Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Sensors (Basel) ; 22(8)2022 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-35459074

RESUMEN

A novel feeding method for linear DRA arrays is presented, illuminating the use of the power divider, transitions, and launchers, and keeping uniform excitation to array elements. This results in a high-gain DRA array with low losses with a design that is simple, compact and inexpensive. The proposed feeding method is based on exciting standing waves using discrete metallic patches in a simple design procedure. Two arrays with two and four DRA elements are presented as a proof of concept, which provide high gains of 12 and 15dBi, respectively, which are close to the theoretical limit based on array theory. The radiation efficiency for both arrays is about 93%, which is equal to the array element efficiency, confirming that the feeding method does not add losses as in the case of standard methods. To facilitate the fabrication process, the entire array structure is 3D-printed, which significantly decreases the complexity of fabrication and alignment. Compared to state-of-the-art feeding techniques, the proposed method provides higher gain and higher efficiency with a smaller electrical size.

2.
Sensors (Basel) ; 22(6)2022 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-35336571

RESUMEN

In this work, the design of an integrated 183GHz radiometer frontend for earth observation applications on satellites is presented. By means of the efficient electro-optic modulation of a laser pump with the observed millimeter-wave signal followed by the detection of the generated optical sideband, a room-temperature low-noise receiver frontend alternative to conventional Low Noise Amplifiers (LNAs) or Schottky mixers is proposed. Efficient millimeter-wave to 1550 nm upconversion is realized via a nonlinear optical process in a triply resonant high-Q Lithium Niobate (LN) Whispering Gallery Mode (WGM) resonator. By engineering a micromachined millimeter-wave cavity that maximizes the overlap with the optical modes while guaranteeing phase matching, the system has a predicted normalized photon-conversion efficiency ≈10-1 per mW pump power, surpassing the state-of-the-art by around three orders of magnitude at millimeter-wave frequencies. A piezo-driven millimeter-wave tuning mechanism is designed to compensate for the fabrication and assembly tolerances and reduces the complexity of the manufacturing process.

3.
Sci Rep ; 10(1): 9403, 2020 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-32523010

RESUMEN

This paper presents a study of noise in room-temperature THz radiometers that use THz-to-optical upconversion followed by optical detection of thermal radiation. Despite some undesired upconverted thermal noise, no noise is intrinsically introduced by efficient electro-optic modulation via a sum-frequency-generation process in high quality factor (Q) whispering-gallery mode (WGM) resonators. However, coherent and incoherent optical detection results in fundamentally different noise characteristics. The analysis shows that the upconversion receiver is quantum limited like conventional amplifiers and mixers, only when optical homodyne or heterodyne detection is performed. However, this type of receiver shows advantages as a THz photon counter, where counting is in the optical domain. Theoretical predictions show that upconversion-based room-temperature receivers can outperform state-of-the-art cooled and room-temperature THz receivers based on low-noise amplifiers and mixers, provided that a photon conversion efficiency greater than 1% is realized. Although the detection bandwidth is naturally narrow due to the highly resonant electro-optic modulator, it is not fundamentally limited and can be broadened by engineering selective optical coupling mechanisms to the resonator.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA