Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
J Exp Bot ; 74(1): 178-193, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36260406

RESUMEN

Pollen development is a crucial biological process indispensable for seed set in flowering plants and for successful crop breeding. However, little is known about the molecular mechanisms regulating pollen development in crop species. This study reports a novel male-sterile tomato mutant, pollen deficient 2 (pod2), characterized by the production of non-viable pollen grains and resulting in the development of small parthenocarpic fruits. A combined strategy of mapping-by-sequencing and RNA interference-mediated gene silencing was used to prove that the pod2 phenotype is caused by the loss of Solanum lycopersicum G-type lectin receptor kinase II.9 (SlG-LecRK-II.9) activity. In situ hybridization of floral buds showed that POD2/SlG-LecRK-II.9 is specifically expressed in tapetal cells and microspores at the late tetrad stage. Accordingly, abnormalities in meiosis and tapetum programmed cell death in pod2 occurred during microsporogenesis, resulting in the formation of four dysfunctional microspores leading to an aberrant microgametogenesis process. RNA-seq analyses supported the existence of alterations at the final stage of microsporogenesis, since we found tomato deregulated genes whose counterparts in Arabidopsis are essential for the normal progression of male meiosis and cytokinesis. Collectively, our results revealed the essential role of POD2/SlG-LecRK-II.9 in regulating tomato pollen development.


Asunto(s)
Arabidopsis , Fenómenos Biológicos , Solanum lycopersicum , Solanum lycopersicum/genética , Lectinas/genética , Lectinas/metabolismo , Proteínas Quinasas Dependientes de GMP Cíclico/genética , Proteínas Quinasas Dependientes de GMP Cíclico/metabolismo , Fitomejoramiento , Polen/metabolismo , Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas
2.
Proc Natl Acad Sci U S A ; 117(14): 8187-8195, 2020 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-32179669

RESUMEN

A dramatic evolution of fruit size has accompanied the domestication and improvement of fruit-bearing crop species. In tomato (Solanum lycopersicum), naturally occurring cis-regulatory mutations in the genes of the CLAVATA-WUSCHEL signaling pathway have led to a significant increase in fruit size generating enlarged meristems that lead to flowers with extra organs and bigger fruits. In this work, by combining mapping-by-sequencing and CRISPR/Cas9 genome editing methods, we isolated EXCESSIVE NUMBER OF FLORAL ORGANS (ENO), an AP2/ERF transcription factor which regulates floral meristem activity. Thus, the ENO gene mutation gives rise to plants that yield larger multilocular fruits due to an increased size of the floral meristem. Genetic analyses indicate that eno exhibits synergistic effects with mutations at the LOCULE NUMBER (encoding SlWUS) and FASCIATED (encoding SlCLV3) loci, two central players in the evolution of fruit size in the domestication of cultivated tomatoes. Our findings reveal that an eno mutation causes a substantial expansion of SlWUS expression domains in a flower-specific manner. In vitro binding results show that ENO is able to interact with the GGC-box cis-regulatory element within the SlWUS promoter region, suggesting that ENO directly regulates SlWUS expression domains to maintain floral stem-cell homeostasis. Furthermore, the study of natural allelic variation of the ENO locus proved that a cis-regulatory mutation in the promoter of ENO had been targeted by positive selection during the domestication process, setting up the background for significant increases in fruit locule number and fruit size in modern tomatoes.


Asunto(s)
Frutas/genética , Proteínas de Homeodominio/genética , Meristema/crecimiento & desarrollo , Proteínas de Plantas/metabolismo , Solanum lycopersicum/fisiología , Factores de Transcripción/metabolismo , Proliferación Celular/genética , Producción de Cultivos , Domesticación , Frutas/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas , Genes de Plantas/genética , Meristema/citología , Mutación , Proteínas de Plantas/genética , Regiones Promotoras Genéticas , Sitios de Carácter Cuantitativo/genética , Células Madre/fisiología , Factores de Transcripción/genética
3.
New Phytol ; 234(3): 1059-1074, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35170044

RESUMEN

CRABS CLAW (CRC) orthologues play a crucial role in floral meristem (FM) determinacy and gynoecium formation across angiosperms, the key developmental processes for ensuring successful plant reproduction and crop production. However, the mechanisms behind CRC mediated FM termination are far from fully understood. Here, we addressed the functional characterization of tomato (Solanum lycopersicum) paralogous CRC genes. Using mapping-by-sequencing, RNA interference and CRISPR/Cas9 techniques, expression analyses, protein-protein interaction assays and Arabidopsis complementation experiments, we examined their potential roles in FM determinacy and carpel formation. We revealed that the incomplete penetrance and variable expressivity of the indeterminate carpel-inside-carpel phenotype observed in fruit iterative growth (fig) mutant plants are due to the lack of function of the S. lycopersicum CRC homologue SlCRCa. Furthermore, a detailed functional analysis of tomato CRC paralogues, SlCRCa and SlCRCb, allowed us to propose that they operate as positive regulators of FM determinacy by acting in a compensatory and partially redundant manner to safeguard the proper formation of flowers and fruits. Our results uncover for the first time the physical interaction of putative CRC orthologues with members of the chromatin remodelling complex that epigenetically represses WUSCHEL expression through histone deacetylation to ensure the proper termination of floral stem cell activity.


Asunto(s)
Proteínas de Arabidopsis , Solanum lycopersicum , Proteínas de Arabidopsis/metabolismo , Ensamble y Desensamble de Cromatina , Flores , Regulación de la Expresión Génica de las Plantas , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Meristema/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
4.
Plant Cell Environ ; 43(7): 1722-1739, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32329086

RESUMEN

Increasing evidences highlight the importance of DEAD-box RNA helicases in plant development and stress responses. In a previous study, we characterized the tomato res mutant (restored cell structure by salinity), showing chlorosis and development alterations that reverted under salt-stress conditions. Map-based cloning demonstrates that RES gene encodes SlDEAD39, a chloroplast-targeted DEAD-box RNA helicase. Constitutive expression of SlDEAD39 complements the res mutation, while the silencing lines had a similar phenotype than res mutant, which is also reverted under salinity. Functional analysis of res mutant proved SlDEAD39 is involved in the in vivo processing of the chloroplast, 23S rRNA, at the hidden break-B site, a feature also supported by in vitro binding experiments of the protein. In addition, our results show that other genes coding for chloroplast-targeted DEAD-box proteins are induced by salt-stress, which might explain the rescue of the res mutant phenotype. Interestingly, salinity restored the phenotype of res adult plants by increasing their sugar content and fruit yield. Together, these results propose an unprecedented role of a DEAD-box RNA helicase in regulating plant development and stress response through the proper ribosome and chloroplast functioning, which, in turn, represents a potential target to improve salt tolerance in tomato crops.


Asunto(s)
ARN Helicasas DEAD-box/fisiología , Proteínas de Plantas/fisiología , Solanum lycopersicum/crecimiento & desarrollo , Northern Blotting , Cloroplastos/metabolismo , ARN Helicasas DEAD-box/metabolismo , Regulación de la Expresión Génica de las Plantas , Solanum lycopersicum/metabolismo , Solanum lycopersicum/fisiología , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Reacción en Cadena en Tiempo Real de la Polimerasa , Estrés Salino
5.
Plant J ; 96(2): 300-315, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30003619

RESUMEN

Pollen development is a crucial step in higher plants, which not only makes possible plant fertilization and seed formation, but also determines fruit quality and yield in crop species. Here, we reported a tomato T-DNA mutant, pollen deficient1 (pod1), characterized by an abnormal anther development and the lack of viable pollen formation, which led to the production of parthenocarpic fruits. Genomic analyses and the characterization of silencing lines proved that pod1 mutant phenotype relies on the tomato SlMED18 gene encoding the subunit 18 of Mediator multi-protein complex involved in RNA polymerase II transcription machinery. The loss of SlMED18 function delayed tapetum degeneration, which resulted in deficient microspore development and scarce production of viable pollen. A detailed histological characterization of anther development proved that changes during microgametogenesis and a significant delay in tapetum degeneration are associated with a high proportion of degenerated cells and, hence, should be responsible for the low production of functional pollen grains. Expression of pollen marker genes indicated that SlMED18 is essential for the proper transcription of a subset of genes specifically required to pollen formation and fruit development, revealing a key role of SlMED18 in male gametogenesis of tomato. Additionally, SlMED18 is able to rescue developmental abnormalities of the Arabidopsis med18 mutant, indicating that most biological functions have been conserved in both species.


Asunto(s)
Complejo Mediador/metabolismo , Solanum lycopersicum/genética , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/fisiología , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Gametogénesis en la Planta/genética , Solanum lycopersicum/crecimiento & desarrollo , Solanum lycopersicum/fisiología , Complejo Mediador/genética , Mutación , Fenotipo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Polen/genética , Polen/crecimiento & desarrollo , Polen/fisiología
6.
BMC Plant Biol ; 19(1): 141, 2019 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-30987599

RESUMEN

BACKGROUND: Tomato mutants altered in leaf morphology are usually identified in the greenhouse, which demands considerable time and space and can only be performed in adequate periods. For a faster but equally reliable scrutiny method we addressed the screening in vitro of 971 T-DNA lines. Leaf development was evaluated in vitro in seedlings and shoot-derived axenic plants. New mutants were characterized in the greenhouse to establish the relationship between in vitro and in vivo leaf morphology, and to shed light on possible links between leaf development and agronomic traits, a promising field in which much remains to be discovered. RESULTS: Following the screening in vitro of tomato T-DNA lines, putative mutants altered in leaf morphology were evaluated in the greenhouse. The comparison of results in both conditions indicated a general phenotypic correspondence, showing that in vitro culture is a reliable system for finding mutants altered in leaf development. Apart from providing homogeneous conditions, the main advantage of screening in vitro lies in the enormous time and space saving. Studies on the association between phenotype and nptII gene expression showed co-segregation in two lines (P > 99%). The use of an enhancer trap also allowed identifying gain-of-function mutants through reporter expression analysis. These studies suggested that genes altered in three other mutants were T-DNA tagged. New mutants putatively altered in brassinosteroid synthesis or perception, mutations determining multiple pleiotropic effects, lines affected in organ curvature, and the first tomato mutant with helical growth were discovered. Results also revealed new possible links between leaf development and agronomic traits, such as axillary branching, flower abscission, fruit development and fruit cracking. Furthermore, we found that the gene tagged in mutant 2635-MM encodes a Sterol 3-beta-glucosyltransferase. Expression analysis suggested that abnormal leaf development might be due to the lack-off-function of this gene. CONCLUSION: In vitro culture is a quick, efficient and reliable tool for identifying tomato mutants altered in leaf morphology. The characterization of new mutants in vivo revealed new links between leaf development and some agronomic traits. Moreover, the possible implication of a gene encoding a Sterol 3-beta-glucosyltransferase in tomato leaf development is reported.


Asunto(s)
Glucosiltransferasas/genética , Solanum lycopersicum/genética , Flores/enzimología , Flores/genética , Flores/crecimiento & desarrollo , Frutas/enzimología , Frutas/genética , Frutas/crecimiento & desarrollo , Solanum lycopersicum/enzimología , Solanum lycopersicum/crecimiento & desarrollo , Mutación , Fenotipo , Hojas de la Planta/enzimología , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Proteínas de Plantas/genética
7.
Plant Physiol ; 176(2): 1676-1693, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29229696

RESUMEN

Characterization of a new tomato (Solanum lycopersicum) T-DNA mutant allowed for the isolation of the CALCINEURIN B-LIKE PROTEIN 10 (SlCBL10) gene whose lack of function was responsible for the severe alterations observed in the shoot apex and reproductive organs under salinity conditions. Physiological studies proved that SlCBL10 gene is required to maintain a proper low Na+/Ca2+ ratio in growing tissues allowing tomato growth under salt stress. Expression analysis of the main responsible genes for Na+ compartmentalization (i.e. Na+/H+ EXCHANGERs, SALT OVERLY SENSITIVE, HIGH-AFFINITY K+ TRANSPORTER 1;2, H+-pyrophosphatase AVP1 [SlAVP1] and V-ATPase [SlVHA-A1]) supported a reduced capacity to accumulate Na+ in Slcbl10 mutant leaves, which resulted in a lower uploading of Na+ from xylem, allowing the toxic ion to reach apex and flowers. Likewise, the tomato CATION EXCHANGER 1 and TWO-PORE CHANNEL 1 (SlTPC1), key genes for Ca2+ fluxes to the vacuole, showed abnormal expression in Slcbl10 plants indicating an impaired Ca2+ release from vacuole. Additionally, complementation assay revealed that SlCBL10 is a true ortholog of the Arabidopsis (Arabidopsis thaliana) CBL10 gene, supporting that the essential function of CBL10 is conserved in Arabidopsis and tomato. Together, the findings obtained in this study provide new insights into the function of SlCBL10 in salt stress tolerance. Thus, it is proposed that SlCBL10 mediates salt tolerance by regulating Na+ and Ca2+ fluxes in the vacuole, cooperating with the vacuolar cation channel SlTPC1 and the two vacuolar H+-pumps, SlAVP1 and SlVHA-A1, which in turn are revealed as potential targets of SlCBL10.


Asunto(s)
Calcineurina/metabolismo , Calcio/metabolismo , Intercambiadores de Sodio-Hidrógeno/metabolismo , Sodio/metabolismo , Solanum lycopersicum/genética , Calcineurina/genética , Homeostasis , Solanum lycopersicum/fisiología , Mutación , Fenotipo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Salinidad , Estrés Salino , Tolerancia a la Sal , Intercambiadores de Sodio-Hidrógeno/genética , Vacuolas/metabolismo
8.
J Exp Bot ; 70(20): 5731-5744, 2019 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-31328220

RESUMEN

Arlequin (Alq) is a gain-of-function mutant whose most relevant feature is that sepals are able to become fruit-like organs due to the ectopic expression of the ALQ-TAGL1 gene. The role of this gene in tomato fruit ripening was previously demonstrated. To discover new functional roles for ALQ-TAGL1, and most particularly its involvement in the fruit set process, a detailed characterization of Alq yield-related traits was performed. Under standard conditions, the Alq mutant showed a much higher fruit set rate than the wild type. A significant percentage of Alq fruits were seedless. The results showed that pollination-independent fruit set in Alq is due to early transition from flower to fruit. Analysis of endogenous hormones in Alq suggests that increased content of cytokinins and decreased level of abscisic acid may account for precocious fruit set. Comparative expression analysis showed relevant changes of several genes involved in cell division, gibberellin metabolism, and the auxin signalling pathway. Since pollination-independent fruit set may be a very useful strategy for maintaining fruit production under adverse conditions, fruit set and yield in Alq plants under moderate salinity were assessed. Interestingly, Alq mutant plants showed a high yield under saline conditions, similar to that of Alq and the wild type under unstressed conditions.


Asunto(s)
Flores/metabolismo , Flores/fisiología , Frutas/metabolismo , Frutas/fisiología , Proteínas de Plantas/metabolismo , Solanum lycopersicum/metabolismo , Solanum lycopersicum/fisiología , Ácido Abscísico/metabolismo , División Celular/genética , División Celular/fisiología , Citocininas/metabolismo , Flores/genética , Frutas/genética , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Giberelinas/metabolismo , Solanum lycopersicum/genética , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Plantas Modificadas Genéticamente/fisiología , Polinización/genética , Polinización/fisiología
9.
Plant Biotechnol J ; 15(11): 1439-1452, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28317264

RESUMEN

With the completion of genome sequencing projects, the next challenge is to close the gap between gene annotation and gene functional assignment. Genomic tools to identify gene functions are based on the analysis of phenotypic variations between a wild type and its mutant; hence, mutant collections are a valuable resource. In this sense, T-DNA collections allow for an easy and straightforward identification of the tagged gene, serving as the basis of both forward and reverse genetic strategies. This study reports on the phenotypic and molecular characterization of an enhancer trap T-DNA collection in tomato (Solanum lycopersicum L.), which has been produced by Agrobacterium-mediated transformation using a binary vector bearing a minimal promoter fused to the uidA reporter gene. Two genes have been isolated from different T-DNA mutants, one of these genes codes for a UTP-glucose-1-phosphate uridylyltransferase involved in programmed cell death and leaf development, which means a novel gene function reported in tomato. Together, our results support that enhancer trapping is a powerful tool to identify novel genes and regulatory elements in tomato and that this T-DNA mutant collection represents a highly valuable resource for functional analyses in this fleshy-fruited model species.


Asunto(s)
Elementos de Facilitación Genéticos , Genes de Plantas/genética , Genómica/métodos , Mutagénesis Insercional/métodos , Solanum lycopersicum/genética , Agrobacterium/genética , Secuencia de Bases , Mapeo Cromosómico , ADN Bacteriano/genética , ADN de Plantas/aislamiento & purificación , Frutas , Silenciador del Gen , Genes de Plantas/fisiología , Genes Reporteros , Fenotipo , Hojas de la Planta/crecimiento & desarrollo , Regiones Promotoras Genéticas
10.
Plant Cell Environ ; 40(5): 658-671, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-27987209

RESUMEN

Excessive soil salinity diminishes crop yield and quality. In a previous study in tomato, we identified two closely linked genes encoding HKT1-like transporters, HKT1;1 and HKT1;2, as candidate genes for a major quantitative trait locus (kc7.1) related to shoot Na+ /K+ homeostasis - a major salt tolerance trait - using two populations of recombinant inbred lines (RILs). Here, we determine the effectiveness of these genes in conferring improved salt tolerance by using two near-isogenic lines (NILs) that were homozygous for either the Solanum lycopersicum allele (NIL17) or for the Solanum cheesmaniae allele (NIL14) at both HKT1 loci; transgenic lines derived from these NILs in which each HKT1;1 and HKT1;2 had been silenced by stable transformation were also used. Silencing of ScHKT1;2 and SlHKT1;2 altered the leaf Na+ /K+ ratio and caused hypersensitivity to salinity in plants cultivated under transpiring conditions, whereas silencing SlHKT1;1/ScHKT1;1 had a lesser effect. These results indicate that HKT1;2 has the more significant role in Na+ homeostasis and salinity tolerance in tomato.


Asunto(s)
Proteínas de Transporte de Catión/genética , Homeostasis , Proteínas de Plantas/genética , Brotes de la Planta/metabolismo , Potasio/metabolismo , Salinidad , Sodio/metabolismo , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Simportadores/genética , Alelos , Proteínas de Transporte de Catión/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Silenciador del Gen/efectos de los fármacos , Genes de Plantas , Sitios Genéticos , Homeostasis/efectos de los fármacos , Homeostasis/genética , Endogamia , Solanum lycopersicum/efectos de los fármacos , Solanum lycopersicum/crecimiento & desarrollo , Fenotipo , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/metabolismo , Proteínas de Plantas/metabolismo , Brotes de la Planta/efectos de los fármacos , Análisis de Componente Principal , Interferencia de ARN , ARN Mensajero/genética , ARN Mensajero/metabolismo , Cloruro de Sodio/farmacología , Simportadores/metabolismo
11.
Physiol Plant ; 152(4): 700-13, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24773242

RESUMEN

For salt tolerance to be achieved in the long-term plants must regulate Na(+)/K(+) homeostasis over time. In this study, we show that the salt tolerance induced by overexpression of the yeast HAL5 gene in tomato (Solanum lycopersicum) was related to a lower leaf Na(+) accumulation in the long term, by reducing Na(+) transport from root to shoot over time regardless of the severity of salt stress. Furthermore, maintaining Na(+)/K(+) homeostasis over time was associated with changes in the transcript levels of the Na(+) and K(+) transporters such as SlHKT1;2 and SlHAK5. The expression of SlHKT1;2 was upregulated in response to salinity in roots of transgenic plants but downregulated in the roots of wild-type (WT) plants, which seems to be related to the lower Na(+) transport rate from root to shoot in transgenic plants. The expression of the SlHAK5 increased in roots and leaves of both WT and transgenic plants under salinity. However, this increase was much higher in the leaves of transgenic plants than in those of WT plants, which may be associated with the ability of transgenic leaves to maintain Na(+)/K(+) homeostasis over time. Taken together, the results show that the salt tolerance mechanism induced by HAL5 overexpression in tomato is related to the appropriate regulation of ion transport from root to shoot and maintenance of the leaf Na(+)/K(+) homeostasis through modulation of SlHKT1 and SlHAK5 over time.


Asunto(s)
Adaptación Fisiológica , Regulación de la Expresión Génica de las Plantas , Proteínas Quinasas/genética , Proteínas de Saccharomyces cerevisiae/genética , Cloruro de Sodio/farmacología , Solanum lycopersicum/fisiología , Frutas/genética , Frutas/fisiología , Expresión Génica , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Transporte Iónico , Solanum lycopersicum/genética , Hojas de la Planta/genética , Hojas de la Planta/fisiología , Raíces de Plantas/genética , Raíces de Plantas/fisiología , Brotes de la Planta/genética , Brotes de la Planta/fisiología , Plantas Modificadas Genéticamente , Potasio/metabolismo , Proteínas Quinasas/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Salinidad , Tolerancia a la Sal , Sodio/metabolismo , Transgenes , Xilema/genética , Xilema/fisiología
12.
BMC Plant Biol ; 12: 156, 2012 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-22935247

RESUMEN

BACKGROUND: Pelargonium is one of the most popular garden plants in the world. Moreover, it has a considerable economic importance in the ornamental plant market. Conventional cross-breeding strategies have generated a range of cultivars with excellent traits. However, gene transfer via Agrobacterium tumefaciens could be a helpful tool to further improve Pelargonium by enabling the introduction of new genes/traits. We report a simple and reliable protocol for the genetic transformation of Pelargonium spp. and the production of engineered long-life and male sterile Pelargonium zonale plants, using the pSAG12::ipt and PsEND1::barnase chimaeric genes respectively. RESULTS: The pSAG12::ipt transgenic plants showed delayed leaf senescence, increased branching and reduced internodal length, as compared to control plants. Leaves and flowers of the pSAG12::ipt plants were reduced in size and displayed a more intense coloration. In the transgenic lines carrying the PsEND1::barnase construct no pollen grains were observed in the modified anther structures, which developed instead of normal anthers. The locules of sterile anthers collapsed 3-4 days prior to floral anthesis and, in most cases, the undeveloped anther tissues underwent necrosis. CONCLUSION: The chimaeric construct pSAG12::ipt can be useful in Pelargonium spp. to delay the senescence process and to modify plant architecture. In addition, the use of engineered male sterile plants would be especially useful to produce environmentally friendly transgenic plants carrying new traits by preventing gene flow between the genetically modified ornamentals and related plant species. These characteristics could be of interest, from a commercial point of view, both for pelargonium producers and consumers.


Asunto(s)
Ingeniería Genética/métodos , Pelargonium/genética , Infertilidad Vegetal , Plantas Modificadas Genéticamente/fisiología , Agrobacterium tumefaciens/genética , Proteínas Bacterianas , Flores/genética , Flores/fisiología , Pelargonium/fisiología , Hojas de la Planta/genética , Hojas de la Planta/fisiología , Técnicas de Embriogénesis Somática de Plantas , Plantas Modificadas Genéticamente/genética , Ribonucleasas/genética , Transformación Genética
13.
Plant Cell Rep ; 30(10): 1865-79, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21647638

RESUMEN

Salinity and drought have a huge impact on agriculture since there are few areas free of these abiotic stresses and the problem continues to increase. In tomato, the most important horticultural crop worldwide, there are accessions of wild-related species with a high degree of tolerance to salinity and drought. Thus, the finding of insertional mutants with other tolerance levels could lead to the identification and tagging of key genes responsible for abiotic stress tolerance. To this end, we are performing an insertional mutagenesis programme with an enhancer trap in the tomato wild-related species Solanum pennellii. First, we developed an efficient transformation method which has allowed us to generate more than 2,000 T-DNA lines. Next, the collection of S. pennelli T(0) lines has been screened in saline or drought conditions and several presumptive mutants have been selected for their salt and drought sensitivity. Moreover, T-DNA lines with expression of the reporter uidA gene in specific organs, such as vascular bundles, trichomes and stomata, which may play key roles in processes related to abiotic stress tolerance, have been identified. Finally, the growth of T-DNA lines in control conditions allowed us the identification of different development mutants. Taking into account that progenies from the lines are being obtained and that the collection of T-DNA lines is going to enlarge progressively due to the high transformation efficiency achieved, there are great possibilities for identifying key genes involved in different tolerance mechanisms to salinity and drought.


Asunto(s)
Mutagénesis Insercional/métodos , Solanum/genética , Estrés Fisiológico , ADN Bacteriano/genética , Sequías , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Ensayos Analíticos de Alto Rendimiento , Fenotipo , Salinidad , Plantas Tolerantes a la Sal/genética , Plantas Tolerantes a la Sal/fisiología , Solanum/fisiología , Transformación Genética
14.
Plant Sci ; 302: 110721, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33288027

RESUMEN

The screening of 862 T-DNA lines was carried out to approach the genetic dissection of indirect adventitious organogenesis in tomato. Several mutants defective in different phases of adventitious organogenesis, namely callus growth (tdc-1), bud differentiation (tdb-1, -2, -3) and shoot-bud development (tds-1) were identified and characterized. The alteration of the TDC-1 gene blocked callus proliferation depending on the composition of growth regulators in the culture medium. Calli from tds-1 explants differentiated buds but did not develop normal shoots. Histological analysis showed that their abnormal development is due to failure in the organization of normal adventitious shoot meristems. Interestingly, tdc-1 and tds-1 mutant plants were indistinguishable from WT ones, indicating that the respective altered genes play specific roles in cell proliferation from explant cut zones (TDC-1 gene) or in the organization of adventitious shoot meristems (TDS-1 gene). Unlike the previous, plants of the three mutants defective in the differentiation of adventitious shoot-buds (tdb-1, -2, -3) showed multiple changes in vegetative and reproductive traits. Cosegregation analyses revealed the existence of an association between the phenotype of the tdb-3 mutant and a T-DNA insert, which led to the discovery that the SlMAPKKK17 gene is involved in the shoot-bud differentiation process.


Asunto(s)
Genes de Plantas/fisiología , Brotes de la Planta/fisiología , Regeneración/genética , Solanum lycopersicum/genética , Genes de Plantas/genética , Estudios de Asociación Genética , Solanum lycopersicum/fisiología , Meristema/genética , Meristema/fisiología , Raíces de Plantas/fisiología
15.
Plant Cell Physiol ; 51(3): 435-47, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20081209

RESUMEN

The genetic and phenotypic characterization of a new tomato (Solanum lycopersicum) insertional mutant, Arlequin (Alq) is reported. Alq mutant plants were affected in reproductive development and their sepals were homeotically converted into fleshy fruit-like organs. Molecular analysis demonstrated that a single copy of T-DNA was present in the mutant genome while genetic analysis confirmed that the mutant phenotype co-segregated with the T-DNA insertion and was inherited as a monogenic semi-dominant trait. The histological and scanning electron microscope analyses revealed cell identity changes in both external and internal tissues of Alq sepals. Flowers developed by Alq homozygous plants showed a severe mutant phenotype, since after fruit set, not only did the sepals become succulent but they also followed a ripening pattern similar to that of normal fruits. From a metabolic viewpoint, Alq sepals also behaved like a fruit, as they acquired the properties of a sink that acted alternatively and independently to the fruit. In fact, expression of regulatory genes controlling tomato fruit ripening was detected in Alq sepals at similar levels to those observed in mature fruits. Furthermore, the Alq mutation inhibited the development of the abscission zone in tomato flowers indicating that the JOINTLESS gene is regulated by ALQ. Results from the genetic and developmental characterization of the Alq tomato mutant suggest that the ALQ gene participates in the regulatory pathway controlling fruit ripening of tomato.


Asunto(s)
Flores/crecimiento & desarrollo , Frutas/crecimiento & desarrollo , Solanum lycopersicum/genética , ADN Bacteriano/genética , ADN de Plantas/genética , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Patrón de Herencia , Solanum lycopersicum/crecimiento & desarrollo , Microscopía Electrónica de Rastreo , Mutagénesis Insercional , Mutación , Fenotipo
16.
Plant Cell Rep ; 29(1): 61-77, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19921199

RESUMEN

Engineered male sterility in ornamental plants has many applications such as facilitate hybrid seed production, eliminate pollen allergens, reduce the need for deadheading to extend the flowering period, redirect resources from seeds to vegetative growth, increase flower longevity and prevent gene flow between genetically modified and related native plants. We have developed a reliable and efficient Agrobacterium-mediated protocol for the genetic transformation of different Kalanchoe blossfeldiana commercial cultivars. Transformation efficiency for cv. 'Hillary' was 55.3% whereas that of cv. 'Tenorio' reached 75.8%. Selection was carried out with the nptII gene and increasing the kanamycin concentration from 25 to 100 mg l(-1) allowed to reduced escapes from 50 to 60% to virtually 0%. This method was used to produce male-sterile plants through engineered anther ablation. In our approach, we tested a male sterility chimaeric gene construct (PsEND1::barnase) to evaluate its effectiveness and effect on phenotype. No significant differences were found in the growth patterns between the transgenic lines and the wild-type plants. No viable pollen grains were observed in the ablated anthers of any of the lines carrying the PsEND1::barnase construct, indicating that the male sterility was complete. In addition, seed set was completely abolished in all the transgenic plants obtained. Our engineered male-sterile approach could be used, alone or in combination with a female-sterility system, to reduce the invasive potential of new ornamentals, which has become an important environmental problem in many countries.


Asunto(s)
Flores/crecimiento & desarrollo , Ingeniería Genética/métodos , Kalanchoe/genética , Infertilidad Vegetal , Flores/genética , Flores/ultraestructura , Regulación de la Expresión Génica de las Plantas , Kalanchoe/crecimiento & desarrollo , Fenotipo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Polen/crecimiento & desarrollo , Regiones Promotoras Genéticas , Rhizobium , Transformación Genética
17.
Front Plant Sci ; 11: 1305, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32983195

RESUMEN

Since membranes play essential roles in all living beings, all cells have developed mechanisms for efficient and fast repair of membrane damage. In Escherichia coli, the Phage shock stress A (PspA) protein is involved in the maintenance of the integrity of its inner membrane in response to the damage produced by exposure to stress conditions. A role in thylakoid membrane maintenance and reorganization has been proposed for Vesicle Inducing Protein in Plastid 1 (VIPP1), the putative PspA ortholog in Arabidopsis thaliana. While some membranes of plant cells have been extensively studied, the biosynthesis and maintenance of chloroplast thylakoid membrane remains poorly known. Here, we report the cloning and functional characterization of the tomato (Solanum lycopersicum L.) ortholog of Escherichia coli PspA and Arabidopsis thaliana VIPP1, which we dubbed SlVIPP1. Our genetic and molecular characterization of slvipp1, an insertional mutant, allowed us to conclude that the tomato SlVIPP1 gene is needed for development, as Arabidopsis VIPP1, but not Escherichia coli PspA. Homozygous slvipp1 tomato plants are albino and exhibit early lethality and highly aberrant chloroplast development with almost complete absence of thylakoids. The phenotype of tomato RNAi lines and that of additional slvipp1 alleles generated by CRISPR/Cas9 gene editing technology confirmed that the morphological and histological aberrations shown by slvipp1 homozygotes are caused by VIPP1 lack of function. We also found that tomato SlVIPP1 overexpression does not cause any visible effect on plant morphology and viability. Our work with slvipp1 plants evidences that SlVIPP1 is an essential gene required for tomato survival, since its function is crucial for the proper formation and/or maintenance of thylakoid membranes.

18.
Plant Physiol Biochem ; 154: 341-352, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32604062

RESUMEN

Genes encoding HKT1-like Na+ transporters play a key role in the salinity tolerance mechanism in Arabidopsis and other plant species by retrieving Na+ from the xylem of different organs and tissues. In this study, we investigated the role of two HKT1;2 allelic variants in tomato salt tolerance in relation to vegetative growth and fruit yield in plants subjected to salt treatment in a commercial greenhouse under real production conditions. We used two near-isogenic lines (NILs), homozygous for either the Solanum lycopersicum (NIL17) or S. cheesmaniae (NIL14) allele, at HKT1;2 loci and their respective RNAi-Sl/ScHKT1;2 lines. The results obtained show that both ScHKT1;2- and SlHKT1;2-silenced lines display hypersensitivity to salinity associated with an altered leaf Na+/K+ ratio, thus confirming that HKT1;2 plays an important role in Na+ homeostasis and salinity tolerance in tomato. Both silenced lines also showed Na+ over-accumulation and a slight, but significant, reduction in K+ content in the flower tissues of salt-treated plants and consequently a higher Na+/K+ ratio as compared to the respective unsilenced lines. This altered Na+/K+ ratio in flower tissues is associated with a sharp reduction in fruit yield, measured as total fresh weight and number of fruits, in both silenced lines under salinity conditions. Our findings demonstrate that Na+ transporter HKT1;2 protects the flower against Na+ toxicity and mitigates the reduction in tomato fruit yield under salinity conditions.


Asunto(s)
Proteínas de Transporte de Catión/fisiología , Proteínas de Plantas/fisiología , Estrés Salino , Solanum lycopersicum/fisiología , Flores/química , Frutas/crecimiento & desarrollo , Potasio/metabolismo , Sodio/química
19.
Physiol Plant ; 133(2): 288-97, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-18298412

RESUMEN

To achieve a deeper knowledge on the function of HAL1 gene in tomato (Solanum lycopersicum) plants submitted to salt stress, in this study, we studied the growth and physiological responses to high salt stress of T3 transgenic plants (an azygous line without transgene and both homozygous and hemizygous lines for HAL1) proceeding from a primary transformant with a very high expression level of HAL1 gene. The homozygous plants for HAL1 gene did not increase their salt tolerance in spite of an earlier and higher reduction of the Na(+) accumulation in leaves, being moreover the Na(+) homeostasis maintained throughout the growth cycle. The greater ability of the homozygous line to regulate the Na(+) transport to the shoot to long term was even shown in low accumulation of Na(+) in fruits. By comparing the homozygous and hemizygous lines, a higher salt tolerance in the hemizygous line, with respect to the homozygous line, was observed on the basis of fruit yield. The Na(+) homeostasis and osmotic homeostasis were also different in homozygous and hemizygous lines. Indeed, the Na(+) accumulation rate in leaves was greater in hemizygous than in homozygous line after 35 days of 100 mM NaCl treatment and only at the end of growth cycle did the hemizygous line show leaf Na(+) levels similar to those found in the homozygous line. With respect to the osmotic homeostasis, the main difference between lines was the different contribution of inorganic and organic solutes to the leaf osmotic balance. Taken together, these results suggest that the greater Na(+) exclusion ability of the homozygous line overexpressing HAL1 induces a greater use of organic solutes for osmotic balance, which seems to have an energy cost and hence a growth penalty that reverts negatively on fruit yield.


Asunto(s)
Adaptación Fisiológica/efectos de los fármacos , Homeostasis/efectos de los fármacos , Hojas de la Planta/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Cloruro de Sodio/farmacología , Sodio/metabolismo , Solanum lycopersicum/genética , Metabolismo de los Hidratos de Carbono/efectos de los fármacos , Frutas/efectos de los fármacos , Frutas/metabolismo , Homocigoto , Péptidos y Proteínas de Señalización Intracelular , Solanum lycopersicum/efectos de los fármacos , Solanum lycopersicum/crecimiento & desarrollo , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/fisiología , Proteínas de Plantas/metabolismo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/metabolismo , Plantas Modificadas Genéticamente , Potasio/farmacología , Sodio/farmacología , Factores de Tiempo , Transgenes
20.
Sci Rep ; 7: 45333, 2017 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-28350010

RESUMEN

Photosynthetic activity is indispensable for plant growth and survival and it depends on the synthesis of plastidial isoprenoids as chlorophylls and carotenoids. In the non-mevalonate pathway (MEP), the 1-deoxy-D-xylulose-5-phosphate synthase 1 (DXS1) enzyme has been postulated to catalyze the rate-limiting step in the formation of plastidial isoprenoids. In tomato, the function of DXS1 has only been studied in fruits, and hence its functional relevance during plant development remains unknown. Here we report the characterization of the wls-2297 tomato mutant, whose severe deficiency in chlorophylls and carotenoids promotes an albino phenotype. Additionally, growth of mutant seedlings was arrested without developing vegetative organs, which resulted in premature lethality. Gene cloning and silencing experiments revealed that the phenotype of wls-2297 mutant was caused by 38.6 kb-deletion promoted by a single T-DNA insertion affecting the DXS1 gene. This was corroborated by in vivo and molecular complementation assays, which allowed the rescue of mutant phenotype. Further characterization of tomato plants overexpressing DXS1 and comparative expression analysis indicate that DXS1 may play other important roles besides to that proposed during fruit carotenoid biosynthesis. Taken together, these results demonstrate that DXS1 is essentially required for the development and survival of tomato plants.


Asunto(s)
ADN Bacteriano/metabolismo , Proteínas de Plantas/metabolismo , Solanum lycopersicum/enzimología , Transferasas/metabolismo , Carotenoides/metabolismo , Clorofila/metabolismo , Clonación Molecular , ADN Bacteriano/genética , ADN Complementario/metabolismo , Frutas/química , Frutas/metabolismo , Solanum lycopersicum/crecimiento & desarrollo , Mutagénesis , Fenotipo , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Proteínas de Plantas/antagonistas & inhibidores , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente/enzimología , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Interferencia de ARN , Plantones/crecimiento & desarrollo , Transferasas/antagonistas & inhibidores , Transferasas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA