Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Mol Cell ; 77(1): 120-137.e9, 2020 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-31733993

RESUMEN

Phenotypic and metabolic heterogeneity within tumors is a major barrier to effective cancer therapy. How metabolism is implicated in specific phenotypes and whether lineage-restricted mechanisms control key metabolic vulnerabilities remain poorly understood. In melanoma, downregulation of the lineage addiction oncogene microphthalmia-associated transcription factor (MITF) is a hallmark of the proliferative-to-invasive phenotype switch, although how MITF promotes proliferation and suppresses invasion is poorly defined. Here, we show that MITF is a lineage-restricted activator of the key lipogenic enzyme stearoyl-CoA desaturase (SCD) and that SCD is required for MITFHigh melanoma cell proliferation. By contrast MITFLow cells are insensitive to SCD inhibition. Significantly, the MITF-SCD axis suppresses metastasis, inflammatory signaling, and an ATF4-mediated feedback loop that maintains de-differentiation. Our results reveal that MITF is a lineage-specific regulator of metabolic reprogramming, whereby fatty acid composition is a driver of melanoma phenotype switching, and highlight that cell phenotype dictates the response to drugs targeting lipid metabolism.


Asunto(s)
Adaptación Fisiológica/fisiología , Ácidos Grasos/metabolismo , Melanoma/metabolismo , Factor de Transcripción Asociado a Microftalmía/metabolismo , Estearoil-CoA Desaturasa/metabolismo , Animales , Diferenciación Celular/fisiología , Línea Celular Tumoral , Proliferación Celular/fisiología , Regulación hacia Abajo/fisiología , Humanos , Ratones , Invasividad Neoplásica/patología , Fenotipo , Transducción de Señal/fisiología
2.
J Nanobiotechnology ; 22(1): 249, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38745193

RESUMEN

BACKGROUND: Chemotherapy, the mainstay treatment for metastatic cancer, presents serious side effects due to off-target exposure. In addition to the negative impact on patients' quality of life, side effects limit the dose that can be administered and thus the efficacy of the drug. Encapsulation of chemotherapeutic drugs in nanocarriers is a promising strategy to mitigate these issues. However, avoiding premature drug release from the nanocarriers and selectively targeting the tumour remains a challenge. RESULTS: In this study, we present a pioneering method for drug integration into nanoparticles known as mesoporous organosilica drugs (MODs), a distinctive variant of periodic mesoporous organosilica nanoparticles (PMOs) in which the drug is an inherent component of the silica nanoparticle structure. This groundbreaking approach involves the chemical modification of drugs to produce bis-organosilane prodrugs, which act as silica precursors for MOD synthesis. Mitoxantrone (MTO), a drug used to treat metastatic breast cancer, was selected for the development of MTO@MOD nanomedicines, which demonstrated a significant reduction in breast cancer cell viability. Several MODs with different amounts of MTO were synthesised and found to be efficient nanoplatforms for the sustained delivery of MTO after biodegradation. In addition, Fe3O4 NPs were incorporated into the MODs to generate magnetic MODs to actively target the tumour and further enhance drug efficacy. Importantly, magnetic MTO@MODs underwent a Fenton reaction, which increased cancer cell death twofold compared to non-magnetic MODs. CONCLUSIONS: A new PMO-based material, MOD nanomedicines, was synthesised using the chemotherapeutic drug MTO as a silica precursor. MTO@MOD nanomedicines demonstrated their efficacy in significantly reducing the viability of breast cancer cells. In addition, we incorporated Fe3O4 into MODs to generate magnetic MODs for active tumour targeting and enhanced drug efficacy by ROS generation. These findings pave the way for the designing of silica-based multitherapeutic nanomedicines for cancer treatment with improved drug delivery, reduced side effects and enhanced efficacy.


Asunto(s)
Antineoplásicos , Neoplasias de la Mama , Supervivencia Celular , Mitoxantrona , Compuestos de Organosilicio , Humanos , Neoplasias de la Mama/tratamiento farmacológico , Femenino , Supervivencia Celular/efectos de los fármacos , Compuestos de Organosilicio/química , Compuestos de Organosilicio/farmacología , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/uso terapéutico , Mitoxantrona/farmacología , Mitoxantrona/química , Mitoxantrona/uso terapéutico , Línea Celular Tumoral , Portadores de Fármacos/química , Dióxido de Silicio/química , Porosidad , Liberación de Fármacos , Nanopartículas/química , Células MCF-7 , Nanomedicina/métodos , Especies Reactivas de Oxígeno/metabolismo
3.
PLoS Biol ; 18(6): e3000732, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32603375

RESUMEN

Coordination of gene expression with nutrient availability supports proliferation and homeostasis and is shaped by protein acetylation. Yet how physiological/pathological signals link acetylation to specific gene expression programs and whether such responses are cell-type-specific is unclear. AMP-activated protein kinase (AMPK) is a key energy sensor, activated by glucose limitation to resolve nutrient supply-demand imbalances, critical for diabetes and cancer. Unexpectedly, we show here that, in gastrointestinal cancer cells, glucose activates AMPK to selectively induce EP300, but not CREB-binding protein (CBP). Consequently, EP300 is redirected away from nuclear receptors that promote differentiation towards ß-catenin, a driver of proliferation and colorectal tumorigenesis. Importantly, blocking glycogen synthesis permits reactive oxygen species (ROS) accumulation and AMPK activation in response to glucose in previously nonresponsive cells. Notably, glycogen content and activity of the ROS/AMPK/EP300/ß-catenin axis are opposite in healthy versus tumor sections. Glycogen content reduction from healthy to tumor tissue may explain AMPK switching from tumor suppressor to activator during tumor evolution.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Neoplasias Colorrectales/metabolismo , Proteína p300 Asociada a E1A/metabolismo , Glucosa/farmacología , Animales , Proteína de Unión a CREB/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Neoplasias Colorrectales/patología , Activación Enzimática/efectos de los fármacos , Glucógeno/metabolismo , Ratones Endogámicos C57BL , Unión Proteica/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/efectos de los fármacos , beta Catenina/metabolismo
4.
Mol Cell ; 49(3): 474-86, 2013 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-23273980

RESUMEN

Nuclear accumulation of ß-catenin, a widely recognized marker of poor cancer prognosis, drives cancer cell proliferation and senescence bypass and regulates incretins, critical regulators of fat and glucose metabolism. Diabetes, characterized by elevated blood glucose levels, is associated with increased cancer risk, partly because of increased insulin growth factor 1 signaling, but whether elevated glucose directly impacts cancer-associated signal-transduction pathways is unknown. Here, we show that high glucose is essential for nuclear localization of ß-catenin in response to Wnt signaling. Glucose-dependent ß-catenin nuclear retention requires lysine 354 and is mediated by alteration of the balance between p300 and sirtuins that trigger ß-catenin acetylation. Consequently ß-catenin accumulates in the nucleus and activates target promoters under combined glucose and Wnt stimulation, but not with either stimulus alone. Our results reveal a mechanism by which high glucose enhances signaling through the cancer-associated Wnt/ß-catenin pathway and may explain the increased frequency of cancer associated with obesity and diabetes.


Asunto(s)
Glucosa/farmacología , Neoplasias/metabolismo , Vía de Señalización Wnt/efectos de los fármacos , beta Catenina/metabolismo , Acetilación/efectos de los fármacos , Línea Celular Tumoral , Núcleo Celular/efectos de los fármacos , Núcleo Celular/metabolismo , Cromatina/metabolismo , Citosol/efectos de los fármacos , Citosol/metabolismo , Proteína p300 Asociada a E1A/metabolismo , Polipéptido Inhibidor Gástrico/genética , Polipéptido Inhibidor Gástrico/metabolismo , Humanos , Cloruro de Litio/farmacología , Factor de Unión 1 al Potenciador Linfoide/metabolismo , Neoplasias/patología , Regiones Promotoras Genéticas/genética , Unión Proteica/efectos de los fármacos , Estabilidad Proteica/efectos de los fármacos , Sirtuinas/metabolismo , Factores de Transcripción TCF/metabolismo , Transcripción Genética/efectos de los fármacos , Activación Transcripcional/efectos de los fármacos , Activación Transcripcional/genética , Proteína Wnt3A/farmacología
5.
Br J Cancer ; 114(7): 716-22, 2016 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-26908326

RESUMEN

Increasing evidence suggests a complex relationship between obesity, diabetes and cancer. Here we review the evidence for the association between obesity and diabetes and a wide range of cancer types. In many cases the evidence for a positive association is strong, but for other cancer types a more complex picture emerges with some site-specific cancers associated with obesity but not to diabetes, and some associated with type I but not type II diabetes. The evidence therefore suggests the existence of cumulative common and differential mechanisms influencing the relationship between these diseases. Importantly, we highlight the influence of antidiabetics on cancer and antineoplastic agents on diabetes and in particular that antineoplastic targeting of insulin/IGF-1 signalling induces hyperglycaemia that often evolves to overt diabetes. Overall, a coincidence of diabetes and cancer worsens outcome and increases mortality. Future epidemiology should consider dose and time of exposure to both disease and treatment, and should classify cancers by their molecular signatures. Well-controlled studies on the development of diabetes upon cancer treatment are necessary and should identify the underlying mechanisms responsible for these reciprocal interactions. Given the global epidemic of diabetes, preventing both cancer occurrence in diabetics and the onset of diabetes in cancer patients will translate into a substantial socioeconomic benefit.


Asunto(s)
Diabetes Mellitus Tipo 2/epidemiología , Hipoglucemiantes/farmacología , Neoplasias/epidemiología , Obesidad/complicaciones , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/etiología , Humanos , Neoplasias/etiología
6.
Biochim Biophys Acta ; 1839(11): 1141-50, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25091498

RESUMEN

Minutes after ingestion of fat or carbohydrates, vesicles stored in enteroendocrine cells release their content of incretin peptide hormones that, together with absorbed glucose, enhance insulin secretion by beta-pancreatic cells. Freshly-made incretins must therefore be packed into new vesicles in anticipation of the next meal with cells adjusting new incretin production to be proportional to the level of previous insulin release and absorbed blood glucose. Here we show that insulin stimulates the expression of the major human incretin, glucose-dependent insulinotropic peptide (GIP) in enteroendocrine cells but requires glucose to do it. Akt-dependent release of FoxO1 and glucose-dependent binding of LEF1/ß-catenin mediate induction of Gip expression while insulin-induced phosphorylation of ß-catenin does not alter its localization or transcriptional activity in enteroendocrine cells. Our results reveal a glucose-regulated feedback loop at the entero-insular axis, where glucose levels determine basal and insulin-induced Gip expression; GIP stimulation of insulin release, physiologically ensures a fine control of glucose homeostasis. How enteroendocrine cells adjust incretin production to replace incretin stores for future use is a key issue because GIP malfunction is linked to all forms of diabetes.


Asunto(s)
Factores de Transcripción Forkhead/genética , Polipéptido Inhibidor Gástrico/genética , Glucosa/farmacología , Insulina/farmacología , Factor de Unión 1 al Potenciador Linfoide/genética , beta Catenina/genética , Células Cultivadas , Células Enteroendocrinas/efectos de los fármacos , Células Enteroendocrinas/metabolismo , Proteína Forkhead Box O1 , Factores de Transcripción Forkhead/metabolismo , Polipéptido Inhibidor Gástrico/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Factor de Unión 1 al Potenciador Linfoide/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , beta Catenina/metabolismo
7.
bioRxiv ; 2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38328032

RESUMEN

Phenotypic diversity of cancer cells within tumors generated through bi-directional interactions with the tumor microenvironment has emerged as a major driver of disease progression and therapy resistance. Nutrient availability plays a critical role in determining phenotype, but whether specific nutrients elicit different responses on distinct phenotypes is poorly understood. Here we show, using melanoma as a model, that only MITF Low undifferentiated cells, but not MITF High cells, are competent to drive lipolysis in human adipocytes. In contrast to MITF High melanomas, adipocyte-derived free fatty acids are taken up by undifferentiated MITF Low cells via a fatty acid transporter (FATP)-independent mechanism. Importantly, oleic acid (OA), a monounsaturated long chain fatty acid abundant in adipose tissue and lymph, reprograms MITF Low undifferentiated melanoma cells to a highly invasive state by ligand-independent activation of AXL, a receptor tyrosine kinase associated with therapy resistance in a wide range of cancers. AXL activation by OA then drives SRC-dependent formation and nuclear translocation of a ß-catenin-CAV1 complex. The results highlight how a specific nutritional input drives phenotype-specific activation of a pro-metastasis program with implications for FATP-targeted therapies.

8.
J Med Chem ; 67(8): 6410-6424, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38592014

RESUMEN

We report two novel prodrug Pt(IV) complexes with bis-organosilane ligands in axial positions: cis-dichloro(diamine)-trans-[3-(triethoxysilyl)propylcarbamate]platinum(IV) (Pt(IV)-biSi-1) and cis-dichloro(diisopropylamine)-trans-[3-(triethoxysilyl) propyl carbamate]platinum(IV) (Pt(IV)-biSi-2). Pt(IV)-biSi-2 demonstrated enhanced in vitro cytotoxicity against colon cancer cells (HCT 116 and HT-29) compared with cisplatin and Pt(IV)-biSi-1. Notably, Pt(IV)-biSi-2 exhibited higher cytotoxicity toward cancer cells and lower toxicity on nontumorigenic intestinal cells (HIEC6). In preclinical mouse models of colorectal cancer, Pt(IV)-biSi-2 outperformed cisplatin in reducing tumor growth at lower concentrations, with reduced side effects. Mechanistically, Pt(IV)-biSi-2 induced permanent DNA damage independent of p53 levels. DNA damage such as double-strand breaks marked by histone gH2Ax was permanent after treatment with Pt(IV)-biSi-2, in contrast to cisplatin's transient effects. Pt(IV)-biSi-2's faster reduction to Pt(II) species upon exposure to biological reductants supports its superior biological response. These findings unveil a novel strategy for designing Pt(IV) anticancer prodrugs with enhanced activity and specificity, offering therapeutic opportunities beyond conventional Pt drugs.


Asunto(s)
Antineoplásicos , Compuestos Organoplatinos , Profármacos , Profármacos/farmacología , Profármacos/química , Profármacos/síntesis química , Humanos , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Animales , Compuestos Organoplatinos/farmacología , Compuestos Organoplatinos/química , Compuestos Organoplatinos/síntesis química , Ligandos , Ratones , Línea Celular Tumoral , Silanos/química , Silanos/farmacología , Relación Estructura-Actividad , Ensayos de Selección de Medicamentos Antitumorales , Células HT29
9.
Nat Genet ; 32(4): 627-32, 2002 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-12434153

RESUMEN

The mechanism by which the eukaryotic DNA-replication machinery penetrates condensed chromatin structures to replicate the underlying DNA is poorly understood. Here we provide evidence that an ACF1-ISWI chromatin-remodeling complex is required for replication through heterochromatin in mammalian cells. ACF1 (ATP-utilizing chromatin assembly and remodeling factor 1) and an ISWI isoform, SNF2H (sucrose nonfermenting-2 homolog), become specifically enriched in replicating pericentromeric heterochromatin. RNAi-mediated depletion of ACF1 specifically impairs the replication of pericentromeric heterochromatin. Accordingly, depletion of ACF1 causes a delay in cell-cycle progression through the late stages of S phase. In vivo depletion of SNF2H slows the progression of DNA replication throughout S phase, indicating a functional overlap with ACF1. Decondensing the heterochromatin with 5-aza-2-deoxycytidine reverses the effects of ACF1 and SNF2H depletion. Expression of an ACF1 mutant that cannot interact with SNF2H also interferes with replication of condensed chromatin. Our data suggest that an ACF1-SNF2H complex is part of a dedicated mechanism that enables DNA replication through highly condensed regions of chromatin.


Asunto(s)
Adenosina Trifosfatasas/fisiología , Azacitidina/análogos & derivados , Cromatina/fisiología , Replicación del ADN , Heterocromatina/fisiología , Protaminas , Factores de Transcripción/fisiología , Células 3T3 , Adenosina Trifosfatasas/metabolismo , Animales , Afidicolina/farmacología , Azacitidina/farmacología , Células Cultivadas , Centrómero/inmunología , Centrómero/metabolismo , Cromatina/química , Cromatina/genética , Proteínas Cromosómicas no Histona/metabolismo , ADN/metabolismo , ADN-Citosina Metilasas/metabolismo , Decitabina , Inhibidores Enzimáticos/farmacología , Eliminación de Gen , Proteínas Fluorescentes Verdes , Células HeLa , Humanos , Proteínas Luminiscentes/metabolismo , Ratones , Proteínas Nucleares/inmunología , Proteínas Nucleares/metabolismo , ARN Interferente Pequeño/metabolismo , Proteínas Recombinantes de Fusión/metabolismo , Fase S , Factores de Transcripción/genética , Células Tumorales Cultivadas
10.
Elife ; 122023 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-37530744

RESUMEN

Posttranslational modifications of epigenetic modifiers provide a flexible and timely mechanism for rapid adaptations to the dynamic environment of cancer cells. SIRT1 is an NAD+-dependent epigenetic modifier whose activity is classically associated with healthy aging and longevity, but its function in cancer is not well understood. Here, we reveal that 1α,25-dihydroxyvitamin D3 (1,25(OH)2D3, calcitriol), the active metabolite of vitamin D (VD), promotes SIRT1 activation through auto-deacetylation in human colon carcinoma cells, and identify lysine 610 as an essential driver of SIRT1 activity. Remarkably, our data show that the post-translational control of SIRT1 activity mediates the antiproliferative action of 1,25(OH)2D3. This effect is reproduced by the SIRT1 activator SRT1720, suggesting that SIRT1 activators may offer new therapeutic possibilities for colon cancer patients who are VD deficient or unresponsive. Moreover, this might be extrapolated to inflammation and other VD deficiency-associated and highly prevalent diseases in which SIRT1 plays a prominent role.


Asunto(s)
Neoplasias del Colon , Receptores de Calcitriol , Humanos , Receptores de Calcitriol/metabolismo , Sirtuina 1/metabolismo , Calcitriol , Vitaminas
11.
Diabetes ; 71(3): 497-510, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35040477

RESUMEN

Colorectal cancer (CRC) and diabetes are two of the most prevalent chronic diseases worldwide with dysregulated receptor tyrosine kinase signaling and strong co-occurrence correlation. Plasma autoantibodies represent a promising early diagnostic marker for both diseases before symptoms appear. In this study, we explore the value of autoantibodies against receptor-type tyrosine-protein phosphatase-like N (PTPRN; full-length or selected domains) as diagnostic markers using a cohort of individuals with type 2 diabetes (T2D), CRC, or both diseases or healthy individuals. We show that PTPRN autoantibody levels in plasma discriminated between patients with T2D with and without CRC. Consistently, high PTPRN expression correlated with decreased survival of patients with CRC. Mechanistically, PTPRN depletion significantly reduced invasiveness of CRC cells in vitro and liver homing and metastasis in vivo by means of a dysregulation of the epithelial-mesenchymal transition and a decrease of the insulin receptor signaling pathway. Therefore, PTPRN autoantibodies may represent a particularly helpful marker for the stratification of patients with T2D at high risk of developing CRC. Consistent with the critical role played by tyrosine kinases in diabetes and tumor biology, we provide evidence that tyrosine phosphatases such as PTPRN may hold potential as therapeutic targets in patients with CRC.


Asunto(s)
Autoanticuerpos/sangre , Neoplasias Colorrectales/inmunología , Diabetes Mellitus Tipo 2/inmunología , Proteínas Tirosina Fosfatasas Clase 8 Similares a Receptores/inmunología , Proteínas Tirosina Fosfatasas Clase 8 Similares a Receptores/fisiología , Adulto , Animales , Biomarcadores/sangre , Línea Celular Tumoral , Neoplasias Colorrectales/diagnóstico , Neoplasias Colorrectales/mortalidad , Femenino , Humanos , Neoplasias Hepáticas/secundario , Masculino , Ratones , Ratones Desnudos , Persona de Mediana Edad , Trasplante de Neoplasias , Factores de Riesgo
12.
J Clin Med ; 11(24)2022 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-36555927

RESUMEN

Pancreatic cancer is one of the deadliest tumours worldwide, and its poor prognosis is due to an inability to detect the disease at the early stages, thereby creating an urgent need to develop non-invasive biomarkers. P-element-induced wimpy testis (PIWI) proteins work together with piwi-interacting RNAs (piRNAs) to perform epigenetic regulation and as such hold great potential as biomarkers for pancreatic cancer. PIWIL2 and PIWIL4 are associated with better prognosis, while PIWIL1 and PIWIL3 involvement appears to be associated with carcinogenesis. We aimed to discover PIWIL3- and PIWIL4-modulated piRNAs and determine their potential mechanisms in pancreatic cancer and the clinical implications. PIWIL3 or PIWIL4 was downregulated in pancreatic cancer-derived cell lines or in a non-tumour cell line. Differentially expressed piRNAs were analysed by next generation sequencing of small RNA. Nine fresh-frozen samples from solid human pancreases (three healthy pancreases, three intraductal papillary mucinous neoplasms, and three early-stage pancreatic cancers) were included in the sequencing analysis. Two piRNAs associated with PIWIL3 (piR-168112 and piR-162725) were identified in the neoplastic cells; in untransformed samples, we identified one piRNA associated with PIWIL4 (pir-366845). After validation in pancreatic cancer-derived cell lines and one untransformed pancreatic cell line, these piRNAs were evaluated in plasma samples from healthy donors (n = 27) or patients with pancreatic cancer (n = 45). Interestingly, piR-162725 expression identified pancreatic cancer patients versus healthy donors in liquid biopsies. Moreover, the potential of the serum carbohydrate antigen 19-9 (CA19-9) biomarker to identify pancreatic cancer patients was greatly enhanced when combined with piR-162725 detection. The enhanced diagnostic potential for the early detection of pancreatic cancer in liquid biopsies of these new small non-coding RNAs will likely improve the prognosis and management of this deadly cancer.

13.
Endocr Relat Cancer ; 28(6): R173-R190, 2021 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-33852432

RESUMEN

Obesity is the strongest known risk factor to develop type 2 diabetes (T2D) and both share a state of chronic, diffuse and low-grade inflammation, impaired immune responses and alterations in the composition and function of the microbiome. Notably, these hallmarks are shared with colorectal cancer (CRC), which is epidemiologically associated to obesity and T2D. Gut barrier damages in T2D destabilize the microbiome that metabolizes the diet and modulates the host immune response triggering inflammatory and proliferative pathways. In this review, we discuss the pathways altered by defects in the immune response and microbiota that may link T2D to CRC development. Stressed adipocytes, metabolic incongruity in blood and gut barrier failure with dysbiosis cooperate to establish imbalances between immune innate and adaptive cells and cytokines such as interleukin 6 (IL6) or TNFA that define low-grade diffuse inflammation in T2D. Inflammation drives tissue repair through proliferation and migration (critical mechanisms for tumourigenesis) and under physiological conditions feeds anti-inflammatory cytokine production to resolve the process. The disproportion in pro- vs anti-inflammatory cells and cytokines imposed by T2D will impact the tumour micro- and macro-environment, favouring tumour proliferation, angiogenesis and decreased immune responses. Complex bidirectional relationships between the metabolic environment of T2D, gut microbiota, and immune dysfunctions may favour tumour cell demands and will define the outcome. Animal models developed to study the relationships between T2D and CRC in the context of microbiota and immune system are discussed.


Asunto(s)
Neoplasias Colorrectales , Diabetes Mellitus Tipo 2 , Microbiota , Animales , Citocinas , Humanos , Inflamación , Obesidad
14.
Endocr Relat Cancer ; 28(6): R191-R206, 2021 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-33910163

RESUMEN

The existence of molecular links that facilitate colorectal cancer (CRC) development in the population with type 2 diabetes (T2D) is supported by substantial epidemiological evidence. This review summarizes how the systemic, metabolic and hormonal imbalances from T2D alter CRC cell metabolism, signalling and gene expression as well as their reciprocal meshing, with an overview of CRC molecular subtypes and animal models to study the diabetes-CRC cancer links. Metabolic and growth factor checkpoints ensure a physiological cell proliferation rate compatible with limited nutrient supply. Hyperinsulinaemia and hyperleptinaemia in prediabetes and excess circulating glucose and lipids in T2D overcome formidable barriers for tumour development. Increased nutrient availability favours metabolic reprogramming, alters signalling and generates mutations and epigenetic modifications through increased reactive oxygen species and oncometabolites. The reciprocal control between metabolism and hormone signalling is lost in diabetes. Excess adipose tissue at the origin of T2D unbalances adipokine (leptin/adiponectin) secretion ratios and function and disrupts the insulin/IGF axes. Leptin/adiponectin imbalances in T2D are believed to promote proliferation and invasion of CRC cancer cells and contribute to inflammation, an important component of CRC tumourigenesis. Disruption of the insulin/IGF axes in T2D targets systemic and CRC cell metabolic reprogramming, survival and proliferation. Future research to clarify the molecular diabetes-CRC links will help to prevent CRC and reduce its incidence in the diabetic population and must guide therapeutic decisions.


Asunto(s)
Neoplasias Colorrectales , Diabetes Mellitus Tipo 2 , Adiponectina , Animales , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/patología , Diabetes Mellitus Tipo 2/patología , Humanos , Insulina , Leptina
15.
Mater Sci Eng C Mater Biol Appl ; 112: 110935, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32409082

RESUMEN

Hollow mesoporous silica nanoparticles (HMSNs) consist of a network of cavities confined by mesoporous shells that have emerged as promising tools for drug delivery or diagnostic. The physicochemical properties of HMSNs are dictated by the synthesis conditions but which conditions affect which property and how it impacts on biological interactions is unclear. Here by changing the concentration of the structure-directing agent (SDA), the pH and the ratio between SDA and added salt (NaCl) we determine the effects in size, morphology, surface charge and density or degree of compaction (physicochemical properties) of HMSNs and define their impact on their biological interactions with human colon cancer or healthy cells at the level of cellular uptake and viability. Increased size or density/degree of compaction of HMSNs increases their cytotoxicity. Strikingly, high salt concentrations in the synthesis medium leads to a spiky-shell morphology that provokes nuclear fragmentation and irreversible cell damage turning HMSNs lethal and unveiling intrinsic therapeutic potential. This strategy may open new avenues to design HMSNs nanoarchitectures with intrinsic therapeutic properties without incorporation of external pharmaceutical ingredients.


Asunto(s)
Nanopartículas/química , Dióxido de Silicio/química , Línea Celular , Supervivencia Celular/efectos de los fármacos , Portadores de Fármacos/química , Fluoresceína-5-Isotiocianato/química , Humanos , Concentración de Iones de Hidrógeno , Nanopartículas/metabolismo , Nanopartículas/toxicidad , Tamaño de la Partícula , Porosidad , Cloruro de Sodio/química
16.
Cell Metab ; 29(2): 254-267, 2019 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-30581118

RESUMEN

Considerable progress has been made in identifying microenvironmental signals that effect the reversible phenotypic transitions underpinning the early steps in the metastatic cascade. However, although the general principles underlying metastatic dissemination have been broadly outlined, a common theme that unifies many of the triggers of invasive behavior in tumors has yet to emerge. Here we discuss how many diverse signals that induce invasion converge on the reprogramming of protein translation via phosphorylation of eIF2α, a hallmark of the starvation response. These include starvation as a consequence of nutrient or oxygen limitation, or pseudo-starvation imposed by cell-extrinsic microenvironmental signals or by cell-intrinsic events, including oncogene activation. Since in response to resource limitation single-cell organisms undergo phenotypic transitions remarkably similar to those observed within tumors, we propose that a starvation/pseudo-starvation model to explain cancer progression provides an integrated and evolutionarily conserved conceptual framework to understand the progression of this complex disease.


Asunto(s)
Factor 2 Eucariótico de Iniciación/metabolismo , Neoplasias/metabolismo , Oxígeno/metabolismo , Microambiente Tumoral , Animales , Humanos , Ratones , Metástasis de la Neoplasia , Fosforilación , Inanición
17.
Arq Bras Endocrinol Metabol ; 51(5): 654-71, 2007 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-17891229

RESUMEN

Thyroid cancers are the most frequent endocrine neoplasms and mutations in the thyrotropin receptor (TSHR) are unusually frequent. Here we present the state-of-the-art concerning the role of TSHR in thyroid cancer and discuss it in light of the cancer stem cell theory or the classical view. We briefly review the gene and protein structure updating the cancer related TSHR mutations database. Intriguingly, hyperfunctioning TSHR mutants characterise differentiated cancers in contrast to undifferentiated thyroid cancers which very often bear silenced TSHR. It remains unclear whether TSHR alterations in thyroid cancers play a role in the onset or they appear as a consequence of genetic instability during evolution, but the presence of functional TSHR is exploited in therapy. We outline the signalling network build up in the thyrocyte between TSHR/PKA and other proliferative pathways such as Wnt, PI3K and MAPK. This networks integrity surely plays a role in the onset/evolution of thyroid cancer and needs further research. Lastly, future investigation of epigenetic events occurring at the TSHR and other loci may give better clues for molecular based therapy of undifferentiated thyroid carcinomas. Targeted demethylating agents, histone deacetylase inhibitors combined with retinoids and specific RNAis may help treatment in the future.


Asunto(s)
Receptores de Tirotropina/metabolismo , Transducción de Señal/fisiología , Neoplasias de la Tiroides/genética , Tirotropina/metabolismo , Proliferación Celular , AMP Cíclico/metabolismo , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Proteínas de Unión al GTP/metabolismo , Regulación de la Expresión Génica/fisiología , Humanos , Sistema de Señalización de MAP Quinasas/fisiología , Mutación/genética , Células Madre Neoplásicas/metabolismo , Receptores de Tirotropina/genética , Neoplasias de la Tiroides/metabolismo , Tirotropina/genética , Proteínas Wnt/metabolismo
18.
Endocrinol Diabetes Nutr ; 64(2): 109-117, 2017 02.
Artículo en Inglés, Español | MEDLINE | ID: mdl-28440775

RESUMEN

The association between diabetes and cancer was hypothesized almost one century ago. Today, a vast number of epidemiological studies support that obese and diabetic populations are more likely to experience tissue-specific cancers, but the underlying molecular mechanisms remain unknown. Obesity, diabetes, and cancer share many hormonal, immune, and metabolic changes that may account for the relationship between diabetes and cancer. In addition, antidiabetic treatments may have an impact on the occurrence and course of some cancers. Moreover, some anticancer treatments may induce diabetes. These observations aroused a great controversy because of the ethical implications and the associated commercial interests. We report an epidemiological update from a mechanistic perspective that suggests the existence of many common and differential individual mechanisms linking obesity and type 1 and 2 diabetes mellitus to certain cancers. The challenge today is to identify the molecular links responsible for this association. Classification of cancers by their molecular signatures may facilitate future mechanistic and epidemiological studies.


Asunto(s)
Diabetes Mellitus/epidemiología , Neoplasias/etiología , Obesidad/epidemiología , Antineoplásicos/efectos adversos , Antineoplásicos/uso terapéutico , Glucemia , Causalidad , Transformación Celular Neoplásica , Comorbilidad , Susceptibilidad a Enfermedades , Metabolismo Energético , Hormonas/fisiología , Humanos , Hipoglucemiantes/efectos adversos , Hipoglucemiantes/uso terapéutico , Huésped Inmunocomprometido , Inflamación , Modelos Biológicos , Riesgo
19.
Mol Endocrinol ; 19(12): 3060-72, 2005 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-16020482

RESUMEN

Coordination of events leading to differentiation is mediated by the concerted action of multiple signal transduction pathways. In general, the uncoupling of mechanisms linking differentiation to cell cycle exit is a hallmark of cancer, yet the identity and regulation of molecules integrating signal transduction pathways remains largely unknown. One notable exception is DARPP-32 (dopamine and cAMP-regulated neuronal phosphoprotein, molecular mass, 32 kDa), a third messenger that integrates multiple signaling pathways in the brain. Thyroid cells represent an excellent model for understanding the coupling of signal transduction pathways leading to both proliferation and differentiation. The cooperative action of IGF-I and TSH together, but not alone, enable thyroid cells to proliferate while maintaining their differentiated state. How signaling downstream from these molecules is integrated is not known. Here we show that DARPP-32 expression is targeted by TSH and IGF-I in thyrocytes. Significantly, dedifferentiated, tumoral, or Ras-transformed thyrocytes fail to express DARPP-32 whereas short interfering RNA-mediated silencing of DARPP-32 expression in normally differentiated thyroid cells results in loss of differentiation markers such as thyroid transcription factor 1, Pax8, thyroglobulin, and the Na/I symporter. Consistently, DARPP-32 reexpression in ras-transformed cells results in reactivation of the otherwise silent thyroglobulin and thyroperoxidase promoter. Thus, DARPP-32 is critical for the maintenance of thyroid differentiation by TSH and IGF-I, and loss of DARPP-32 expression may be a characteristic of thyroid cancer. Our results also raise the possibility that DARPP-32 may play a similar role in the maintenance of differentiation of a range of other cell types.


Asunto(s)
Fosfoproteína 32 Regulada por Dopamina y AMPc/metabolismo , Factor I del Crecimiento Similar a la Insulina/metabolismo , Glándula Tiroides/citología , Glándula Tiroides/metabolismo , Tirotropina/metabolismo , Animales , Diferenciación Celular/genética , Línea Celular Transformada , Proliferación Celular , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Fosfoproteína 32 Regulada por Dopamina y AMPc/antagonistas & inhibidores , Fosfoproteína 32 Regulada por Dopamina y AMPc/genética , Genes ras/genética , Factor I del Crecimiento Similar a la Insulina/farmacología , Fosfatidilinositol 3-Quinasas/metabolismo , Fosforilación , ARN Interferente Pequeño/farmacología , Ratas , Treonina/metabolismo , Glándula Tiroides/efectos de los fármacos , Tirotropina/farmacología , Regulación hacia Arriba
20.
J Mol Endocrinol ; 52(1): R51-66, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24049067

RESUMEN

Extensive epidemiological studies suggest that the diabetic population is at higher risk of site-specific cancers. The diabetes-cancer link has been hypothesized to rely on various hormonal (insulin, IGF1, adipokines), immunological (inflammation), or metabolic (hyperglycemia) characteristics of the disease and even on certain treatments. Inflammation may have an important but incompletely understood role. As a growth factor, insulin directly, or indirectly through IGF1, has been considered the major link between diabetes and cancer, while high glucose has been considered as a subordinate cause. Here we discuss the evidence that supports a role for insulin/IGF1 in general in cancer, and the mechanism by which hyperglycemia may enhance the appearance, growth and survival of diabetes-associated cancers. High glucose triggers several direct and indirect mechanisms that cooperate to promote cancer cell proliferation, migration, invasion and immunological escape. In particular, high glucose enhancement of WNT/ß-catenin signaling in cancer cells promotes proliferation, survival and senescence bypass, and represents a previously unrecognized direct mechanism linking diabetes-associated hyperglycemia to cancer. Increased glucose uptake is a hallmark of tumor cells and may ensure enhanced WNT signaling for continuous proliferation. Mechanistically, high glucose unbalances acetylation through increased p300 acetyl transferase and decreased sirtuin 1 deacetylase activity, leading to ß-catenin acetylation at lysine K354, a requirement for nuclear accumulation and transcriptional activation of WNT-target genes. The impact of high glucose on ß-catenin illustrates the remodeling of cancer-associated signaling pathways by metabolites. Metabolic remodeling of cancer-associated signaling will receive much research attention in the coming years. Future epidemiological studies may be guided and complemented by the identification of these metabolic interplays. Together, these studies should lead to the development of new preventive strategies for diabetes-associated cancers.


Asunto(s)
Complicaciones de la Diabetes/metabolismo , Neoplasias/etiología , Neoplasias/metabolismo , Acetilación , Animales , Glucemia , Complicaciones de la Diabetes/epidemiología , Glucosa/metabolismo , Humanos , Hiperglucemia/complicaciones , Hiperglucemia/metabolismo , Hiperinsulinismo/complicaciones , Hiperinsulinismo/metabolismo , Neoplasias/epidemiología , Riesgo , Transducción de Señal , Proteínas Wnt/metabolismo , beta Catenina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA