing (WES) uncovered two heterozygous mutations in NDUFV2 gene that were reassigned to a pseudogene. With the WES data, it was possible to obtain whole mitochondrial DNA sequencing and to identify a heteroplasmic variant in the MT-ND1 (MTND1) gene (m.3946G>A, p.E214K). The expression of the gene in patient fibroblasts was not affected but the protein level was significantly reduced, suggesting that protein stability was affected by this mutation. The lower protein level also affected assembly of complex I and supercomplexes (I/III2 /IV and I/III2 ), leading to complex I deficiency. While ATP levels at steady state under stress conditions were not affected, the amount of ROS produced by complex I was significantly increased.


Asunto(s)
Exoma , Secuenciación de Nucleótidos de Alto Rendimiento , Discapacidad Intelectual/genética , Mutación , NADH Deshidrogenasa/genética , Espasmos Infantiles/genética , Secuencia de Aminoácidos , Análisis Mutacional de ADN , Femenino , Estudios de Asociación Genética , Humanos , Lactante , Discapacidad Intelectual/metabolismo , Síndrome de Lennox-Gastaut , Datos de Secuencia Molecular , NADH Deshidrogenasa/química , NADH Deshidrogenasa/metabolismo , Alineación de Secuencia , Espasmos Infantiles/metabolismo
12.
Circ J ; 77(11): 2799-806, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23965802

RESUMEN

BACKGROUND: Mitochondrial disorders (MD) are multisystem diseases that arise as a result of dysfunction of the oxidative phosphorylation system. The predominance of neuromuscular manifestations in MD could mask the presence of other clinical phenotypes such as cardiac dysfunction. Reported here is a retrospective study, the main objective of which was to characterize the clinical and molecular features of a cohort of patients with cardiomyopathy and MD. METHODS AND RESULTS: Hospital charts of 2,520 patients, evaluated for presumed MD were reviewed. The clinical criterion for inclusion in this study was the presence of a cardiac disturbance accompanied by a mitochondrial dysfunction. Only 71 patients met this criterion. The mitochondrial genome (mtDNA) could be sequenced only in 45 and the pathogenicity of 2 of the found changes was investigated using transmitochondrial cybrids. Three nucleotide changes in mtDNA that may be relevant and 3 with confirmed pathogenicity were identified but no mutations were found in the 13 nuclear genes analyzed. CONCLUSIONS: The mtDNA should be sequenced in patients with cardiac dysfunction accompanied by symptoms suggestive of MD; databases should be carefully and periodically screened to discard mitochondrial variants that could be associated with MD; functional assays are necessary to classify mitochondrial variants as pathogenic or polymorphic; and additional efforts must be made in order to identify nuclear genes that can explain some as yet uncharacterized molecular features of mitochondrial cardiomyopathy.


Asunto(s)
Cardiomiopatías , Genoma Mitocondrial , Enfermedades Mitocondriales , Polimorfismo Genético , Adolescente , Adulto , Cardiomiopatías/complicaciones , Cardiomiopatías/genética , Cardiomiopatías/metabolismo , Cardiomiopatías/patología , Niño , Preescolar , Femenino , Humanos , Lactante , Recién Nacido , Masculino , Persona de Mediana Edad , Enfermedades Mitocondriales/complicaciones , Enfermedades Mitocondriales/genética , Enfermedades Mitocondriales/metabolismo , Enfermedades Mitocondriales/patología , Estudios Retrospectivos
13.
Biomedicines ; 11(9)2023 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-37760875

RESUMEN

McArdle disease is a rare autosomal recessive condition caused by mutations in the PYGM gene. This gene encodes the skeletal muscle isoform of glycogen phosphorylase or myophosphorylase. Patients with McArdle disease have an inability to obtain energy from their muscle glycogen stores, which manifests as a marked exercise intolerance. Nowadays, there is no cure for this disorder and recommendations are intended to prevent and mitigate symptoms. There is great heterogeneity among the pathogenic variants found in the PYGM gene, and there is no obvious correlation between genotypes and phenotypes. Here, we present the generation of the first human iPSC-based skeletal muscle model harbouring the second most frequent mutation in PYGM in the Spanish population: NM_005609.4: c.2392T>C (p.Trp798Arg). To this end, iPSCs derived from a McArdle patient and a healthy control were both successfully differentiated into skeletal muscle cells using a small molecule-based protocol. The created McArdle skeletal muscle model was validated by confirming distinctive biochemical aspects of the disease such as the absence of myophosphorylase, the most typical biochemical feature of these patients. This model will be very valuable for use in future high-throughput pharmacological screenings.

14.
J Neurol Neurosurg Psychiatry ; 83(3): 322-8, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22250184

RESUMEN

BACKGROUND: Published genotype/phenotype data on McArdle disease are limited in sample size. A single national (Spanish) registry of patients with McArdle disease was created with the purpose of analysing their genotypic and phenotypic characteristics. METHODS: A cross sectional study was conducted, collecting demographic, family history, clinical, genotype and functional capacity data from all patients diagnosed with McArdle disease in the Spanish National Health System up to December 2010. RESULTS: 239 cases were recorded (all of Caucasian descent, 102 women; mean±SD age 44±18 years (range 9, 93)); prevalence of ∼1/167 000 people. Two mutant PYGM alleles were identified in 99.6% of cases. Although there was heterogeneity in the severity of symptoms, there were four common diagnostic features: (1) 99.5% of patients reported a history of acute crises of exercise intolerance (accompanied by recurrent myoglobinuria in 50% of cases); (2) in 58% of patients, symptoms started in the first decade of life; (3) 86% of patients repeatedly experienced the 'second wind' phenomenon over life; and (4) 99% of patients had a high basal serum level of total creatine kinase (>200 U/l). Clinical presentation of the disease was similar in men and women and worsened with age. Patients who were physically active had higher levels of cardiorespiratory fitness (by 23%, p=0.003) and were more likely to improve their clinical course over a 4 year period compared with inactive patients (OR 225; 95% CI 20.3 to 2496.7). CONCLUSIONS: The main clinical features of McArdle disease are generally homogeneous and frequently appear during childhood; clinical condition deteriorates with ageing. Active patients have a better clinical outcome and functional capacity.


Asunto(s)
Enfermedad del Almacenamiento de Glucógeno Tipo V/genética , Actividades Cotidianas , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Alelos , Niño , Estudios Transversales , Progresión de la Enfermedad , Femenino , Genotipo , Glucógeno Fosforilasa de Forma Muscular/genética , Enfermedad del Almacenamiento de Glucógeno Tipo V/patología , Humanos , Masculino , Persona de Mediana Edad , Debilidad Muscular/patología , Mioglobinuria/patología , Fenotipo , Sistema de Registros , España , Adulto Joven
15.
J Pineal Res ; 51(1): 113-23, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21355880

RESUMEN

In previous studies, we have shown that mitochondrial respiratory chain (MRC) activity is decreased in patients with nonalcoholic steatohepatitis and in ob/ob mice and that peroxynitrite plays a pathogenic role. The present study examined whether melatonin, a peroxynitrite scavenger, prevents: (i) the in vitro effects of peroxynitrite on normal mitochondrial proteins and (ii) the development of nonalcoholic liver disease, MRC dysfunction and proteomic changes found in the mitochondrial complexes from ob/ob mice. We studied MRC activity, assembly of mitochondrial complexes and its subunits in normal mitochondrial proteins exposed to peroxynitrite in the absence and presence of melatonin. The same studies were done in mitochondrial proteins from ob/ob mice untreated and treated with melatonin. Preincubation of mitochondrial proteins from wild-type mice with melatonin prevented 3-tyrosine nitration of these proteins, eliminated the reduction in the MRC activity, the defect in the assembly of mitochondrial complexes and degradation of their subunits induced by peroxynitrite in vitro. Moreover, treatment of ob/ob mice with 10 mg/kg/day melatonin for 12 wk reduced oxidative and nitrosative stress, prevented the loss of MRC activity, protected their complexes and subunits from degradation, and favored assembling of mitochondrial complexes. In addition, this treatment improved fatty liver, decreased hepatic triglyceride concentration and increased apolipoprotein B100 in liver tissue. In conclusion, melatonin prevents the effects of peroxynitrite on mitochondrial proteins in vitro and administration of melatonin to ob/ob mice normalizes liver morphology, mitochondrial dysfunction and assembly of MRC complexes.


Asunto(s)
Proteínas del Complejo de Cadena de Transporte de Electrón/metabolismo , Hígado/efectos de los fármacos , Melatonina/farmacología , Animales , Western Blotting , Peso Corporal/efectos de los fármacos , Hígado Graso/metabolismo , Hígado Graso/prevención & control , Histocitoquímica , Hígado/citología , Hígado/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Obesos , Mitocondrias Hepáticas/efectos de los fármacos , Mitocondrias Hepáticas/metabolismo , Nitratos/metabolismo , Estrés Oxidativo/efectos de los fármacos , Ácido Peroxinitroso/farmacología , Subunidades de Proteína , Tirosina/metabolismo
16.
Dis Model Mech ; 14(8)2021 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-34312668

RESUMEN

Mitochondrial dysfunction associates with several pathological processes and contributes to chronic inflammatory and ageing-related diseases. Mitochondrial transcription factor A (TFAM) plays a critical role in maintaining mtDNA integrity and function. Taking advantage of Tfamfl/fl UBC-Cre/ERT2+/+ mice to investigate mitochondrial dysfunction in the stromal cell component, we describe an inducible in vitro model of mitochondrial dysfunction by stable depletion of TFAM in primary mouse skin fibroblasts (SK-FBs) after 4-hydroxytamoxifen (4-OHT) administration. Tfam gene deletion caused a sustained reduction in Tfam and mtDNA-encoded mRNA in Cre(+) SK-FBs cultured for low (LP) and high (HP) passages that translated into a loss of TFAM protein. TFAM depletion led to a substantial reduction in mitochondrial respiratory chain complexes that was exacerbated in HP SK-FB cultures. The assembly pattern showed that the respiratory complexes fail to reach the respirasome in 4-OHT-treated Cre(+) SK-FBs. Functionally, mito-stress and glycolysis-stress tests showed that mitochondrial dysfunction developed after long-term 4-OHT treatment in HP Cre(+) SK-FBs and was compensated by an increase in the glycolytic capacity. Finally, expression analysis revealed that 4-OHT-treated HP Cre(+) SK-FBs showed a senescent and pro-inflammatory phenotype.


Asunto(s)
ADN Mitocondrial , Proteínas Mitocondriales , Animales , ADN Mitocondrial/genética , Proteínas de Unión al ADN/metabolismo , Fibroblastos/metabolismo , Regulación de la Expresión Génica , Glucólisis , Proteínas del Grupo de Alta Movilidad/genética , Proteínas del Grupo de Alta Movilidad/metabolismo , Ratones , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo
17.
Biomedicines ; 9(4)2021 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-33807441

RESUMEN

One key feature of pancreatic ductal adenocarcinoma (PDAC) is a dense desmoplastic reaction that has been recognized as playing important roles in metastasis and therapeutic resistance. We aim to study tumor-stromal interactions in an in vitro coculture model between human PDAC cells (Capan-1 or PL-45) and fibroblasts (LC5). Confocal immunofluorescence, Enzyme-Linked Immunosorbent Assay (ELISA), and Western blotting were used to evaluate the expressions of activation markers; cytokines arrays were performed to identify secretome profiles associated with migratory and invasive properties of tumor cells; extracellular vesicle production was examined by ELISA and transmission electron microscopy. Coculture conditions increased FGF-7 secretion and α-SMA expression, characterized by fibroblast activation and decreased epithelial marker E-cadherin in tumor cells. Interestingly, tumor cells and fibroblasts migrate together, with tumor cells in forming a center surrounded by fibroblasts, maximizing the contact between cells. We show a different mechanism for tumor spread through a cooperative migration between tumor cells and activated fibroblasts. Furthermore, IL-6 levels change significantly in coculture conditions, and this could affect the invasive and migratory capacities of cells. Targeting the interaction between tumor cells and the tumor microenvironment might represent a novel therapeutic approach to advanced PDAC.

18.
Genes (Basel) ; 11(8)2020 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-32722639

RESUMEN

Leigh syndrome (LS) usually presents as an early onset mitochondrial encephalopathy characterized by bilateral symmetric lesions in the basal ganglia and cerebral stem. More than 75 genes have been associated with this condition, including genes involved in the biogenesis of mitochondrial complex I (CI). In this study, we used a next-generation sequencing (NGS) panel to identify two novel biallelic variants in the NADH:ubiquinone oxidoreductase subunit A13 (NDUFA13) gene in a patient with isolated CI deficiency in skeletal muscle. Our patient, who represents the second family report with mutations in the CI NDUFA13 subunit, presented with LS lesions in brain magnetic resonance imaging, mild hypertrophic cardiomyopathy, and progressive spastic tetraparesis. This phenotype manifestation is different from that previously described in the first NDUFA13 family, which was predominantly characterized by neurosensorial symptoms. Both in silico pathogenicity predictions and oxidative phosphorylation (OXPHOS) functional findings in patient's skin fibroblasts (delayed cell growth, isolated CI enzyme defect, decreased basal and maximal oxygen consumption and as well as ATP production, together with markedly diminished levels of the NDUFA13 protein, CI, and respirasomes) suggest that these novel variants in the NDUFA13 gene are the underlying cause of the CI defect, expanding the genetic heterogeneity of LS.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/genética , Fibroblastos/patología , Enfermedad de Leigh/patología , Mutación , NADH NADPH Oxidorreductasas/genética , Fosforilación Oxidativa , Preescolar , Biología Computacional , Femenino , Fibroblastos/metabolismo , Humanos , Enfermedad de Leigh/genética , Enfermedad de Leigh/metabolismo , Masculino , Linaje , Fenotipo
19.
Hum Mutat ; 29(2): 277-83, 2008 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-17994553

RESUMEN

Nearly 35% of all mutations identified in the muscle glycogen phosphorylase gene (PYGM) in patients with McArdle disease result in premature termination codons (PTCs), particularly the p.R50X mutation. The latter accounts for more than 50% of the mutated alleles in most Caucasian patient populations. Mutations resulting in PTC could trigger the degradation of mRNA through a mechanism known as nonsense mediated decay (NMD). To investigate if NMD affects the levels of transcripts containing PYGM mutations, 28 Spanish patients with McArdle disease, harboring 17 different mutations with PTCs in 77% of their alleles, were studied. Transcripts levels of PYGM were measured and sequenced. We assessed that 92% of patients showed NMD. The most frequent mutation (p.R50X) elicited decay in all the genotypes tested. Other PTC producing mutations resulting in NMD were: p.L5VfsX22, p.Q73HfsX7, p.E125X, p.N134KfsX161, p.W388SfsX34, p.R491AfsX7, and p.D534VfsX5. Located in the last exon, the mutation p.E797VfsX19 was not affected by NMD. Missense mutations did not appear to be affected by NMD. In the cDNA sequences they appeared as homozygous, despite being heterozygous in the genomic DNA sequences. Exceptions to the rules governing NMD were found in the mutations p.A704 V and p.K754NfsX49.


Asunto(s)
Codón sin Sentido/genética , Glucógeno Fosforilasa de Forma Muscular/genética , Enfermedad del Almacenamiento de Glucógeno Tipo V/enzimología , Enfermedad del Almacenamiento de Glucógeno Tipo V/genética , Estabilidad del ARN/genética , Análisis Mutacional de ADN , Electroforesis en Gel de Agar , Perfilación de la Expresión Génica , Humanos , Mutación/genética , Transcripción Genética
20.
Hum Mutat ; 28(2): 203-4, 2007 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-17221871

RESUMEN

McArdle disease is a metabolic myopathy due to molecular defects in the myophosphorylase gene (PYGM), usually diagnosed in muscle biopsy. The aims of this study were to characterize genetically a large series of patients and to establish a protocol of molecular diagnosis on blood samples. We studied 55 Spanish unrelated patients with McArdle disease. Screening for the three more frequent mutations in the PYGM gene in the Spanish population (c.148C>T, p.R50X; c.613G>A, p.G205S; and c.2392T>C, p.W798R) were performed with polymerase chain-reaction and restriction fragment length polymorphism (PCR-RFLP) methods. To identify other mutant alleles, the coding region of PYGM gene was sequenced. The p.R50X mutation was observed in 38 patients, the p.G205S substitution in eight, and the p.W798R change in nine. Nine novel mutations, five missense (c.247A>T, p.I83F; c.521G>A, p.G174D; c.1094C>T, p.A365V; c.1468C>T, p.R490W; and c.1730A>G, p.Q577R), one nonsense mutation (c.2352C>A, p.C784X), three frameshift (c.402del, p.N134KfsX161; c.212_218dup, p.Q73HfsX7; c.1470dup, p.R491AfsX7), and nine previously reported mutations were found. In addition, we also updated the molecular data of 95 unrelated patients with McArdle disease studied thus far in our center. Of these patients, 56 were either homozygous or compound heterozygous for the p.R50X, p.G205S, or p.W798R mutation. By including in the molecular diagnosis protocol sequencing of the exons 1, 14, 17 and 18 of the PYGM gene, 16 further patients were characterized, and therefore we were able to detect the molecular defect in 72 out of 95 patients. A proposed molecular diagnosis protocol of the disease based on blood DNA would avoid muscle biopsy in 75.8% [95% confidence interval (95% CI): 62.1%-78.6%] of patients with McArdle disease.


Asunto(s)
Análisis Mutacional de ADN/métodos , Pruebas Genéticas/métodos , Glucógeno Fosforilasa de Forma Muscular/genética , Enfermedad del Almacenamiento de Glucógeno Tipo V/diagnóstico , Mutación , Adolescente , Adulto , Niño , Codón sin Sentido , ADN/sangre , Exones , Femenino , Mutación del Sistema de Lectura , Enfermedad del Almacenamiento de Glucógeno Tipo V/genética , Humanos , Masculino , Persona de Mediana Edad , Mutación Missense , Reacción en Cadena de la Polimerasa , Polimorfismo de Longitud del Fragmento de Restricción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA